The Role of Laboratory Testing in Hepatitis C Screening: Current Practices and Innovations

Farah Owaid Alanazi¹, Noura Eid Khalifa Al-Dhafiri², Mosbah Asaad Bait Al-Mal³, Anwar Mahal AlRuwaili⁴, Khaled Abdulaziz Al-Zamel⁵, Manal Ghazi Anad Al-Anzi⁶, Abdullah Ghazi An'ad Al-Anzi⁷, SULAIMAN IBRAHIM ALSHEREDAH⁸, Widad Aqil Atish AlDhafiri⁹, Mohammed Abdullah Haddad¹⁰, Amjad Abdullah Ahmed Haddad¹¹, Kawthar Saeed Muhammad al- Hawsawi¹²

- 1. Medical Laboratory Technology, Security Forces Poyclinic ARAR, Northern Border University (ARAR), KSA
- 2. Laboratories, Health Center Sulaimaniyah, Hafr Al-Batin, KSA
- 3. Lab Specialist, Microbiolgy Lab, King Saud Medical City, Riyadh, KSA
- 4. Medical Laboratories, Suwayr General Hospital, Al-Jouf, KSA
- 5. Laboratory Specialist, Investment Development Department (Medical Licenses), Riyadh Region, KSA
- 6. Medical Laboratories, Ministry of Health Branch, Hafr Al-Batin, KSA
- 7. Medical Laboratories, South Khalidiyah Center, Hafr Al-Batin, KSA
- 8. Medical Laboratories, Health Affairs in Riyadh/Health Investment Development Department, Riyadh, KSA
- Laboratory Technician, Health Affairs Directorate (Public Health), Hafr Al-Batin, KSA
- 10. Molecular Microbiologist, Regional Laboratory in Riyadh, KSA
- 11. Medical Laboratory, Prince Mohammed Bin Abdulaziz Hospital, Riyadh, KSA
- 12. Laboratory, Khalidiyah Center, Madinah, KSA

ABSTRACT

Hepatitis C virus (HCV) infection is a significant global health concern, affecting millions of individuals worldwide and often leading to severe liver disease if left untreated. Laboratory testing plays a crucial role in the screening, diagnosis, and management of HCV, serving as the first step in identifying infected individuals and guiding treatment decisions. Current practices primarily involve a two-step testing process, beginning with serological assays to detect antibodies against HCV, followed by confirmatory tests for HCV RNA to ascertain active infection. The Centers for

Disease Control and Prevention (CDC) recommends routine screening for all adults and at-risk populations to facilitate early detection and treatment. Recent innovations in laboratory testing have significantly improved the efficiency and accessibility of hepatitis C screening. Point-of-care (POC) testing has emerged as a transformative approach, allowing for rapid results in various settings, thus enhancing patient engagement and facilitating immediate linkage to care. Automated laboratory systems have streamlined testing processes, while advances in molecular techniques, such as polymerase chain reaction (PCR) and next-generation sequencing (NGS), have increased sensitivity and specificity in detecting HCV. Despite these advancements, challenges remain, including barriers to access, cost considerations, and the stigma associated with hepatitis C. Addressing these issues is essential for improving screening rates and ensuring that individuals receive timely care. The integration of new technologies, such as telemedicine and digital health tools, offers promising avenues for enhancing screening efforts and expanding access to testing.

This review highlights the critical role of laboratory testing in hepatitis C screening, examining current practices and innovations that are reshaping the landscape of HCV diagnosis and management. By focusing on improving testing accessibility and efficiency, public health initiatives can play a pivotal role in reducing the burden of hepatitis C globally and improving health outcomes for affected individuals.

1. Introduction

Hepatitis C is a viral infection primarily affecting the liver, caused by the hepatitis C virus (HCV). This blood-borne pathogen is a major public health concern worldwide, as it leads to both acute and chronic infections that can have serious health implications. The virus is transmitted through blood-to-blood contact, which can occur through various means, including sharing needles among intravenous drug users, receiving contaminated blood products, and through certain medical procedures that involve unsterilized equipment. The chronic nature of HCV infection often results in progressive liver damage, which can culminate in severe liver diseases such as cirrhosis and hepatocellular carcinoma, a type of liver cancer [1].

The World Health Organization (WHO) estimates that approximately 71 million people are living with chronic hepatitis C globally. Alarmingly, many individuals remain unaware of their infection status due to the often asymptomatic nature of the disease in its early stages. Symptoms may not manifest until significant liver damage has occurred, making it crucial to identify and screen at-risk populations proactively. This lack of awareness contributes to ongoing transmission and increases the risk of developing severe liver-related complications [2].

Early detection through laboratory testing is essential for effective management and treatment of HCV. Identifying infected individuals allows for timely intervention, which can significantly improve health outcomes and reduce the risk of transmission to others. Laboratory testing plays a pivotal role in the screening process, guiding

The Role of Laboratory Testing in Hepatitis C Screening: Current Practices and Innovations healthcare providers in diagnosing the infection, determining the stage of the disease, and informing treatment decisions. The evolution of testing methodologies has been instrumental in enhancing the accuracy and efficiency of HCV screening [3].

This article will review the current practices in laboratory testing for hepatitis C screening, focusing on the methodologies used, the challenges faced in the screening process, and the innovations that are shaping the future of HCV diagnosis and care [4]. By examining these aspects, we aim to highlight the critical importance of laboratory testing in the fight against hepatitis C and to underscore the need for continued advancements in screening practices. As we delve deeper into this topic, we will explore how improved testing strategies can lead to better patient outcomes, reduce the burden of disease, and contribute to global public health efforts aimed at eliminating hepatitis C as a public health threat [5].

2. Epidemiology of Hepatitis C

Hepatitis C is a significant public health issue, with varying prevalence rates across different regions and populations. The burden of this viral infection is particularly pronounced in low- and middle-income countries, where healthcare infrastructure may be inadequate, and access to screening programs is limited. According to the World Health Organization, the global prevalence of chronic hepatitis C infection is estimated to be around 1%, but this figure masks considerable regional disparities. For instance, some areas in Southeast Asia and sub-Saharan Africa report prevalence rates exceeding 3%, while other regions, such as Western Europe and North America, have lower rates due to more effective public health interventions and healthcare access [6].

Understanding the epidemiology of hepatitis C is vital for developing targeted screening programs and interventions. The risk factors for HCV infection are multifaceted and include:

- Injection Drug Use: The most significant risk factor for hepatitis C transmission is the use of injectable drugs. Sharing needles or other drug paraphernalia among users facilitates the spread of the virus, making this population particularly vulnerable. Harm reduction strategies, such as needle exchange programs, have been implemented in many regions to mitigate this risk [7].
- Blood Transfusions Prior to 1992: Before the widespread implementation of screening protocols for blood donations, transfusions were a common route for HCV transmission. Individuals who received blood products or organ transplants before this period are at a higher risk of infection, highlighting the importance of historical medical practices in understanding current epidemiological trends [8].
- Healthcare Exposures: Inadequate infection control practices in healthcare settings, especially in low-resource environments, can lead to nosocomial infections. This includes the reuse of syringes, unsterilized medical equipment, and insufficient screening of blood products [9].

• Sexual Transmission among High-Risk Populations: While sexual transmission of HCV is less common than with other blood-borne viruses, it can occur, particularly among individuals with multiple sexual partners or those who engage in high-risk behaviors. Certain populations, such as men who have sex with men (MSM) and individuals living with HIV, demonstrate higher rates of coinfection and increased susceptibility to HCV [10].

3. Current Practices in Laboratory Testing for Hepatitis C

Laboratory testing is integral to the screening, diagnosis, and management of hepatitis C. The current practices in laboratory testing can be divided into several key components, each playing a crucial role in the overall management of the disease [11].

3.1. Initial Screening: Antibody Testing

The first step in hepatitis C screening is typically an antibody test, which detects the presence of antibodies against HCV in the blood. This initial screening is critical for identifying individuals who may have been exposed to the virus. The most common tests used for this purpose include:

- Enzyme Immunoassays (EIAs): These tests are widely utilized due to their high sensitivity and specificity. EIAs can detect antibodies within 4 to 10 weeks after exposure, making them effective for early diagnosis. The widespread availability and relatively low cost of EIAs make them a staple in many clinical laboratories [12].
- Chemiluminescent Immunoassays (CLIAs): Similar to EIAs, CLIAs offer rapid results and are increasingly used in clinical settings. These assays utilize chemiluminescent reactions to detect antibodies, providing high sensitivity and specificity. CLIAs can deliver results in a shorter timeframe, which is beneficial for patient management and timely intervention [13].

3.2. Confirmatory Testing: HCV RNA Testing

If the antibody test is positive, a confirmatory test for HCV RNA is performed. This test detects the presence of the virus itself and is crucial for confirming active infection. The methods used for HCV RNA testing include:

- Polymerase Chain Reaction (PCR): This method amplifies viral RNA, allowing for the detection of low levels of the virus. PCR can identify acute infections and assess viral load, which is essential for determining the severity of the infection and guiding treatment decisions. Quantitative PCR tests provide valuable information about the amount of virus present in the blood, which can inform prognosis and treatment response [14].
- Transcription-Mediated Amplification (TMA): TMA is a highly sensitive method that can detect HCV RNA within 1-2 weeks of infection. This rapid detection capability is particularly beneficial for identifying acute infections early, allowing for

The Role of Laboratory Testing in Hepatitis C Screening: Current Practices and Innovations prompt medical intervention. TMA tests are often used in conjunction with PCR to provide a comprehensive understanding of the viral load and the timing of the infection [15].

3.3. Genotyping and Resistance Testing

Once HCV infection is confirmed through RNA testing, genotyping is performed to determine the strain of the virus. This information is essential for guiding treatment decisions, as different genotypes respond differently to antiviral therapies. There are several genotypes of HCV, with genotype 1 being the most prevalent globally. Understanding the specific genotype can help healthcare providers tailor treatment regimens to improve efficacy and minimize side effects. Resistance testing may also be conducted to identify mutations that confer resistance to specific antiviral medications. This testing is particularly important for patients who have previously been treated for HCV and may have developed resistance to certain drugs. By identifying these mutations, clinicians can adjust treatment plans to include alternative therapies that are more likely to be effective [16].

4. Innovations in Laboratory Testing

Advancements in laboratory testing have significantly impacted hepatitis C screening, improving accessibility, accuracy, and efficiency. These innovations are crucial in addressing the global burden of hepatitis C, as they facilitate early detection, timely treatment, and ultimately better health outcomes for patients. As the landscape of laboratory testing evolves, several key innovations have emerged that are reshaping the way healthcare providers approach hepatitis C screening and management [17].

4.1. Point-of-Care Testing

Point-of-care (POC) testing has emerged as a transformative approach to hepatitis C screening. These tests can be performed in various settings, including clinics, community health centers, and even patients' homes. The ability to conduct testing at the point of care significantly enhances the overall healthcare experience for patients, particularly those in underserved or remote areas. The advantages of POC testing are manifold:

- Rapid Results: One of the most significant benefits of POC tests is the ability to provide results within minutes. This rapid turnaround allows healthcare providers to offer immediate counseling, discuss the implications of the test results, and facilitate linkage to care without the delays associated with traditional laboratory testing. Immediate feedback can also help reduce anxiety for patients awaiting results, fostering a more supportive healthcare environment [18].
- Increased Accessibility: By reducing the need for extensive laboratory infrastructure, POC testing expands screening opportunities in underserved populations. Many individuals who are at risk for hepatitis C may not have

easy access to traditional healthcare settings. POC tests can be deployed in community outreach programs, harm reduction sites, and even during home visits, ensuring that vulnerable populations receive the necessary screening and care [19].

• Examples of POC Tests: One notable example of a POC test is the OraQuick® HCV Rapid Antibody Test. This test has been validated for use in various settings, demonstrating its efficacy in detecting antibodies to HCV. The simplicity and speed of the OraQuick test make it an invaluable tool in the fight against hepatitis C, especially in areas with limited healthcare resources [20].

Overall, POC testing represents a significant advancement in hepatitis C screening, promoting early detection and treatment while addressing barriers to access.

4.2. Automated Laboratory Systems

Automated testing platforms have revolutionized the laboratory process, allowing for high-throughput screening and reduced turnaround times. These systems can perform multiple tests simultaneously, significantly improving efficiency and accuracy in the laboratory setting. The integration of automation into laboratory testing for hepatitis C offers several advantages:

- High-Throughput Screening: Automated systems can process large volumes of samples in a shorter time frame, enabling laboratories to handle increased demand for hepatitis C testing. This capability is particularly important during public health initiatives or outbreaks when rapid screening of large populations is necessary [21].
- Reduced Turnaround Times: Automation minimizes human error and streamlines workflows, leading to faster result reporting. This efficiency is crucial for timely clinical decision-making, allowing healthcare providers to initiate treatment sooner for patients diagnosed with hepatitis C [22].
- Standardization of Testing Procedures: Automated systems ensure consistency in testing methodologies, reducing variability in results. This standardization is essential for maintaining the accuracy and reliability of laboratory tests, which ultimately enhances patient care [23].
- Integration with Electronic Health Records (EHRs): Many automated laboratory systems can be integrated with EHRs, allowing for seamless data transfer and real-time tracking of patient results. This integration facilitates better communication between laboratory personnel and healthcare providers, ensuring that patients receive timely follow-up care [24].

4.3. Molecular Testing Advances

The Role of Laboratory Testing in Hepatitis C Screening: Current Practices and Innovations Molecular testing techniques continue to evolve, enhancing the sensitivity and specificity of HCV detection. These advancements are critical for accurately diagnosing hepatitis C and monitoring disease progression. Key innovations in molecular testing include:

- Next-Generation Sequencing (NGS): NGS allows for comprehensive analysis of viral genomes, providing insights into genetic diversity and resistance patterns. This technology enables researchers and clinicians to understand the complex dynamics of HCV infections, including how the virus evolves over time and how it may develop resistance to antiviral therapies. By identifying specific mutations associated with resistance, healthcare providers can tailor treatment regimens to improve efficacy and minimize the risk of treatment failure [25].
- Digital PCR: This technology offers improved quantification of viral load, which is crucial for monitoring treatment response and disease progression. Digital PCR provides a more precise measurement of HCV RNA levels in the blood, allowing clinicians to assess how well a patient is responding to therapy. Accurate viral load measurements are essential for determining the duration of treatment and for making informed decisions about potential changes in therapy if resistance is detected [26].
- Enhanced Sensitivity and Specificity: Advances in molecular testing have led to improved sensitivity and specificity in detecting HCV. Enhanced assays can detect lower levels of viral RNA, enabling the identification of acute infections that might otherwise go unnoticed. This capability is particularly important for early intervention, as timely treatment can prevent the progression to chronic infection and associated complications [27].
- Real -time Monitoring: The development of real-time monitoring technologies allows for continuous assessment of viral load during treatment. This capability enables healthcare providers to make timely adjustments to therapy based on the patient's response, optimizing treatment outcomes and minimizing the risk of complications [28].

5. Challenges in Hepatitis C Laboratory Testing

Despite advancements in laboratory testing for hepatitis C, several challenges remain that can hinder effective screening, diagnosis, and management of this viral infection. Addressing these challenges is crucial for improving public health outcomes and ensuring that individuals at risk for hepatitis C receive timely and appropriate care [29]. 5.1. Access to Testing

Access to laboratory testing for hepatitis C can be limited by various factors, which can significantly impact the ability of individuals to seek screening and treatment. Some of the primary barriers include:

- Cost: One of the most significant barriers to accessing hepatitis C testing is the high cost associated with these tests. In many healthcare systems, the expense of laboratory tests can deter individuals from seeking screening, particularly among low-income populations who may already face financial hardships. Even in countries with universal healthcare, co-pays or out-of-pocket expenses can be prohibitive for some individuals, leading to delayed diagnosis and treatment [30].
- Geographic Barriers: Geographic disparities in healthcare access can further complicate the situation. In rural or underserved areas, the lack of nearby testing facilities can impede access to necessary screenings. Individuals living in these regions may have to travel long distances to reach a testing site, which can be a significant deterrent, especially for those without reliable transportation. The absence of mobile testing units or community outreach programs in these areas can exacerbate the problem, leaving vulnerable populations without adequate screening options [31].
- Awareness and Education: Many individuals remain unaware of hepatitis C, its transmission routes, and the importance of screening. This lack of awareness is often compounded by insufficient public health education initiatives. Efforts to educate the public about hepatitis C, including risk factors and the benefits of early detection, are essential for increasing screening rates. Targeted campaigns that focus on high-risk populations, such as individuals who use injection drugs or those with a history of blood transfusions, can help raise awareness and encourage testing [32].

5.2. Interpretation of Test Results

The interpretation of laboratory test results for hepatitis C can be complex, particularly in cases of co-infection with other viruses, such as HIV, or in individuals with a history of prior hepatitis C treatment. The nuances of these test results necessitate a deep understanding from healthcare providers to ensure appropriate care and management. Key challenges in this area include:

- Co-Infection Complications: Individuals co-infected with HIV and hepatitis C may present unique challenges in interpreting test results. The presence of one virus can influence the progression and treatment of the other, complicating the clinical picture. Healthcare providers must be well-versed in the interactions between these viruses to provide accurate diagnoses and effective treatment plans [33].
- Prior Treatment History: For individuals who have undergone previous treatment for hepatitis C, interpreting test results can be particularly challenging. Previous treatments may lead to the development of antibodies or viral mutations that can affect the results of subsequent tests. Providers need to consider the patient's treatment history when evaluating test results to avoid misdiagnosis or inappropriate treatment decisions [34].
- Need for Specialized Knowledge: The complexity of hepatitis C testing requires healthcare providers to have specialized knowledge and training in interpreting laboratory results. This need underscores the importance of continued 1337

The Role of Laboratory Testing in Hepatitis C Screening: Current Practices and Innovations education and training for healthcare professionals, particularly in areas where hepatitis C is prevalent. Ensuring that providers are equipped with the necessary skills to interpret test results accurately is essential for delivering high-quality care [35].

5.3. Stigma and Discrimination

Stigma associated with hepatitis C can significantly discourage individuals from seeking testing and treatment. The social stigma surrounding hepatitis C often stems from misconceptions about the virus, its transmission, and its association with certain high-risk behaviors. Addressing stigma is essential for improving screening rates and ensuring that individuals feel comfortable accessing care. Some key points to consider include:

- Impact of Stigma on Health-Seeking Behavior: Individuals who perceive stigma may be less likely to seek testing or disclose their hepatitis C status to healthcare providers. This reluctance can lead to delayed diagnosis and treatment, increasing the risk of complications and further transmission of the virus. Stigma can also create barriers to care, as individuals may fear judgment or discrimination from healthcare providers or peers [36].
- Education as a Tool for Change: Addressing stigma through education and public awareness campaigns is crucial for improving the perception of hepatitis C. By providing accurate information about the virus, its transmission, and the effectiveness of treatment, public health initiatives can help dispel myths and reduce stigma. Creating supportive healthcare environments that prioritize confidentiality and non-judgmental care is essential for encouraging individuals to seek testing and treatment without fear of discrimination [37].
- Supportive Healthcare Environments: Healthcare providers play a vital role in combating stigma by fostering supportive environments for patients. Training healthcare professionals to approach hepatitis C with empathy and understanding can help create a safe space for individuals to discuss their concerns and seek care. Implementing policies that prioritize patient confidentiality and respect can further encourage individuals to come forward for testing and treatment [38].

6. Future Directions in Hepatitis C Screening

The future of hepatitis C screening will likely be shaped by ongoing innovations and a focus on improving access and efficiency. As we look ahead, several key areas of development are poised to enhance the effectiveness of hepatitis C screening and management.

6.1. Integration of Screening into Routine Healthcare

Integrating hepatitis C screening into routine healthcare visits can significantly enhance detection rates. Healthcare providers should be encouraged to routinely discuss hepatitis C testing with patients, particularly those at higher risk. This proactive

Noura Eid Khalifa Al-Dhafiri, Mosbah Asaad Bait Al-Mal, Anwar Mahal Al-Ruwaili, Khaled Abdulaziz AlZamel, Manal Ghazi Anad Al-Anzi, Abdullah Ghazi An'ad Al-Anzi, Suleiman Ibrahim Al-Shuraidah, Widad Aqil Atish Al-Dhafiri, Mohammed Abdullah Haddad, Amjad Abdullah Ahmed Haddad approach can help normalize testing and ensure that it becomes a standard part of preventive healthcare. Strategies to facilitate this integration include:

- Routine Screening Protocols: Establishing guidelines that recommend hepatitis C screening as part of routine healthcare for specific populations, such as individuals born between 1945 and 1965 or those with risk factors, can help standardize testing practices. By making screening a routine part of healthcare visits, providers can increase the likelihood that patients will receive timely testing [39].
- Training for Healthcare Providers: Educating healthcare providers about the importance of hepatitis C screening and equipping them with the tools to discuss testing with patients can improve screening rates. Training programs can focus on effective communication strategies, addressing patient concerns, and understanding the implications of test results.
- Collaboration with Community Organizations: Partnering with community organizations and public health agencies can enhance outreach efforts and promote awareness of hepatitis C screening. Collaborative initiatives can help identify highrisk populations and facilitate access to testing in community settings [40].

6.2. Use of Technology and Telemedicine

The rise of telemedicine offers new opportunities for hepatitis C screening and management. Remote consultations can facilitate testing referrals and follow-up care, particularly for individuals in remote areas. Key aspects of leveraging technology in hepatitis C care include:

- Telehealth Consultations: Telemedicine allows healthcare providers to conduct consultations with patients remotely, making it easier for individuals to discuss their risk factors and receive guidance on testing. This approach can be particularly beneficial for those who may have difficulty accessing traditional healthcare settings due to geographic or financial barriers [41].
- Remote Testing Options: Innovations in at-home testing kits and remote monitoring technologies can empower individuals to take charge of their health. By providing easy access to testing options, patients can receive timely results and initiate discussions about treatment without the need for in-person visits.
- Data Management and Tracking: Utilizing technology to manage patient data and track screening outcomes can enhance the efficiency of hepatitis C care. Electronic health records (EHRs) can facilitate the documentation of screening results, treatment plans, and follow-up care, ensuring that healthcare providers have access to comprehensive patient information [42].

6.3. Research and Development

Continued research into new testing methodologies, biomarkers, and treatment options is essential for improving hepatitis C care. Innovations in direct-acting antivirals

The Role of Laboratory Testing in Hepatitis C Screening: Current Practices and Innovations (DAAs) necessitate advancements in laboratory testing to monitor treatment efficacy and resistance. Key areas of focus for future research include:

- Development of Novel Biomarkers: Identifying new biomarkers that can predict treatment response or disease progression can enhance the management of hepatitis C. Research into non-invasive testing methods, such as blood-based biomarkers, may provide valuable insights into liver health and the effectiveness of treatment [43].
- Advancements in Testing Technologies: Ongoing research into more sensitive and specific testing technologies can improve the accuracy of hepatitis C diagnosis. Innovations in molecular testing, such as point-of-care molecular assays, can facilitate rapid and reliable detection of the virus.
- Longitudinal Studies on Treatment Outcomes: Conducting longitudinal studies to assess the long-term outcomes of hepatitis C treatment can provide valuable data on the effectiveness of current therapies and inform future treatment guidelines. Understanding the factors that influence treatment success and the potential for reinfection is crucial for optimizing patient care [45].

7. Conclusion

Laboratory testing is a cornerstone of hepatitis C screening and management. Current practices emphasize the importance of timely and accurate testing, while innovations in technology and testing protocols are transforming the landscape of hepatitis C care. Addressing challenges related to access, education, and stigma will be crucial in enhancing screening efforts and ultimately reducing the burden of hepatitis C globally. Continued advancements in laboratory testing will play a vital role in achieving these goals, paving the way for improved health outcomes for individuals affected by hepatitis C.

References

- (2016). Evaluation of the vidas anti-hcv assay for detection of hepatitis c virus infection. annals of laboratory medicine, 36(6), 550-554. https://doi.org/10.3343/alm.2016.36.6.550
- (2016). Results of a rapid hepatitis c virus screening and diagnostic testing program in an urban emergency department. annals of emergency medicine, 67(1), 119-128. https://doi.org/10.1016/j.annemergmed.2015.06.023
- (2022). Laboratory methods in the screening of viral c hepatitis.. https://doi.org/10.20944/preprints202201.0226.v1
- (2016). 2014 french guidelines for hepatitis b and c screening: a combined targeted and mass testing strategy of chronic viruses namely hbv, hcv and hiv. liver international, 36(10), 1442-1449. https://doi.org/10.1111/liv.13135
- (2012). Current prevalence of hbv and hcv seropositivity: the initiative for attentiveness and deterrence of viral hepatitis in the qassim region of saudi arabia. journal of antivirals & antiretrovirals, 04(04). https://doi.org/10.4172/jaa.1000049

- Noura Eid Khalifa Al-Dhafiri, Mosbah Asaad Bait Al-Mal, Anwar Mahal Al-Ruwaili, Khaled Abdulaziz AlZamel, Manal Ghazi Anad Al-Anzi, Abdullah Ghazi An'ad Al-Anzi, Suleiman Ibrahim Al-Shuraidah, Widad Aqil Atish Al-Dhafiri, Mohammed Abdullah Haddad, Amjad Abdullah Ahmed Haddad
- (2017). Hepatitis c testing increased among baby boomers following the 2012 change to cdc testing recommendations. health affairs, 36(12), 2142-2150. https://doi.org/10.1377/hlthaff.2017.0684
- (2017). Implementation of a large system-wide hepatitis c virus screening and linkage to care program for baby boomers, open forum infectious diseases, 4(3). https://doi.org/10.1093/ofid/ofx109
- (2020). Electronic health record reminder effect on hepatitis c antibody screening. the journal of the american board of family medicine, 33(6), 1016-1019. https://doi.org/10.3122/jabfm.2020.06.190440
- (2021). Cross-sectional assessment of hiv and hepatitis a, b, c, d, and e among individuals surveyed in national health and nutrition evaluation survey, 1999–2018. medical research archives, 9(2). https://doi.org/10.18103/mra.v9i2.2337
- (2021). Updating the signal-to-cutoff level to reduce anti-hepatitis c virus false positivity. jundishapur journal of microbiology, 14(10). https://doi.org/10.5812/jjm.119110
- (2015). Evaluation of quantitative real-time pcr as a hepatitis c virus supplementary test after riba discontinuation. journal of clinical laboratory analysis, 30(5), 418-423. https://doi.org/10.1002/jcla.21873
- (2016). Health disparities in hepatitis c screening and linkage to care at an integrated health system in southeast michigan. plos one, 11(8), e0161241. https://doi.org/10.1371/journal.pone.0161241
- (2019). Room for improvement: rates of birth cohort hepatitis c screening in primary care practices—a wwami region practice and research network study. journal of primary care & community health, 10. https://doi.org/10.1177/2150132719884298
- (2017). A systematic model improves hepatitis c virus birth cohort screening in hospital-based primary care. journal of viral hepatitis, 24(6), 477-485. https://doi.org/10.1111/jvh.12669
- (2022). The determining effective testing in emergency departments and care coordination on treatment outcomes (detect) for hepatitis c (hep c) screening trial: rationale and design of a multi-center pragmatic randomized clinical trial of hepatitis c screening in emergency departments.. https://doi.org/10.21203/rs.3.rs-970694/v1
- (2020). A rapid immunochromatographic method based on a secondary antibody-labelled magnetic nanoprobe for the detection of hepatitis b pres2 surface antigen. biosensors, 10(11), 161. https://doi.org/10.3390/bios10110161
- (2017). Prediction of viral loads for diagnosis of hepatitis c infection in human plasma samples using raman spectroscopy coupled with partial least squares regression analysis. journal of raman spectroscopy, 48(5), 697-704. https://doi.org/10.1002/jrs.5108
- (2017). Managing hepatitis c in general practice. australian prescriber. https://doi.org/10.18773/austprescr.2017.017
- (2018). Hepatitis c virus screening trends: serial cross-sectional analysis of the national health interview survey population, 2013–2015. cancer epidemiology biomarkers & prevention, 27(4), 503-513. https://doi.org/10.1158/1055-9965.epi-17-0855
- (2023). Prospects for the use of per in the detection of hepatitis (a literature review). bulletin of surgery in kazakhstan, (4), 29-35. https://doi.org/10.35805/bsk2023iv003
- (2019). Laboratory capacity for surveillance of infectious diseases in gujarat: quantity, quality, effects and way forward. health, 11(07), 998-1016. https://doi.org/10.4236/health.2019.117079
- (2018). Prevalence of hepatitis c virus infection in us states and the district of columbia, 2013 to 2016. jama network open, 1(8), e186371. https://doi.org/10.1001/jamanetworkopen.2018.6371
- (2011). Comparison of a newly developed automated and quantitative hepatitis c virus (hcv) core antigen test with the hcv rna assay for clinical usefulness in confirming anti-hcv results. journal of clinical microbiology, 49(12), 4089-4093. https://doi.org/10.1128/jcm.05292-11
- (2011). Self-reported history of sexually transmissible infections (stis) and sti-related utilization of the german health care system by men who have sex with men: data from a large convenience sample. bmc infectious diseases, 11(1). https://doi.org/10.1186/1471-2334-11-132
- (2015). Unrecognized chronic hepatitis c virus infection among baby boomers in the emergency department. hepatology, 61(3), 776-782. https://doi.org/10.1002/hep.27410
- (2018). Improving adherence to hepatitis c screening guidelines. bmj open quality, 7(2), e000108. https://doi.org/10.1136/bmjoq-2017-000108

The Role of Laboratory Testing in Hepatitis C Screening: Current Practices and Innovations

- (2023). Screening for latent infectious disease in patients with alopecia areata before initiating jak inhibitors therapy: a single-center real-world retrospective study. frontiers in medicine, 10. https://doi.org/10.3389/fmed.2023.1287139
- (2023). Hepatitis c virus structure and diagnostic methods.. https://doi.org/10.5772/intechopen.1000863
- (2016). The efficiency of hepatitis c virus core antigen test in the diagnosis of hepatitis c infection. viral hepatitis journal, 22(1), 18-22. https://doi.org/10.4274/vhd.78300
- (2011). Hepatitis c virus infection in usa: an estimate of true prevalence. liver international, 31(8), 10901101. https://doi.org/10.1111/j.1478-3231.2011.02494.x
- (2023). Improving safety in rheumatology patients by closing pre-screening laboratory care gaps with rheumatologist-pharmacist co-management. medical research archives, 11(9). https://doi.org/10.18103/mra.v11i9.4329
- (2017). Impact of an electronic health record alert in primary care on increasing hepatitis c screening and curative treatment for baby boomers. hepatology, 66(6), 1805-1813. https://doi.org/10.1002/hep.29362
- (2019). Toward elimination of hepatitis c infection: how best to address gaps in the cascade of care?. hepatology communications, 3(9), 1174-1176. https://doi.org/10.1002/hep4.1403
- (2015). The continuum of hepatitis c testing and care. hepatology, 61(3), 783-789. https://doi.org/10.1002/hep.27584
- (2014). Hepatitis c virus core antigen testing: role in diagnosis, disease monitoring and treatment. world journal of gastroenterology, 20(22), 6701. https://doi.org/10.3748/wjg.v20.i22.6701
- (2016). Disparities in hepatitis c testing in u.s. veterans born 1945–1965. journal of hepatology, 65(2), 259-265. https://doi.org/10.1016/j.jhep.2016.04.012
- (2017). Uptake of hepatitis c screening, characteristics of patients tested, and intervention costs in the best-c study. hepatology, 65(1), 44-53. https://doi.org/10.1002/hep.28880
- (2022). External quality assessment for dual detection of hbsag and anti-hcv in serum. pharmaceutical sciences asia, 49(1), 69-76. https://doi.org/10.29090/psa.2022.01.21.09
- (2012). Laboratory diagnostics for hepatitis c virus infection. clinical infectious diseases, 55(suppl_1), S43-S48. https://doi.org/10.1093/cid/cis368
- (2014). Screening for hepatitis b virus (hbv), hepatitis c virus (hcv) and syphilis infections among asymptomatic students of a private university in western delta, nigeria. african journal of microbiology research, 8(21), 2105-2110. https://doi.org/10.5897/ajmr2014.6693
- (2017). Hepatitis c: an overview of various laboratory assays with their mode of diagnostic cooperation. clinical laboratory, 63(05+06/2017). https://doi.org/10.7754/clin.lab.2016.161113
- (2018). Impact of nonintrusive clinical decision support systems on laboratory test utilization in a large academic centre. journal of evaluation in clinical practice, 24(3), 474-479. https://doi.org/10.1111/jep.12890
- (2015). The impact of enhanced screening and treatment on hepatitis c in the united states. clinical infectious diseases, 62(3), 298-304. https://doi.org/10.1093/cid/civ894
- (2019). Online symptom checker diagnostic and triage accuracy for hiv and hepatitis c. epidemiology and infection, 147. https://doi.org/10.1017/s0950268819000268
- (2014). Hepatitis c screening trends in a large integrated health system. the american journal of medicine, 127(5), 398-405. https://doi.org/10.1016/j.amjmed.2014.01.012