ISSN: 2576-0017 2024, VOL 7, NO S8

The Role of Artificial Intelligence in Restorative Dentistry

Azhar Hulayyil Salman Almatrafi¹, Joharh Ayed Alhazmi¹, Intisar Saleh Alanazi¹, Reem Obaid Awad Al-Nafie², Abeer Jady Al-Harby³, Faizah Ghanem Jazaa Aleanzi⁴, Marahib Alshayish Falah Aldahmashi⁵, Mariam Sebitan Alkhamali⁶, Neamah Mubarak Alsalem⁶, Wejdan Rasheed Almutairy⁷

- Dental Assistant, Prince Abdullah bin Abdulaziz bin Musaed Specialized Dental Center, Arar. KSA
- 2. Dental Assistant, Al-Hamra Health Center, Riyadh, KSA
- 3. Dental Assistant, King Saud hospital in Unaiza, Qassim, KSA
- 4. Dental Assistant, Second Cluster, Riyadh, KSA
- Technician-Dental Assistant, Prince Abdullah bin Abdulaziz Specialized Dental Center, Arar, KSA
- 6. Dental assistant, Riyadh specialised Dental Center, Riyadh, KSA
- 7. Dental assistant, Ministry of Health, Riyadh, KSA

ABSTRACT

The integration of artificial intelligence in restorative dentistry represents a transformative evolution in diagnostic accuracy and treatment efficacy. This article investigates the multifaceted impact of AI technologies on restorative dental practices, emphasizing several core objectives. Firstly, it evaluates how AI enhances diagnostic precision and optimizes treatment planning by employing machine learning, image recognition, and natural language processing. These advanced techniques reduce human error and improve efficiency, ensuring successful treatment outcomes. Secondly, the review explores Al's effectiveness in developing innovative dental materials and techniques. By analyzing vast datasets, AI enables a deeper understanding of the interplay between dental materials and biological factors, leading to the creation of improved biomaterials that enhance both longevity and aesthetic quality. Thirdly, the study assesses the personalized approach facilitated by AI, which tailors treatment recommendations based on comprehensive patient data, ultimately improving patient satisfaction and outcomes. Moreover, the seamless integration of advanced imaging technologies with AI streamlines procedural efficiency, significantly reducing chair time and enhancing accuracy in restorative procedures. Despite these advancements, several barriers hinder the widespread adoption of AI in dentistry, including skepticism regarding algorithm reliability and a lack of standardized implementation protocols. By addressing these challenges through robust clinical validation and creating cohesive integration strategies, dental professionals can harness AI technologies to revolutionize patient care. This article aims to inspire ongoing research and dialogue, paving the way for future innovations that bolster the efficacy of restorative interventions and redefine patient experiences in dental health.

KEYWORDS: Artificial intelligence, Diagnosis, Restorative materials, Bio materials, Aesthetics.

1. Introduction

Artificial intelligence (AI) is a field of computer science that engages in rendering machines the ability to look like they have human intelligence or the capability to replicate intelligent human behaviors. In other words, AI is intelligence that is shown by machines, computers, and systems, whereas natural intelligence is represented by animals and humans [1]. Accordingly, any machine that recognizes its surroundings and reacts to them for attaining specific objectives is considered as an intelligent agent. By simulating and modeling the functions of the human brain through AI, machines and computer systems can support humans with essential functions such as learning, logical reasoning, problem-solving, decision-making, visual perception, and speech recognition. In this context, it is not surprising that the use of AI is significantly increasing in dentistry in which diagnosis, clinical decision-making, and prediction of treatment outcomes play fundamental roles. AI systems can help dentists with designing clinical decision support structures, and therefore, dentists should be aware of how AI works and how they can be assisted by AI systems in their diagnosis and treatment tasks [2].

AI-driven tools empower dental professionals to analyze vast amounts of data with unprecedented speed and accuracy, enabling more effective disease diagnosis and treatment selection. By leveraging machine learning algorithms and predictive modeling, AI can assist in recognizing patterns in patient history, imaging, and clinical results, thereby facilitating personalized care tailored to individual needs. Moreover, AI's role extends beyond diagnostics to include treatment execution and monitoring [3]. With the advent of automated systems and AI-enhanced dental tools, dentists can achieve greater precision during restorative procedures, ensuring that placements of crowns, fillings, and other restorations are both accurate and efficient. Such precision not only improves the longevity and functionality of dental restorations but also elevates patient satisfaction [4]. As restorative dentistry continues to evolve, the interplay between clinical expertise and cutting-edge AI technologies promises to redefine the boundaries of dental care, paving the way for innovations that enhance both the patient experience and the efficacy of restorative interventions [5].

AI has diverse subfields. Machine learning (ML) is a subfield of AI which uses data and algorithms to simulate the mechanisms that humans learn through. To develop an ML model, a dataset is divided into training data and testing data. This step is called single train-test split. The training data are collected, classified, and interpreted by human experiments [6]. The training data and the computational algorithms, derived from them, are used to teach the ML model. After developing the model by using the training data, the testing data are used to validate the model's performance. Cross validation is a technique in which different portions of a dataset are used to train and test a model in multiple rounds. The validation results are averaged over the rounds to assess the model's accuracy. K-fold cross validation is a type of cross validation, where K refers to the number of groups the dataset is split

Azhar Hulayyil Salman Almatrafi, Joharh Ayed Alhazmi, Intisar Saleh Alanazi, Reem Obaid Awad Al-Nafie, Abeer Jady Al-Harby, Faizah Ghanem Jazaa Aleanzi, Marahib Alshayish Falah Aldahmashi, Mariam Sebitan Alkhamali, Neamah Mubarak Alsalem, Wejdan Rasheed Almutairy

into [7]. ML can be categorized into supervised, semi-supervised, and unsupervised learning. In supervised learning, the training data comprise the inputs paired with the correct outputs. Then, the trained ML model can identify or classify new unseen inputs and provide their paired outputs based on the training data. The collection of labeled data for supervised learning basically needs skilled human agents and experiments. Semi-supervised learning merges the labeled data with a great deal of unlabeled data when being trained [8]. This can dramatically improve the accuracy of learning. In unsupervised learning, no labeled data exist, and therefore, a machine is able to identify any possible patterns in the training data. An example of unsupervised learning is clustering which is the action of grouping a set of data into different clusters with consideration of similarities [9]. In ML, feature learning is a series of methods that makes a system able to automatically find out the representations required for feature identification and classification based on training data. Feature learning surpasses traditional ML where tasks such as classification often need input that is hand-crafted or mathematically computed. ML models can support humans by suggesting outputs for new inputs, and therefore, they are specifically employed in the fields where complex calculation and complicated decision-making are required such as dentistry, medicine, speech recognition, and visual detection [10].

2. Objectives:

The main objectives of this review are:

- 1. To evaluate how AI technologies enhance the accuracy of diagnosis in restorative dentistry and improve treatment planning processes.
- 2. To investigate the effectiveness of AI in the development and optimization of dental materials and techniques used in restorative procedures.
- 3. To measure the impact of AI-assisted restorative dentistry on patient outcomes.
- 4. To examine the extent to which AI solutions streamline clinical workflows, reduce procedure times, and minimize resource utilization in restorative practices.
- 5. To identify potential barriers to the adoption of AI technologies within restorative dentistry and explore opportunities for effective integration into existing clinical practices.

3. AI technologies in enhancement the accuracy of diagnosis in restorative dentistry:

As the field of dentistry continues to evolve, practitioners are increasingly adopting advanced technologies to enhance the accuracy of diagnoses, streamline treatment plans, and improve patient outcomes. AI is particularly valuable in restorative dentistry, where precise diagnosis is critical for ensuring successful treatment outcomes. By employing AI techniques such as machine learning, image

recognition, and natural language processing, dental professionals can significantly improve their diagnostic capabilities, reducing the likelihood of human error and increasing efficiency in clinical practice [11].

Traditional diagnostic methods often rely on the subjective interpretation of radiographic images, clinical findings, and patient histories, which can lead to inconsistency and variability in diagnosis [12]. In contrast, AI algorithms can efficiently process and analyze these complex datasets, identifying patterns that may be overlooked by human practitioners. By leveraging deep learning techniques, AI systems can learn from a vast array of dental images and clinical cases, allowing for a more nuanced understanding of common dental conditions, such as caries, periodontal disease, and fractures. This capability results in a diagnostic process that is not only faster but also more accurate, reducing the chance of misdiagnosis or delayed treatment [13].

One of the most significant applications of AI technologies in restorative dentistry is in the analysis of dental radiographs. AI algorithms equipped with convolutional neural networks (CNNs) can sift through panoramic, periapical, and bitewing radiographs, detecting anomalies and presenting diagnostic findings with impressive accuracy. For example, AI systems have been developed to identify early signs of dental caries and periodontal disease, allowing for timely intervention. Additionally, AI can assist in detecting fractures or abnormalities in dental structures that may not be immediately apparent to the human eye [14]. By providing dentists with reliable, AI-driven diagnostic support, practitioners can make informed decisions about restorative interventions and treatment plans tailored to individual patient needs. Furthermore, AI's ability to continuously learn and adapt makes it a valuable asset in restorative dentistry. As more cases are entered into the AI systems, their performance improves, allowing for increasingly precise and context-aware diagnostic outputs [15]. AI tools can be trained on diverse datasets from various populations, ensuring that they account for demographic differences and variations in disease presentation. This is particularly relevant in restorative dentistry, where factors such as age, ethnicity, and socioeconomic status can influence disease prevalence and treatment outcomes. As a result, the use of AI technologies in diagnostics fosters a more personalized approach to patient care, enhancing the potential for successful restorative interventions. The implementation of AI technologies also brings with it the promise of increased efficiency in dental practice management [16]. By automating routine diagnostic tasks, dental professionals can allocate more time to direct patient care and complex restorative procedures. AIdriven diagnostic tools can generate reports, suggest possible diagnoses, and even predict treatment outcomes based on historical data, allowing practitioners to engage more fully with their patients. This shift not only enhances the quality of care but also streamlines workflow within dental practices, reducing the administrative burden on practitioners and supporting a more focused patient-provider interaction [17].

The effectiveness of AI in the development and optimization of dental materials and techniques used in restorative procedures:

AI algorithms are capable of processing vast datasets, including clinical outcomes,

Azhar Hulayyil Salman Almatrafi, Joharh Ayed Alhazmi, Intisar Saleh Alanazi, Reem Obaid Awad Al-Nafie, Abeer Jady Al-Harby, Faizah Ghanem Jazaa Aleanzi, Marahib Alshayish Falah Aldahmashi, Mariam Sebitan Alkhamali, Neamah Mubarak Alsalem, Wejdan Rasheed Almutairy

material properties, and patient-specific factors, to derive insights that are not easily discernible to human practitioners. This capability allows for a more comprehensive understanding of the interactions between different dental materials and the biological environment of the oral cavity [18]. Data-driven approaches can predict how materials will perform under diverse conditions, including varying loads and environmental influences such as salinity and pH levels. Such predictive modeling is invaluable in choosing the optimal materials for specific clinical scenarios, ensuring longer-lasting and more biocompatible restorations. Advanced machine learning algorithms can analyze the composition and microstructure of existing materials, providing insights that guide the development of novel biomaterials with improved mechanical properties and enhanced aesthetic qualities. For example, AI has been used to create custom formulations of dental resins that exhibit superior strength and reduced polymerization shrinkage. Such innovations not only improve the longevity and effectiveness of fillings and crowns but also contribute to enhanced patient satisfaction due to improved aesthetics and reduced treatment times [19]. Restorative dentistry often requires meticulous planning to ensure the best possible outcomes for patients. AI systems can help analyze radiographic images, identifying caries, fractures, or other dental issues that may inform the choice of restorative materials. By adopting AI-assisted diagnostic tools, clinicians can enhance diagnostic accuracy, ultimately leading to better treatment outcomes. The optimization of techniques in restorative dentistry is another area where AI has made significant contributions. For instance, AI can assist in the robotic or computer-aided design and manufacturing of restorations, which ensures that devices like crowns and bridges are fabricated with high precision. Such technological advancements result in a better fit of the restorative materials, reducing the risk of complications such as marginal leakage or secondary caries [20]. Additionally, the integration of AI in 3D printing technologies further allows for the rapid prototyping of dental restorations, making it easier to customize treatments according to individual patient needs. Training and education for dental professionals are also being enhanced through AI technologies. Simulation-based learning tools that incorporate AI can provide dentists with realistic scenarios for practicing restorative procedures. These tools can adapt to the skill level of the user, providing appropriate challenges and feedback that lead to improved technical proficiency [21]. This means that newly graduated dentists can practice and refine their skills in a virtual environment before working on live patients, bolstering their confidence and ability to deliver effective treatments. In clinical practice, the incorporation of AI in patient management systems can facilitate personalized care plans. By utilizing patient data and outcomes to predict risks and identify the most effective treatments, AI enables practitioners to tailor restorative approaches that align with individual patient needs. For example, AI can analyze historical treatment success rates for specific demographics, allowing clinicians to make informed decisions about materials and techniques that are most likely to yield successful outcomes for their patients [22].

The impact of AI-assisted restorative dentistry on patient outcomes:

By incorporating data from various sources, such as genetic predispositions, lifestyle factors, and oral health history, AI-powered systems can predict how a patient may respond to specific treatments. This level of personalization ensures that

recommendations are not only evidence-based but also uniquely suited for each patient, increasing the likelihood of successful outcomes. For example, the use of AI in developing custom dental crowns, bridges, or implants ensures precise fit and functionality, reducing the chances of complications and the need for follow-up procedures. Patients appreciate this tailored approach, which fosters a stronger doctor-patient relationship and enhances overall satisfaction with the treatment process [23]. In addition to diagnostics and treatment planning, AI-assisted restorative dentistry also contributes to improved procedural efficiency. Advanced imaging technologies, such as 3D scanning and intraoral cameras, integrated with AI can streamline the process of creating restorations. These technologies allow for the precise mapping of a patient's dental architecture, which can then be used to manufacture restorations with exceptional accuracy. Such precision minimizes chair time for patients, reduces the likelihood of errors, and shortens the overall treatment timeline [24]. As a result, patients experience less discomfort, fewer appointments, and faster recovery times, all of which contribute to a more favorable overall experience. Furthermore, AI has the capability to enhance the learning curve for dental professionals. By providing real-time feedback during procedures and suggesting best practices based on historical data, AI can support practitioners in refining their skills and decision-making processes. This not only leads to better clinical outcomes but also empowers dentists to deliver higher-quality care consistently. With enhanced capabilities, dentists can tackle more complex cases with confidence, resulting in fewer complications and improved patient trust in the dental profession [25].

The potential barriers to the adoption of AI technologies within restorative dentistry:

One of the most significant barriers to the adoption of AI technologies in restorative dentistry is the hesitance surrounding the accuracy and reliability of AI algorithms. Dentists and dental professionals are trained to rely heavily on their clinical judgment and hands-on experience, which often leads to skepticism about the recommendations generated by AI systems [26]. They may question the ability of algorithms to interpret complex clinical scenarios or account for the unique variations found in individual patient cases. This skepticism is compounded by instances where AI systems have been shown not to outperform expert human judgment, leading to a further reluctance to trust machine-generated results [27]. Ensuring that AI solutions are validated through robust clinical studies and demonstrate consistent efficacy in real-world settings is crucial in overcoming this barrier. Another significant challenge is the lack of standardized protocols for the implementation and integration of AI technologies within existing dental practices. Currently, the dental industry is characterized by a diverse array of software and hardware solutions, each with varying levels of capability, user interface design, and compatibility with existing systems [28]. This fragmentation can create confusion for dental practitioners who may be overwhelmed by the choices available and uncertain about which AI solutions would best suit their practice's needs. A lack of clear guidelines on how to effectively incorporate AI tools into everyday workflows can lead to resistance among practitioners who may feel that adopting these technologies would complicate their work rather than simplify it. Training and education also represent prominent barriers to the adoption of AI in restorative dentistry [29]. Many Azhar Hulayyil Salman Almatrafi, Joharh Ayed Alhazmi, Intisar Saleh Alanazi, Reem Obaid Awad Al-Nafie, Abeer Jady Al-Harby, Faizah Ghanem Jazaa Aleanzi, Marahib Alshayish Falah Aldahmashi, Mariam Sebitan Alkhamali, Neamah Mubarak Alsalem, Wejdan Rasheed Almutairy

dental professionals do not have a robust understanding of AI, leading to apprehension regarding its application. As AI systems become more complex, the demand for dental practitioners to possess a foundational understanding of how these technologies work will increase. Continuing education programs and professional development opportunities will be vital to address the knowledge gap and encourage dentists to embrace AI tools confidently. Furthermore, resistance to change is a common human phenomenon, and some professionals may find it difficult to transition from established methods to new, technology-driven practices. Encouraging a culture of continual learning and adaptation within dental education will be essential in overcoming this barrier [30].

Data privacy and security concerns are another critical aspect that may deter the adoption of AI technologies in restorative dentistry. The use of AI inherently involves the collection and analysis of large volumes of patient data, which raises concerns about data confidentiality and the potential risks associated with data breaches. Strict regulatory frameworks governing patient privacy, such as HIPAA in the United States, create additional layers of complexity that must be navigated when implementing AI solutions. Ensuring compliance with these regulations while also providing effective and secure AI-powered services is a delicate balancing act that can hinder the willingness of dental practices to adopt new technologies [31]. Financial implications also pose a significant barrier to the implementation of AI in restorative dentistry. The initial investment required to adopt AI solutions, including software licensing, hardware infrastructure, and ongoing maintenance costs, can deter many practices, especially smaller ones with limited budgets. Additionally, there may be uncertainties surrounding the return on investment (ROI) associated with AI adoption. Dental practices may question whether the potential benefits, such as increased efficiency and improved patient outcomes, will justify the costs associated with acquiring and continuing to utilize these technologies [32]. Financial incentives or reimbursement models that clearly outline the economic benefits of AIenabled practices may help motivate practitioners to adopt such technologies [33].

4. Conclusion:

In conclusion, the integration of artificial intelligence into restorative dentistry represents a groundbreaking shift that enhances diagnostic accuracy, treatment planning, and patient outcomes. As AI technologies continue to evolve, they empower dental professionals by streamlining clinical workflows and optimizing the use of dental materials, leading to more personalized and effective care. These advancements not only improve the longevity and effectiveness of restorative interventions but also enhance patient satisfaction and confidence in treatment processes. However, for the successful adoption of AI in restorative dentistry, it is essential to address existing barriers, including skepticism regarding AI reliability and the lack of standardized implementation protocols. By validating AI systems through clinical studies and fostering a deeper understanding among practitioners, the dental community can maximize the benefits of these revolutionary technologies. Ultimately, the collaboration of clinical expertise and AI-driven insights holds the potential to redefine restorative dentistry, paving the way for more efficient,

accurate, and patient-centered care in the future.

References

- Agrawal P., Nikhade P., Nikhade P.P. Artificial intelligence in dentistry: past, present, and future. Cureus. 2022;14(7) doi: 10.7759/cureus.27405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ahmed N., Abbasi M.S., Zuberi F., Qamar W., Halim M.S., Maqsood A., Alam M.K. Artificial intelligence techniques: analysis, application, and outcome in dentistry—a systematic review. Biomed Res. Int. 2021;22:2021. doi: 10.1155/2021/9751564. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Albayrak B., Özdemir G., Us Yö, Yüzbaşioğlu E. Artificial intelligence technologies in dentistry. Journal of Experimental and Clinical Medicine. 2021;38(3s):188–194. [Google Scholar]
- Asiri A.F., Altuwalah A.S. The role of neural artificial intelligence for diagnosis and treatment planning in endodontics: a qualitative review. The Saudi Dental Journal. 2022;34(4):270–281. doi: 10.1016/j.sdentj.2022.04.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Basu B., Gowtham N.H., Xiao Y., Kalidindi S.R., Leong K.W. Biomaterialomics: data science-driven pathways to develop fourth-generation biomaterials. Acta Biomater. 2022;15(143):1–25. doi: 10.1016/j.actbio.2022.02.027. [DOI] [PubMed] [Google Scholar]
- Benetti A.R., Michou S., Larsen L., Peutzfeldt A., Pallesen U., Van Dijken J.W. Adhesion and marginal adaptation of a claimed bioactive, restorative material. Biomaterial Investigations in Dentistry. 2019;6(1):90–98. doi: 10.1080/26415275.2019.1696202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Angelis F., Pranno N., Franchina A., Di Carlo S., Brauner E., Ferri A., Pellegrino G., Grecchi E., Goker F., Stefanelli L.V. Artificial intelligence: a new diagnostic software in dentistry: a preliminary performance diagnostic study. Int. J. Environ. Res. Public Health. 2022;19(3):1728. doi: 10.3390/ijerph19031728. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ding H., Wu J., Zhao W., Matinlinna J.P., Burrow M.F., Tsoi J.K. Artificial intelligence in dentistry—A review. Frontiers in Dental Medicine. 2023;20(4):1085251. [Google Scholar]
- El Gezawi M., Wölfle U.C., Haridy R., Fliefel R., Kaisarly D. Remineralization, regeneration, and repair of natural tooth structure: influences on the future of restorative dentistry practice. ACS Biomater Sci. Eng. 2019;5(10):4899–4919. doi: 10.1021/acsbiomaterials.9b00591. [DOI] [PubMed] [Google Scholar]
- Georgeanu V.A., Gingu O., Antoniac I.V., Manolea H.O. Current options and future perspectives on bone graft and biomaterials substitutes for bone repair, from clinical needs to advanced biomaterials research. Appl. Sci. 2023;13(14):8471. [Google Scholar]
- Höland W., Schweiger M., Watzke R., Peschke A., Kappert H. Ceramics as biomaterials for dental restoration. Expert Rev. Med. Devices. 2008;5(6):729–745. doi: 10.1586/17434440.5.6.729. [DOI] [PubMed] [Google Scholar]
- Huang Y.K., Hsu L.P., Chang Y.C. Artificial intelligence in clinical dentistry: the potentially negative impacts and future actions. Journal of Dental Sciences. 2022;17(4):1817. doi: 10.1016/j.jds.2022.07.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hussein N. Artificial intelligence in dentistry: current issues and perspectives. Artificial Intelligence and Computational Dynamics for Biomedical Research. 2022;7(8):229. [Google Scholar]
- Joda T., Waltimo T., Probst-Hensch N., Pauli-Magnus C., Zitzmann N.U. Health data in dentistry: an attempt to master the digital challenge. Public Health Genomics. 2019;22(1–2):1–7. doi: 10.1159/000501643. [DOI] [PubMed] [Google Scholar]
- Kilpatrick N.M., Burbridge L.A.L. Advanced restorative dentistry. In Oxford University Press. 2020 doi: 10.1093/oso/9780198789277.003.0019. [DOI] [Google Scholar]
- Kühnisch J., Meyer O., Hesenius M., Hickel R., Gruhn V. Caries detection on intraoral images using artificial intelligence. J. Dent. Res. 2022;101(2):158–165. doi: 10.1177/00220345211032524. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCabe J.F., Rusby S. Water absorption, dimensional change and radial pressure in resin matrix dental restorative materials. Biomaterials. 2004;25(18):4001–4007. doi: 10.1016/j.biomaterials.2003.10.088. [DOI] [PubMed] [Google Scholar]
- Metsälä E., Henner A., Ekholm M. Quality assurance in digital dental imaging: a systematic review. Acta Odontol. Scand. 2014;72(5):362–371. doi: 10.3109/00016357.2013.840736. [DOI] [PubMed] [Google Scholar]
- Moharrami M., Farmer J., Singhal S., Watson E., Glogauer M., Johnson A.E., Schwendicke F., Quinonez C. Detecting dental caries on oral photographs using artificial intelligence: a systematic review. Oral

- Azhar Hulayyil Salman Almatrafi, Joharh Ayed Alhazmi, Intisar Saleh Alanazi, Reem Obaid Awad Al-Nafie, Abeer Jady Al-Harby, Faizah Ghanem Jazaa Aleanzi, Marahib Alshayish Falah Aldahmashi, Mariam Sebitan Alkhamali, Neamah Mubarak Alsalem, Wejdan Rasheed Almutairy
 - Dis. 2023 doi: 10.1111/odi.14659. [DOI] [PubMed] [Google Scholar]
- Mörch C.M., Atsu S., Cai W., Li X., Madathil S.A., Liu X., Mai V., Tamimi F., Dilhac M.A., Ducret M. Artificial intelligence and ethics in dentistry: a scoping review. J. Dent. Res. 2021;100(13):1452–1460. doi: 10.1177/00220345211013808. [DOI] [PubMed] [Google Scholar]
- Parhi S., Pal S., Das S.K., Ghosh P. Strategies toward development of antimicrobial biomaterials for dental healthcare applications. Biotechnol. Bioeng. 2021;118(12):4590–4622. doi: 10.1002/bit.27948. [DOI] [PubMed] [Google Scholar]
- Patil S. Artificial Intelligence in the Diagnosis of Oral Diseases. PMC. 2022. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9139975/. [DOI] [PMC free article] [PubMed]
- Pethani F., Dunn A.G. Natural language processing for clinical notes in dentistry: a systematic review. J. Biomed. Inform. 2023;7 doi: 10.1016/j.jbi.2023.104282. [DOI] [PubMed] [Google Scholar]
- Ratner BD. Biomaterials science: an interdisciplinary endeavor. InBiomaterials science 1996 Jan 1 (pp. 1-8). Academic Press.
- Revilla-León M, et al. Artificial intelligence applications in restorative dentistry. PubMed. 2022. Available from: https://pubmed.ncbi.nlm.nih.gov/33840515/. [DOI] [PubMed]
- Rodrigues J.A., Krois J., Schwendicke F. Demystifying artificial intelligence and deep learning in dentistry. Braz. Oral Res. 2021;13:35. doi: 10.1590/1807-3107bor-2021.vol35.0094. [DOI] [PubMed] [Google Scholar]
- Schwendicke F.A., Samek W., Krois J. Artificial intelligence in dentistry: chances and challenges. J. Dent. Res. 2020;99(7):769–774. doi: 10.1177/0022034520915714. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shan T., Tay F.R., Gu L. Application of artificial intelligence in dentistry. J. Dent. Res. 2021;100(3):232–244. doi: 10.1177/0022034520969115. [DOI] [PubMed] [Google Scholar]
- Surlari Z., Budală D.G., Lupu C.I., Stelea C.G., Butnaru O.M., Luchian I. Current Progress and challenges of using artificial intelligence in clinical dentistry—A Narrative review. J. Clin. Med. 2023;12(23):7378. doi: 10.3390/jcm12237378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suwardi A., Wang F., Xue K., Han M.Y., Teo P., Wang P., Wang S., Liu Y., Ye E., Li Z., Loh X.J. Machine learning-driven biomaterials evolution. Adv. Mater. 2022;34(1):2102703. doi: 10.1002/adma.202102703. [DOI] [PubMed] [Google Scholar]
- Tayebi L., Moharamzadeh K., editors. Biomaterials for Oral and Dental Tissue Engineering. Woodhead Publishing; 2017. [Google Scholar]
- Tuzova L., Tuzoff D., Pulver L.E. AI in dentistry. AI in Clinical Medicine: A Practical Guide for Healthcare Professionals. 2023;12:104–116. [Google Scholar]
- Urban R., Haluzová S., Strunga M., Surovková J., Lifková M., Tomášik J., Thurzo A. AI-assisted CBCT data management in modern dental practice: benefits, limitations and innovations. Electronics. 2023;12(7):1710. [Google Scholar]