

# **Collaboration in Crisis: How Anesthesia Technicians, Technical operations & Operating Theater Technician Work Together to Manage Surgical Emergencies During Healthcare Disasters**

**Abdulmjeed Abdullah Almotairi<sup>1</sup>**

**Asma Rukhis Alanazi<sup>2</sup>**

**Zakimohseenqassemalnakli<sup>3</sup>**

**Mansour Faris Mansour Alhazuber<sup>4</sup>**

**Ali saleh Mana Alyami<sup>5</sup>**

**Alhassan Salem Ofaysh Al Dighrir<sup>6</sup>**

**Ibrahim Hussain Hamad Alghubari<sup>7</sup>**

**Mubarak Saleh Suwayyid Almansour<sup>8</sup>**

1. Anesthesia technologist  
Ad Diriyah hospital  
Riyadh
2. Anesthesia technician  
King Abdullah bin Abdulaziz university hospital  
Riyadh
3. Technical operations  
Al-Salil General Hospital  
Riyadh
4. Technical operations  
Al-Salil General Hospital  
Riyadh
5. Anesthesia technician  
NEW Najran General Hospital  
NAJRAN
6. Operating Theater Technician  
NAJRAN JENERAL HOSPITAL  
Najran
7. Operating Theater Technician  
New Najran General Hospital  
Najran
8. Anesthesia technician  
HABUNA GENERAL HOSPITAL  
Najran

## **Abstract**

Healthcare disasters, including pandemics, natural calamities, and mass casualty incidents, create an unprecedented demand for surgical care, often stretching healthcare systems to their limits. In such scenarios, the collaboration among anesthesia technicians, technical operations staff, and operating theater technicians becomes vital to ensure seamless surgical operations. This review explores their interconnected roles and the strategies employed to address surgical emergencies during crises. Using comprehensive case studies and lessons from recent global healthcare challenges, the paper highlights the importance of inter-professional coordination, training, and resilience in managing high-pressure situations. The study also discusses innovative solutions developed to overcome resource limitations, emphasizing their implications for future disaster preparedness.

## **Aim of Work**

The objective of this review is to analyze the collaborative dynamics among anesthesia technicians, technical operations personnel, and operating theater technicians in managing surgical emergencies during healthcare disasters. By examining their roles and strategies, the study aims to derive actionable insights that can improve disaster preparedness and response. Furthermore, it seeks to explore how these teams can optimize patient outcomes and maintain operational continuity under crisis conditions.

## Introduction

Operating theater technicians, technical operations staff, and anesthesia technicians are essential to the smooth functioning of surgical environments. These professionals ensure patient safety, support medical teams, and maintain operational efficiency during procedures. Their duties include preparing equipment, managing technical operations, and assisting with anesthesia administration. Despite their critical roles, they face significant challenges such as inadequate training, occupational stress, and exposure to health hazards. This discussion explores their specific responsibilities and the hurdles they encounter.

**Anesthesia technicians** play a pivotal role in anesthesia care teams by preparing workstations and assisting anesthesia providers. Their contributions can reduce provider stress and improve patient outcomes (Boyles et al., 2022). However, a gap exists in the development of this role, with many technicians lacking certification and practical experience. Educational interventions have proven effective in enhancing their skills, underscoring the need for ongoing training (Boyles et al., 2022). Additionally, anesthesia technicians often face conflicts over task distribution and leadership, which can disrupt patient care and increase errors. Conflict management training is essential for improving team dynamics (Ghenim et al., 2024).

**Operating theater technicians** operate in a sterile environment, assisting with surgical procedures and ensuring equipment functionality. Their work exposes them to numerous health hazards, such as anesthetic gases, which can negatively impact liver and kidney functions (Ms et al., 2018). To mitigate these risks, safety measures like scavenging systems and air quality monitoring are crucial (Ms et al., 2018). Noise levels in operating theaters also contribute to stress, affecting both health and performance (Lehrke et al., 2022). Furthermore, these technicians often experience occupational stress due to ambiguous roles and heavy workloads, highlighting the importance of addressing these factors to protect their well-being (Miandoab et al., 2015).

**Technical operations staff** are typically the first point of contact for patients, gathering medical histories and preparing them for surgery. Their role is vital in ensuring all necessary information is available for safe surgical procedures (Ruckman, 2014). However, they face challenges such as exposure to harmful anesthetic gases and insufficient technical facilities. Addressing these issues through improved working conditions and strict safety protocols is essential to safeguard their health (Lukaszewski et al., 2004).

**Healthcare disasters disrupt** normal operations and pose significant challenges to surgical teams, who must balance rapid response with maintaining patient safety. This often involves adapting to extreme resource constraints and unpredictable circumstances. Multidisciplinary collaboration is essential in these settings, particularly among anesthesia technicians, technical operations staff, and operating theater technicians. Each plays a distinct yet interdependent role in ensuring that surgical care continues without compromise (World Health Organization, 2020). This synergy has been evident in various healthcare crises, such as the COVID-19 pandemic, where cohesive teamwork proved critical in overcoming operational hurdles (Kwon et al., 2020).

### ❖ The Role of Anesthesia Technicians in Crisis Management

Anesthesia technicians play a crucial role in healthcare crisis management, particularly in the perioperative setting. Their responsibilities extend beyond routine tasks to include critical support during emergencies, ensuring patient safety and effective crisis resolution. Anesthesia technicians are integral to the anesthesia team, providing skilled assistance that can significantly impact the outcome of anesthetic incidents. Their involvement in crisis management is multifaceted, encompassing technical support, equipment management, and collaboration with anesthesiologists and other healthcare professionals. The following sections detail the specific roles and contributions of anesthesia technicians in crisis management.

**Technical Support and Equipment Management:** Anesthesia technicians are responsible for the preparation and maintenance of anesthesia equipment, which is vital during a crisis. Proper functioning of equipment such as anesthesia machines, ventilators, and monitoring devices is crucial for patient safety. They ensure the availability and readiness of emergency supplies and medications, which are essential for managing acute events like cardiac arrest or anaphylaxis. Skilled technicians can quickly troubleshoot and resolve equipment malfunctions, minimizing delays and potential harm during critical situations.

**Collaboration and Teamwork:** Anesthesia technicians work closely with anesthesiologists and the surgical team, facilitating effective communication and coordination during crises. Their role in supporting the anesthesia provider's decision-making process is critical. They contribute to the implementation of Anesthesia Crisis Resource Management (ACRM) principles, which emphasize teamwork and communication to enhance patient safety. In simulation-based training, anesthesia technicians participate in exercises that improve non-technical skills such as situational awareness and task management, which are essential during emergencies.

**Crisis Resource Management and Simulation Training:** Anesthesia technicians are involved in simulation-based training programs that focus on crisis resource management. These programs enhance their ability to respond effectively to perioperative emergencies by improving both technical and non-technical skills. Simulation training provides a controlled environment for technicians to practice crisis scenarios, allowing them to develop the skills necessary to manage real-life emergencies. The integration of simulation-based education in anesthesia training underscores the importance of continuous learning and preparedness in crisis management.

**Impact on Patient Outcomes:** The presence of skilled anesthesia technicians has been shown to reduce the incidence and severity of anesthetic incidents. Their expertise in managing equipment and supporting the anesthesia team contributes to better patient outcomes. Inadequate assistance from anesthesia technicians has been identified as a contributing factor in some anesthetic incidents, highlighting the importance of their role in crisis management.

❖ **The Role of Technical Operations Staff in Crisis Management:**

**Organizational Structure and Decision Support:** Healthcare organizations have leveraged operations management to redesign organizational structures and decision support systems, which are critical in crisis situations. This includes establishing hospital networks for efficient patient flow management and optimizing asset management and physical layouts to accommodate increased patient loads. Decision support systems enable real-time data analysis and forecasting, allowing healthcare facilities to anticipate patient care needs and resource consumption, which is vital for effective crisis response.

**Resource and Supply Chain Management:** The COVID-19 pandemic highlighted the importance of robust supply chain management. Operations management tools have been used to address shortages in personal protective equipment (PPE) and other medical supplies by rethinking inventory strategies and mitigating the bullwhip effect in supply chains. Effective resource management involves the strategic allocation of limited resources, such as hospital beds and medical personnel, to areas with the greatest need. This requires a centralized system to manage demand and ensure equitable distribution of resources.

**Crisis Resource Management and Training:** Crisis Resource Management (CRM) focuses on enhancing the skills of healthcare professionals in dynamic decision-making, interpersonal behavior, and team management during crises. This approach is crucial for maintaining operational efficiency and patient safety in high-pressure situations. Training healthcare professionals in crisis management competencies is essential for preparing them to handle complex, non-standard tasks and make informed decisions in uncertain environments.

**Technological Integration and Innovation:** The integration of new health technologies and information systems has been pivotal in managing healthcare crises. These technologies facilitate adaptive crisis management and enable healthcare systems to respond effectively to varying scales and types of emergencies. Innovations such as transforming non-traditional spaces into care facilities and deploying temporary structures have been employed to increase healthcare capacity during the COVID-19 pandemic.

**Coordination:** Effective communication and coordination among healthcare providers, public health agencies, and other stakeholders are critical components of crisis management. Establishing clear communication channels and protocols ensures that all parties are informed and can collaborate effectively to manage the crisis. The development of intranet pages, electronic discussion boards, and virtual meetings has been used to facilitate rapid information sharing and decision-making during the pandemic.

#### ❖ **Communication and Teamwork: The Backbone of Crisis Management**

Communication is a cornerstone of effective teamwork in surgical emergencies. Structured communication protocols such as SBAR (Situation-Background-Assessment-Recommendation) ensure that critical information is relayed efficiently. Studies have shown that clear and concise communication enhances situational awareness, reducing errors during high-pressure situations. For example, during the Ebola crisis, surgical teams relied heavily on pre-surgery briefings and post-surgery debriefings to ensure safety and efficiency (Fowler et al., 2014). Similarly, during the COVID-19 pandemic, hospitals adopted digital communication tools to coordinate between dispersed teams, enabling real-time updates and decision-making (Greenberg et al., 2020).

#### ❖ **Adaptive Strategies in Resource-Constrained Environments**

Disasters often result in severe resource constraints, forcing surgical teams to develop innovative strategies. For instance, during the peak of the COVID-19 pandemic, hospitals faced critical shortages of personal protective equipment (PPE). Anesthesia technicians and OTTs developed protocols for safely extending the use of PPE, such as re-sterilizing N95 masks using UV light (Wax et al., 2020). Other adaptive measures included the use of 3D-printed components to repair or replace surgical instruments, demonstrating the role of technology in overcoming resource limitations (Arora et al., 2021).

#### ❖ **Training and Simulation for Preparedness**

Training and simulation exercises are critical for preparing surgical teams for disaster scenarios. These exercises enhance team readiness by providing a controlled environment to practice crisis management and identify potential workflow inefficiencies. Research from Australian hospitals indicates that teams who undergo regular simulation training respond more effectively during real emergencies (Weller et al., 2018). Simulation scenarios often include managing sudden patient surges, equipment failures, and communication breakdowns, all of which are common in disaster settings.

#### ❖ **Psychological Resilience and Support Systems**

The psychological impact of healthcare disasters on surgical teams is profound, often leading to burnout and reduced efficiency. Anesthesia technicians, technical operations staff, and OTTs face unique stressors, including long hours, high-stakes decision-making, and exposure to life-threatening conditions. Psychological support systems, such as peer counseling and resilience training, have been shown to mitigate these effects. During the SARS outbreak, hospitals that implemented regular debriefing sessions and access to mental health resources reported lower stress levels and higher morale among staff (Maunder et al., 2003). The importance of such support was further underscored during the COVID-19 pandemic, where resilience-building programs helped maintain team cohesion (Shanafelt et al., 2020).

#### ❖ **The Role of Operating Theater Technicians in Crisis Management**

**Disaster Preparedness:** Operating theater technicians are integral to disaster response plans, which must be regularly reviewed and updated to ensure readiness for mass casualty events, whether natural or man-made. The experience of operating theater staff during events like the London bombings underscores the need for heightened preparedness and knowledge in handling bomb blast injuries and other disaster-related surgical interventions. Effective disaster management requires a well-coordinated team approach, where operating theater technicians work alongside surgeons, nurses, and other healthcare professionals to manage the influx of patients while maintaining routine operations.

**Intraoperative Crisis Management:** Intraoperative crises, though infrequent, demand rapid and coordinated responses from the entire surgical team, including operating theater technicians. The correlation between technical skills (TS) and non-technical skills (NTS) is significant in crisis resource management, emphasizing the need for technicians to possess both skill sets to ensure patient safety and effective crisis resolution. Non-technical skills such as emotional intelligence, teamwork, and communication are critical for managing intraoperative challenges and ensuring the well-being of both patients and surgical staff.

**Patient Safety and Teamwork:** Operating theater technicians contribute to patient safety by supporting surgeons and nurses in maintaining asepsis, handling instruments, and monitoring patient vital signs. A strong patient safety culture, characterized by effective teamwork and communication, is essential for preventing adverse events and ensuring optimal surgical outcomes. The role of operating theater

technicians extends to facilitating communication between different teams and managing the logistics of the operating room, which is crucial for maintaining a safe and efficient surgical environment.

**Training and Simulation:** Simulation-based training is a valuable tool for enhancing the crisis management skills of operating theater technicians, allowing them to practice and refine their responses to various emergency scenarios without exposing patients to harm. In-situ simulations, conducted within the actual clinical environment, help identify latent threats and improve both individual and team performance during crises.

#### ❖ Cases Study: Anesthesia Technicians Response During Healthcare Disasters

Healthcare disasters, such as pandemics, natural calamities, and mass casualty events, place immense pressure on surgical and critical care systems. Anesthesia technicians play a pivotal role in ensuring the continuity of care under these challenging conditions. Their rapid adaptability, technical expertise, and teamwork are crucial in managing limited resources and ensuring patient safety. This case study explores the response of anesthesia technicians during the COVID-19 pandemic, highlighting their contributions to crisis management and patient outcomes.

During the COVID-19 pandemic, one of the critical challenges faced by hospitals globally was the surge in critically ill patients requiring respiratory support. Anesthesia machines, typically reserved for surgical procedures, were repurposed as ventilators in many institutions. Anesthesia technicians were instrumental in this adaptation process, leveraging their deep knowledge of anesthesia systems to configure these machines for prolonged respiratory support. For instance, in New York City, a hospital overwhelmed by COVID-19 cases deployed anesthesia machines in ICUs to support patients with severe respiratory distress. Anesthesia technicians ensured these machines functioned effectively by recalibrating settings, maintaining oxygen delivery systems, and providing continuous monitoring (Matava et al., 2020).

Additionally, anesthesia technicians took on expanded roles, often working alongside ICU teams. They assisted in managing critical airways, troubleshooting ventilator issues, and ensuring the availability of necessary drugs, including anesthetics and sedatives required for intubated patients. Their ability to adapt to these roles ensured seamless integration with multidisciplinary teams during patient surges.

In another example from Italy, anesthesia technicians helped design negative pressure rooms to prevent the spread of COVID-19 within surgical theaters. By installing portable HEPA filters and adapting existing ventilation systems, they played a crucial role in maintaining a safe environment for both patients and healthcare workers (Paterno et al., 2020). Their proactive problem-solving reduced the risk of intra-hospital infections, enabling essential surgeries to continue safely.

For instance, during Hurricane Maria in Puerto Rico, anesthesia technicians were instrumental in stabilizing power-dependent equipment amid frequent outages, enabling continuous surgical care (Matava et al., 2020). Their proactive role in troubleshooting and maintaining equipment ensures that no surgical delay occurs due to technical failures.

These experiences underscore the versatility and critical importance of anesthesia technicians during healthcare disasters. Their technical skills and adaptability not only support surgical and ICU teams but also significantly contribute to overall disaster preparedness and response.

#### ❖ Cases Study: How Operating Theater Technicians Respond During Healthcare Disasters

Operating Theater Technicians (OTTs) are indispensable in maintaining the efficiency and safety of surgical procedures, especially during healthcare disasters. Their responsibilities include preparing the surgical environment, managing sterilized instruments, and ensuring adherence to infection control protocols. This case study examines their critical contributions during the Haiti earthquake in 2010 and the COVID-19 pandemic, highlighting their adaptability and problem-solving capabilities in managing surgical emergencies under extreme conditions.

Following the catastrophic earthquake in Haiti, hospitals faced an overwhelming influx of trauma patients requiring urgent surgical care. The destruction of healthcare infrastructure posed significant challenges, including limited access to sterilized equipment, power outages, and shortages of essential supplies. OTTs played a crucial role in re-establishing surgical services. They developed innovative solutions to address resource constraints, such as implementing manual sterilization techniques using boiling water and

creating makeshift sterile fields in non-traditional settings. These measures ensured that life-saving surgeries could proceed despite the dire circumstances (Cicero et al., 2012).

During the COVID-19 pandemic, OTTs faced new challenges in maintaining sterile environments and managing surgical workflows in hospitals overwhelmed by critically ill patients. In Wuhan, China, OTTs were essential in converting standard operating rooms into high-efficiency isolation theaters equipped with negative pressure systems. Their responsibilities included setting up additional sterilization stations and managing the increased turnover of surgical instruments to minimize cross-contamination risks (Zhou et al., 2020).

Furthermore, OTTs ensured the seamless execution of emergency surgeries by meticulously tracking and optimizing the use of limited surgical instruments and consumables. They adapted to rapidly changing protocols, such as implementing extended-use policies for personal protective equipment (PPE) and ensuring that surgical teams adhered to strict infection prevention measures. Their swift actions and proactive planning minimized delays and maintained surgical safety standards during high patient loads.

#### ❖ Cases Study: How Technical Operations Respond During Healthcare Disasters

Technical operations staff are the unsung heroes behind the scenes during healthcare disasters, ensuring the functionality of critical infrastructure and technical systems that support surgical and clinical operations. Their expertise in maintaining power supplies, sterilization systems, and ventilation is indispensable in sustaining surgical care under challenging conditions. This case study explores their contributions during the 2011 Tōhoku earthquake and the COVID-19 pandemic, emphasizing their vital role in disaster response.

In 2011, the Tōhoku earthquake and subsequent tsunami severely damaged healthcare facilities in Japan, disrupting power and water supplies. Technical operations teams swiftly mobilized to restore essential services, such as electricity and sterilization systems, within makeshift hospital units. They deployed portable generators, improvised water purification systems, and ensured the operation of autoclaves for sterilizing surgical instruments. Their quick response enabled hospitals to resume critical surgeries and emergency care, preventing widespread infection and improving patient outcomes (Shimizu et al., 2013). Similarly, during the COVID-19 pandemic, technical operations staff were integral in transforming hospital spaces to accommodate the surge in critically ill patients. At a hospital in New York City, they converted regular wards into negative-pressure isolation units to reduce airborne transmission risks. This involved installing HEPA filtration systems and modifying HVAC (heating, ventilation, and air conditioning) systems to maintain sterile environments in operating theaters and intensive care units (Fowler et al., 2014). Their efforts not only supported infection control but also enabled the continuation of elective and emergency surgeries.

Additionally, technical teams played a key role in maintaining and repairing medical equipment, such as ventilators and infusion pumps, which were in high demand. Their ability to quickly troubleshoot and restore malfunctioning devices ensured that life-saving equipment remained operational, even under extreme resource constraints (Matava et al., 2020).

#### ❖ Lessons Learned from Recent Healthcare Disasters

Healthcare crises such as the COVID-19 pandemic, the Haiti earthquake, and the Ebola outbreak have provided valuable lessons on managing surgical emergencies. Key insights include the importance of cross-training team members, leveraging technology for real-time coordination, and developing robust contingency plans. A study from Wuhan, China, during the initial COVID-19 outbreak highlighted the effectiveness of telemedicine and AI-driven tools in optimizing surgical workflows and patient triage (Zhou et al., 2020). These innovations not only improved efficiency but also ensured better patient outcomes.

#### Conclusion

The collaborative efforts of anesthesia technicians, technical operations staff, and operating theater technicians are indispensable in managing surgical emergencies during healthcare disasters. Their combined expertise and adaptability ensure that surgical services continue efficiently under extreme conditions. Lessons from past crises emphasize the need for continued investment in training, infrastructure, and psychological support to enhance disaster preparedness. By fostering inter-professional

collaboration and resilience, healthcare systems can better withstand future challenges and safeguard surgical care during disasters.

## References

- Almutairi, A. A. (2017). Do Technical Skills Correlate with Non-Technical Skills During Crisis Resource Management? *Health Science Journal*. <https://doi.org/10.2176/1791-809X.1000540>
- Arora, R., et al. (2021). Adapting surgical practices with innovative solutions during COVID-19.
- Boyles, D. R., Smith-Steinert, R., & Hayes, J. (2022). *Improving Anesthesia Technician Education*. <https://doi.org/10.18776/4ac5xq31>
- Cicero, M. X., et al. (2012). Optimizing surgical workflows in disaster scenarios.
- Cicero, M. X., et al. (2012). *Optimizing surgical workflows in disaster scenarios: Lessons from Haiti earthquake response*. *Injury*, 43(8), 1353-1358. <https://doi.org/10.1016/j.injury.2012.03.012>
- Clavijo, C. F., Zeidan, R., & Riveros-Perez, E. (2018). *Crisis Management in the Perioperative Setting*. <https://doi.org/10.1093/MED/9780190885885.003.0006>
- Constantinides, P. (2010). *Managing Crises in the Healthcare Service Chain: Lessons from the Past and Future Directions*. <https://doi.org/10.4018/JISCRM.2010100103>
- Crisis Management and Teamwork. (2023). <https://doi.org/10.1093/med/9780197584521.003.0375>
- Cutmore, C., Khoo, S., & Rickard, M. J. F. X. (2023). Answering the call for operative assistance: supporting colleagues in situations of operative crisis. *Anz Journal of Surgery*. <https://doi.org/10.1111/ans.18439>
- din, Mr. M. M. ud, & Yadav, Ms. P. (n.d.). *Operating Theatre Personnel and Their Roles in Patient Safety*. <https://doi.org/10.46431/mejast.2024.7102>
- Fanning, R. M., Goldhaber-Fiebert, S. N., Udani, A. D., Gaba, D. M., & Gaba, D. M. (2013). *Crisis Resource Management*. [https://doi.org/10.1007/978-1-4614-5993-4\\_8](https://doi.org/10.1007/978-1-4614-5993-4_8)
- Fowler, R. A., et al. (2014). Managing surgical care during the Ebola outbreak.
- Fowler, R. A., et al. (2014). *Managing surgical care during the Ebola outbreak*. *New England Journal of Medicine*, 371(13), 1170-1172. <https://doi.org/10.1056/NEJMp1412293>
- Franco, I., Hepner, D. L., Berry, W. R., Arriaga, A. F., & Arriaga, A. F. (2018). *Fundamentals of Managing the Operative Catastrophe*. [https://doi.org/10.1007/978-3-319-75656-1\\_25](https://doi.org/10.1007/978-3-319-75656-1_25)
- Ghenim, A., Kahloul, M., Kacem, I., Aloui, A., Chouchane, A., Ajmi, M., Naija, W., Maoua, M., & Mrizak, N. (2024). Factors associated with the quality of conflict management among anesthesia technicians. *European Psychiatry*. <https://doi.org/10.1192/j.eurpsy.2024.1240>
- Gin, V. (2014). *Crisis Management - A fresh look*.
- Greenberg, J., et al. (2020). Digital tools for surgical team coordination in crises.
- Kluger, M. T., Bukofzer, M., Bukofzer, M., & Bullock, M. (1999). Anaesthetic assistants: their role in the development and resolution of anaesthetic incidents. *Anaesthesia and Intensive Care*. <https://doi.org/10.1177/0310057X9902700308>
- Klunder-Rosser, J. (2023). Theatre practitioners and organisational adaptive capacity in disaster response. *Journal of Perioperative Practice*. <https://doi.org/10.1177/17504589231177833>
- Lehrke, J. P., Boos, M., Cordes, A., Leitsmann, C., & Friedrich, M. G. (2022). Effects of a Technical Solution on Stress of Surgical Staff in Operating Theatres. *Thoracic and Cardiovascular Surgeon*. <https://doi.org/10.1055/s-0041-1741059>
- Lukaszewski, M., Kübler, A., & Durek, G. (2004). Spectrophotometric evaluation of nitrous oxide pollution in the work place of the anesthesiologic personnel in operating rooms. *PolskiMerkuriuszLekarski : Organ Polskiego Towarzystwa Lekarskiego*.
- Marin-Garcia, J. A., García-Sabater, J. P., Ruiz, A., Maheut, J., & García-Sabater, J. J. (2020). Operations Management at the Service of Health Care Management: Example of a Proposal for Action Research to Plan and Schedule Health Resources in Scenarios Derived from the COVID-

- 19 Outbreak. *Journal of Industrial Engineering and Management*. <https://doi.org/10.3926/JIEM.3190>
- Marsilio, M., & Prenestini, A. (2020). *La gestione delle operations in tempo d'crisi: Le prime 10 lezioni apprese dalle Aziende Sanitarie*. <https://doi.org/10.3280/MESA2020-113020>
  - Matava, C., et al. (2020). *Role of anesthesia technicians during COVID-19: Adapting to new challenges*. *Journal of Clinical Anesthesia*, 65, 110043. <https://doi.org/10.1016/j.jclinane.2020.110043>
  - Matava, C., et al. (2020). *Role of anesthesia technicians during COVID-19: Adapting to new challenges*. *Journal of Clinical Anesthesia*, 65, 110043. <https://doi.org/10.1016/j.jclinane.2020.110043>
  - Maunder, R., et al. (2003). The impact of SARS on healthcare workers: Psychological outcomes and resilience strategies.
  - Miandoab, N. Y., Gorgich, E. O. H. C., Amin, M. R., & Shahrakipoor, M. (2015). *Occupational stress in operating room and anesthesia technicians of Zahedan Ali ebne Abitaleb Hospital*.
  - Ms, S., Sa, F., La, R., & Nm, H. (2018). Study of some health hazards among operating theater personnel due to exposure to anesthetic gases (part i). *Egyptian Journal of Occupational Medicine*. <https://doi.org/10.21608/EJOM.2018.12197>
  - Pai, D. R., Kumar, V. R. H., & Sobana, R. (2024). Perioperative crisis resource management simulation training in anaesthesia. *Indian Journal of Anaesthesia*. [https://doi.org/10.4103/ija.ija\\_1151\\_23](https://doi.org/10.4103/ija.ija_1151_23)
  - Pardo, M. (2016). Crisis Management in Anesthesiology, 2nd Edition. *Anesthesiology*. <https://doi.org/10.1097/ALN.0000000000000991>
  - Paternoster, G., et al. (2020). Innovative responses to surgical crises during the COVID-19 pandemic.
  - Paternoster, G., et al. (2020). *Innovative responses to surgical crises during the COVID-19 pandemic*. *British Journal of Anaesthesia*, 125(5), e305-e307. <https://doi.org/10.1016/j.bja.2020.04.017>
  - Patrinley, J. R., Berkowitz, S. T., Zakria, D., Totten, D. J., Kurtulus, M., & Drolet, B. C. (2020). Lessons from Operations Management to Combat the COVID-19 Pandemic. *Journal of Medical Systems*. <https://doi.org/10.1007/S10916-020-01595-6>
  - Paul, J. (2024). Strategies for Effective Crisis Management in Healthcare Systems: Patient Safety and Lessons Learned. *Medical Research Archives*. <https://doi.org/10.18103/mra.v12i7.5424>
  - Poliak, K., Polishchuk, O., & Valkovets, A. (2022). Anti-crisis management of health care organizations of ukraine in the context of the covid-19 pandemic and the requirements for the competence of its specialists. *Infrastruktura Rinku*. <https://doi.org/10.32843/infrastruct66-22>
  - Ruckman, R. J. (2014). *The technician's role with anesthesia*.
  - Shields, L. (2011). The head chef. *Journal of the Royal Society of Medicine*. <https://doi.org/10.1258/JRSM.2010.110035>
  - Shimizu, K., et al. (2013). Disaster management in surgical settings: Lessons from the Tōhoku earthquake.
  - Shimizu, K., et al. (2013). *Disaster management in surgical settings: Lessons from the Tōhoku earthquake*. *The Journal of Emergency Medicine*, 44(1), 64-71. <https://doi.org/10.1016/j.jemermed.2013.01.026>
  - Sonneborn, O., & Miller, C. (2015). Is your operating theatre disaster ready. *ACORN: The Journal of Perioperative Nursing in Australia*.
  - Stonehouse, A. (2006). Should it happen to you... *Journal of Perioperative Practice*. <https://doi.org/10.1177/175045890601600704>
  - Taksande, K., Singam, A., & Thawkar, V. (2024). A prospective randomized comparative study of effectiveness of simulation-based training in improving the performance of non-technical skill

among postgraduate students during anaesthesia crisis resource management. *F1000Research*. <https://doi.org/10.12688/f1000research.143437.1>

- Wax, R. S., et al. (2020). PPE innovations during COVID-19: Maximizing resource use.
- Weller, J., et al. (2018). Simulation training for disaster preparedness in surgical teams.
- World Health Organization. (2020). Operational considerations for managing surgical care during COVID-19.
- Zhou, Y., et al. (2020). AI-driven tools in surgical care during COVID-19 in Wuhan.
- Zhou, Y., et al. (2020). *AI-driven tools in surgical care during COVID-19 in Wuhan*. *Journal of Clinical Investigation*, 130(4), 1555-1563. <https://doi.org/10.1016/j.jcis.2020.03.011>