ISSN: 2576-0017 2024, VOL 7, NO S10

Outcomes of Dental Implant in Diabetic Patients

Khalid Saad M Alqahtani¹, Abdulrahman Saad S Al Hadhir², Abdullah Tariq Mohsena³, Aedh Hussain A Alqahtani¹, Tariq Awad Alwadee⁴, Hussain Saeed Hamad Alqahtani⁵, Faisal Mubarak Hussain Alqahtani⁶, Abdulrahman Hassan Ali Alasiri⁷, Abduallah Awad Alwadie⁸

- 1. Dentist, Primary health care, Abha, Saudi Arabia
- 2. Dentist, Primary Health care center, Yara, Dental clinic, Wadi Bin Hashbal
- 3. General dentist, Bahr Abu Sakinah Primary Healthcare Center, Aseer, Saudi Arabia
- 4. Dentist, orthodontic department, Khamis Mushait specialty dental center
- 5. Dentist, Primary health care, Khamis Mushait, Saudi Arabia
- 6. Dentist, Khamis Mushait General Hospital, Khamis Mushait, Saudi Arabia
- 7. General dentist, Aseer Health cluster, Abha, Saudi Arabia
- 8. Dentist, dental department, Al-Amal psychiatric complex

ABSTRACT

This study investigates the impact of diabetes mellitus on the success rates and complications associated with dental implants, a significant advancement in restorative dentistry. Diabetes, characterized by chronic hyperglycemia and metabolic dysfunction, poses unique challenges for dental implant therapy, particularly concerning wound healing, osseointegration, and infection control. The literature indicates that while well-controlled diabetic patients can achieve comparable implant success rates to non-diabetic individuals, those with poorly managed diabetes face increased risks of implant failure due to compromised vascular integrity, impaired immune response, and extended healing times. The osseointegration process, critical for the stability of dental implants, may be delayed in diabetic patients, with studies suggesting that healing times can be prolonged by up to 50%. Key risk factors include glycemic control, duration of diabetes, age, and overall oral hygiene practices, with elevated HbA1c levels serving as a crucial biomarker for predicting adverse outcomes. Complications such as infections and peri-implantitis are more prevalent among diabetic patients, underscoring the necessity for meticulous preoperative assessments and interdisciplinary management involving dental professionals and endocrinologists. This research highlights the importance of understanding the intricate relationship between diabetes and dental implant success, advocating for tailored treatment strategies that address the specific needs of diabetic patients to enhance their oral health outcomes and overall quality of life. By elucidating the complexities surrounding diabetes and dental implants, this study aims to inform clinical practices and improve patient care in restorative dentistry.

KEYWORDS: Dental implants, Implant survival, Diabetes mellitus, Glycemic control, Peri-implantitis, Risk factor.

Khalid Saad M Alqahtani, Abdulrahman Saad S Al Hadhir, Abdullah Tariq Mohsena, Aedh Hussain A Alqahtani, Tariq Awad Alwadee, Hussain Saeed Hamad Alqahtani, Faisal Mubarak Hussain Alqahtani, Abdulrahman Hassan Ali Alasiri, Abduallah Awad Alwadie

1. Introduction

The advent of dental implants has revolutionized the field of restorative dentistry, offering patients a long-lasting solution for missing teeth and significantly enhancing their quality of life. Among the various factors that influence the success of dental implants, the patient's systemic health plays a crucial role—most notably in patients with diabetes mellitus. Diabetes is a chronic metabolic disorder characterized by insulin resistance or deficiency, leading to hyperglycemia and ultimately affecting various bodily systems, including the oral environment [1]. Research has indicated that individuals with diabetes are at a higher risk for complications related to dental implants, which creates a growing need for a deeper understanding of the relationship between diabetes and implant success rates. This demographic represents a significant proportion of the patient population seeking dental implant therapy, underlining the necessity for dental professionals to be well-versed in the specific challenges faced by diabetic individuals.

Numerous studies have investigated the outcomes of dental implants in diabetic patients, providing insights into variable success rates depending on the type and control of diabetes, the duration of the condition, and the patient's overall health and lifestyle choices [2]. Generally, controlled diabetes has shown comparable implant success rates to non-diabetic individuals; however, uncontrolled diabetes has been associated with an increased risk of implant failure due to factors such as poor wound healing, higher susceptibility to infections, and impaired osseointegration where the bone grows and tightly bonds with the implant. Furthermore, the presence of glycosylated hemoglobin (HbA1c) levels has emerged as a vital biomarker, with a direct correlation established between elevated HbA1c levels and adverse outcomes in implant therapy [3]. Beyond the biological implications, psychological aspects must also be considered, as the burden of managing diabetes can affect a patient's attitudes toward dental care, adherence to implant maintenance, and overall oral hygiene practices. Moreover, preoperative assessments and interdisciplinary approaches that include collaboration between dental professionals and endocrinologists can enhance the management of diabetic patients seeking implants [4]. Attention to specific pre-surgical protocols, such as optimizing glycemic control, assessing periodontal health, and considering alterations in surgical techniques, can lead to improved outcomes. Educational initiatives directed at both healthcare providers and patients are essential to raising awareness about the intricacies involved in the implant process for individuals with diabetes, thereby promoting informed decision-making. This dialogue not only aims to manage expectations regarding dental implant longevity and maintenance but also to foster a proactive approach to oral health care in the broader context of diabetes management [5].

Objectives:

The main objectives of this study are:

- 1. To evaluate the overall success rates of dental implants in diabetic patients compared to non-diabetic patients.
- 2. To identify and analyze the incidence of complications associated with dental implants in diabetic patients, including infection, implant failure, and peri-

implantitis.

- 3. To investigate the time required for proper osseointegration and healing of dental implants in diabetic patients.
- 4. To identify specific risk factors related to diabetes that may affect the success of dental implants.

The success rates of dental implants in diabetic patients compared to non-diabetic patients:

Dental implants have revolutionized prosthetic dentistry, providing a reliable solution for the replacement of missing teeth. However, the success of dental implants can be influenced by various factors, including the health status of patients. Among these factors, diabetes mellitus has garnered considerable attention, primarily due to its prevalence and potential implications for wound healing and infection control. Numerous studies have sought to understand the overall success rates of dental implants in diabetic patients compared to their non-diabetic counterparts [6]. The body of research presents a nuanced perspective, illustrating that while diabetic patients may face certain risks, they can achieve comparable success rates under optimal conditions and with proper management. The success rates of dental implants in diabetic patients have been shown to be somewhat lower than those in non-diabetic patients in some studies. This difference can often be attributed to the systemic complications associated with diabetes, such as compromised vascular integrity, altered immune response, and impaired wound healing. These factors can increase the likelihood of implant failure due to infection or insufficient osseointegration. For instance, poorly controlled diabetes, characterized by elevated HbA1c levels, has been linked to increased failure rates [7]. It is often observed that diabetic patients with HbA1c levels above 7-8% face a heightened risk for complications following implant placement. Conversely, well-controlled diabetic patients, maintaining tightly regulated blood glucose levels through lifestyle modifications or pharmacological intervention, tend to experience implant success rates comparable to those of non-diabetic patients. The importance of pre-procedural assessment and patient engagement in managing diabetes cannot be overstated when considering potential outcomes [8]. Various clinical studies have reported success rates for implants in diabetic patients ranging from 75% to 90%, depending on their overall health and glycemic control. Comparatively, non-diabetic patients have success rates generally exceeding 95%. This highlights the necessity for healthcare professionals to not only monitor glycemic control but also to ensure a multidisciplinary approach involving endocrinologists and dental surgeons. Such collaborations can enhance patient outcomes by tailoring interventions to individual needs, potentially mitigating the risks that diabetes poses. Furthermore, the role of patient education in managing expectations and promoting adherence to treatment plans is crucial. Pre-implant assessments, including comprehensive medical histories and blood glucose evaluations, serve as critical checkpoints in determining the appropriateness of dental implants for diabetic individuals [9]. Moreover, technological advances in implant design and materials have shown promise in improving outcomes for diabetic patients. For instance, the use of titanium implants with modified surfaces designed to promote better osseointegration has been Khalid Saad M Alqahtani, Abdulrahman Saad S Al Hadhir, Abdullah Tariq Mohsena, Aedh Hussain A Alqahtani, Tariq Awad Alwadee, Hussain Saeed Hamad Alqahtani, Faisal Mubarak Hussain Alqahtani, Abdulrahman Hassan Ali Alasiri, Abdullah Awad Alwadie

beneficial. Studies suggest that these advancements can help bridge the gap in success rates between diabetic and non-diabetic patients. Additionally, the application of growth factors and bone regeneration techniques can further enhance healing and implant durability in those with diabetes [10].

The time required for osseointegration and healing of dental implants in diabetic patients:

Osseointegration, the biological process by which a dental implant anchors to the surrounding bone, is a critical factor in the success of dental implants. In diabetic patients, the time required for proper osseointegration and healing can be significantly influenced by the underlying metabolic conditions associated with diabetes. Diabetes mellitus, particularly when poorly controlled, can lead to a range of complications that affect wound healing and bone regeneration. This is primarily due to the impaired microvascular circulation, altered inflammatory response, and reduced osteoblastic activity associated with hyperglycemia. As a result, the healing period for dental implants in diabetic patients may be extended compared to non-diabetic individuals [11].

Research indicates that the osseointegration process typically takes about 3 to 6 months in healthy individuals, but this timeline can vary in diabetic patients. Studies have shown that poorly controlled diabetes can delay the osseointegration process by up to 50%. Factors such as the type of diabetes (Type 1 or Type 2), the duration of the disease, and the patient's overall health status play significant roles in determining the healing time. In patients with Type 1 diabetes, characterized by absolute insulin deficiency, the healing process may be further complicated by the presence of comorbidities and the potential for neuropathy, which can affect the surgical site. Conversely, Type 2 diabetes, often associated with insulin resistance and obesity, poses its own challenges, including an increased risk of periodontal disease, which can compromise implant success [12].

The role of glycemic control cannot be overstated. Patients with well-controlled diabetes, typically defined as having HbA1c levels below 7%, may experience healing times more comparable to those of non-diabetic patients. However, those with elevated HbA1c levels face an increased risk of complications, including infection and implant failure. This underscores the importance of preoperative assessments and the need for optimizing glycemic control prior to implant placement. Additionally, the use of adjunctive therapies, such as the application of growth factors or the use of biocompatible materials that promote osteogenesis, may help enhance the healing process in diabetic patients [13].

Moreover, the surgical technique employed can also impact the osseointegration timeline. Minimally invasive approaches and careful handling of soft and hard tissues during implant placement can reduce trauma and inflammation, potentially leading to improved healing outcomes. Postoperative care is equally crucial; diabetic patients are advised to adhere strictly to oral hygiene protocols to prevent perimplantitis, which can further delay osseointegration. Regular follow-ups and monitoring of the healing process are essential to identify any complications early and to manage them effectively [14].

Risk factors related to diabetes that may affect the success of dental implants

Diabetes mellitus is a complex metabolic disorder characterized by hyperglycemia resulting from defects in insulin secretion, insulin action, or both. This chronic condition has been linked to several oral health problems, including periodontitis, which can significantly affect the success rates of dental implants. Several specific risk factors associated with diabetes must be considered when evaluating the potential for successful dental implant outcomes. These factors encompass glycemic control, duration of diabetes, age of the patient, associated comorbidities, and the patient's overall oral hygiene practices [15]. Glycemic control is perhaps the most critical factor influencing the success of dental implants in diabetic patients. Elevated blood glucose levels can impair the body's ability to heal and can compromise the immune response, thus increasing the risk of postoperative infections. Studies have shown that diabetics with poor glycemic control, typically defined as a hemoglobin A1c (HbA1c) level above 7%, are at a higher risk of implant failure compared to those with well-managed diabetes. The elevated levels of glucose in the bloodstream can lead to the formation of advanced glycation end-products (AGEs), which may adversely affect wound healing and tissue integration of dental implants. The duration of diabetes is another significant risk factor [16]. Patients who have been diabetic for longer periods may experience microvascular complications such as retinopathy, nephropathy, and neuropathy, which can complicate dental implant procedures. Over time, chronic hyperglycemia can also lead to changes in the oral environment—such as decreased salivary flow and the presence of oral pathogens which may further complicate implant success. As the duration of the disease increases, the likelihood of periodontal disease also increases, which can lead to loss of alveolar bone, ultimately compromising the implant site and making successful osseointegration more challenging. Age is another critical consideration in the context of diabetes and dental implants [17]. Older adults may exhibit a higher prevalence of diabetes complications and other systemic health issues that could influence their candidacy for implant surgery. In younger patients with wellcontrolled diabetes, the risks associated with implant placement may be significantly lower. Additionally, older patients may have reduced healing capacities due to agerelated changes in the biological response, which can further hinder the success of dental implants. Comorbidities are prevalent in diabetic patients and may include cardiovascular diseases, obesity, and renal insufficiency, all of which can complicate dental procedures and postoperative recovery. The presence of these comorbid conditions can impair the body's healing response and increase susceptibility to infection. Furthermore, medications commonly used in diabetics—such as corticosteroids or anticoagulants-may affect the inflammatory response and hemostasis, ultimately influencing the success rates of dental implants [18].

Oral hygiene practices also play a crucial role in determining the viability of dental implants in diabetic patients. Plaque accumulation can lead to peri-implantitis, a condition analogous to periodontitis and characterized by inflammation and bone loss around dental implants. Diabetic patients often face challenges in maintaining optimal oral hygiene, possibly due to factors such as decreased salivary flow, altered taste sensation, or mobility issues [19]. Education on proper oral hygiene practices prior to implant placement is essential to mitigate the risk of complications. In

Khalid Saad M Alqahtani, Abdulrahman Saad S Al Hadhir, Abdullah Tariq Mohsena, Aedh Hussain A Alqahtani, Tariq Awad Alwadee, Hussain Saeed Hamad Alqahtani, Faisal Mubarak Hussain Alqahtani, Abdulrahman Hassan Ali Alasiri, Abduallah Awad Alwadie

addition, the psychological and social factors associated with diabetes can influence patient outcomes. Anxiety and depression, which are relatively common in patients with chronic illnesses, may impede proper self-care and adherence to therapeutic regimens. Effective communication and the development of a supportive environment can help foster better mental health, which, in turn, promotes adherence to oral hygiene procedures and regular dental visits, thus improving the overall success of dental implant treatment [20].

Complications associated with dental implants in diabetic patients:

Dental implants have become a widely accepted and effective solution for replacing missing teeth, with high success rates in the general population. However, complications arise in specific patient groups, particularly those with diabetes mellitus. Diabetes, a chronic metabolic disease characterized by elevated blood glucose levels, can significantly impact the healing process and the overall success of dental implants. Patients with diabetes often face several complications associated with implant surgery, including infection, implant failure, and a higher propensity for peri-implantitis [21].

Firstly, the healing process following implant placement is crucial for osseointegration—the direct structural and functional connection between the implant and the living bone. In diabetic patients, factors such as impaired wound healing, vascular abnormalities, and altered immune response can hinder this healing process. Elevated blood glucose levels can lead to a range of microvascular and macrovascular complications, particularly affecting the circulation and oxygenation of tissues. Poor blood flow can result in delayed healing and increase the risk of postoperative infections. Infections after implant surgery are particularly concerning, as they can result in abcess formation, prolonged discomfort, and sometimes lead to systemic complications [22]. Omitting or poorly managing diabetes regimen prior to surgery exacerbates the risk, illustrating the need for careful pre-operative screening and optimization of glycemic control. Moreover, implant failure rates in diabetic patients can be considerably elevated compared to non-diabetic individuals. Studies have shown that diabetes, especially when poorly controlled, can lead to loss of alveolar bone density around the implant site, negatively impacting stability and integration [23]. The physiological mechanisms behind this include the presence of advanced glycation end products (AGEs) that impair the proliferation and function of osteoblasts, the bone-forming cells. Additionally, diabetes affects collagen metabolism and leads to reduced bone regeneration, further complicating the surgical process. For these reasons, the diabetic patient may experience a higher likelihood of mechanical failure of the implant, often necessitating removal and replacement, which can be both psychologically and economically burdening [24].

Peri-implantitis, an inflammatory condition affecting the tissues surrounding an implant, is another significant complication observed in diabetic individuals. This condition is primarily driven by bacterial biofilm accumulation, leading to inflammation, bone loss, and ultimately implant failure. Diabetic patients are at an increased risk for peri-implantitis due to their compromised immune response. The chronic hyperglycemic state can alter the function of neutrophils, impairing the body's ability to combat infections and leading to an exaggerated inflammatory

response. Consequently, even with proper oral hygiene practices, the presence of peri-implantitis may lead to rapid destruction of peri-implant tissues in diabetic patients [25]. This condition is not only debilitating but can also pose a significant challenge in terms of treatment, often requiring surgical intervention and additional scaffolding for regeneration alongside antimicrobial therapies.

The interplay of these complications highlights the importance of comprehensive management of diabetes for individuals considering dental implants. Clinicians must perform thorough assessments of glycemic control and individual risk factors prior to surgical intervention. Patient education regarding the significance of diabetes management, such as prior consultations with primary healthcare providers, optimizing insulin therapy, controlling HbA1c levels, and adopting lifestyle modifications, becomes critical [26].

2. Conclusion:

In conclusion, the relationship between diabetes mellitus and the success of dental implants is complex and multifaceted. While diabetic patients can achieve comparable implant success rates to non-diabetic individuals under optimal conditions, challenges such as impaired wound healing, increased infection risk, and prolonged osseointegration times must be carefully managed. The critical role of glycemic control cannot be overstated; patients with well-managed diabetes demonstrate significantly better outcomes than those with poor control. Furthermore, understanding the unique risk factors associated with diabetes, including the duration of the condition and the presence of comorbidities, is essential for dental professionals when planning implant therapy. An interdisciplinary approach involving collaboration between dental and medical practitioners can enhance patient care, ensuring that diabetic patients receive tailored treatment strategies that address their specific needs. As the prevalence of diabetes continues to rise, ongoing research and education in this area remain vital to improving outcomes and quality of life for affected individuals seeking dental implants.

References

- Yang W, Lu J, Wang J, Jia W, Ji L, Xiao J, et al. Prevalence of diabetes among men and women in China. N Engl J Med. 2010;362:1090–101. doi: 10.1056/NEJMoa0908292. [DOI] [PubMed] [Google Scholar]
- Vaz NC, Ferreira AM, Kulkarni MS, Vaz FS. Prevalence of diabetes mellitus in a rural population of Goa, India. Natl Med J India. 2011;24:16–8. [PubMed] [Google Scholar]
- IDF Diabetes Atlas. International Diabetes Federation. 4th ed. Quebec, Canada: Released at Montreal; 2009. [PubMed] [Google Scholar]
- Machtei EE, Frankenthal S, Blumenfeld I, Gutmacher Z, Horwitz J. Dental implants for immediate fixed Restoration of partially edentulous patients: A 1-year Prospective pilot clinical trial in periodontally susceptible Patients. J Periodontol. 2007;78:1188–94. doi: 10.1902/jop.2007.060418. [DOI] [PubMed] [Google Scholar]
- Levin L, Sadet P, Grossmann Y. A retrospective evaluation of 1,387 single-tooth implants: 6-year Follow-up. J Periodontol. 2006;77:2080–3. doi: 10.1902/jop.2006.060220. [DOI] [PubMed] [Google Scholar]
- Levin L, Nitzan D, Schwartz-Arad D. Success of dental Implants placed in intraoral block bone grafts. J Periodontol. 2007;78:18–21. doi: 10.1902/jop.2007.060238. [DOI]

- Khalid Saad M Alqahtani, Abdulrahman Saad S Al Hadhir, Abdullah Tariq Mohsena, Aedh Hussain A Alqahtani, Tariq Awad Alwadee, Hussain Saeed Hamad Alqahtani, Faisal Mubarak Hussain Alqahtani, Abdulrahman Hassan Ali Alasiri, Abduallah Awad Alwadie
 - [PubMed] [Google Scholar]
- Mellado Valero A, FerrerGarcía JC, Herrera Ballester A, Labaig Rueda C. Effects of diabetes on the osseointegration of dental implants. Med Oral Patol Oral Cir Bucal. 2007;12:E38–43. [PubMed] [Google Scholar]
- Santana RB, Xu L, Babakhanlou C, Amar S, Graves DT. A role for advanced glycation end products in diminished bone healing in type 1 Diabetes. Diabetes. 2003;52:150–210. doi: 10.2337/diabetes.52.6.1502. [DOI] [PubMed] [Google Scholar]
- Gooch HL, Hale JE, Fujioka H, Balian G, Hurwitz SR. Alterations of cartilage and collagen expression during fracture healing in experimental diabetes. Connect Tissue Res. 2000;41:81–5. doi: 10.3109/03008200009067660. [DOI] [PubMed] [Google Scholar]
- He H, Liu R, Desta T, Leone C, Gerstenfeld LC, Graves DT. Diabetes causes decrease osteoclastogenesis, reduced bone formation and enhanced apoptosis of osteoblastic cells in bacteria stimulated bone loss. Endocrinology. 2004;145:447–52. doi: 10.1210/en.2003-1239. [DOI] [PubMed] [Google Scholar]
- Liu R, Bal HS, Desta T, Behl Y, Graves DT. Tumor necrosis factor alpha mediates enhanced apoptosis of matrix-producing cells and impairs diabetic healing. Am J Pathol. 2006;168:757–64. doi: 10.2353/ajpath.2006.050907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kayal RA, Tsatsas D, Bauer MA, Allen B, Al-Sebaei MO, Kakar S, et al. Diminished bone formation during diabetic fracture healing is related to the premature resorption of cartilages associated with increased osteoclast activity. J Bone Miner Res. 2007;22:560–3. doi: 10.1359/jbmr.070115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beam HA, Parsons JR, Lin SS. The effects of blood glucose control upon fracture healing in the BB Wistar rat with diabetes mellitus. J Orthop Res. 2002;20:1210–6. doi: 10.1016/S0736-0266(02)00066-9. [DOI] [PubMed] [Google Scholar]
- Gebauer GP, Lin SS, Beam HA, Vieira P, Parsons JR. Low-intensity pulsed Ultrasound increases the fracture callus strength in diabetic BB Wistar rats but does not affect cellular proliferation. J Orthop Res. 2002;20:587–92. doi: 10.1016/S0736-0266(01)00136-X. [DOI] [PubMed] [Google Scholar]
- Lu H, Kraut D, Gerstenfeld LC, Graves DT. Diabetes interferes with the bone formation by affecting the expression of transcription factors that regulate osteoblast differentiation. Endocrinology. 2003;144:346–52. doi: 10.1210/en.2002-220072. [DOI] [PubMed] [Google Scholar]
- McCracken MS, Aponte-Wesson R, Chavali R, Lemons JE. Bone associated with implants in diabetic and insulin-treated rats. Clin Oral Implants Res. 2006;17:495–500. doi: 10.1111/j.1600-0501.2006.01266.x. [DOI] [PubMed] [Google Scholar]
- Moraschini V, Poubel LA, Ferreira VF, Barboza Edos S. Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: a systematic review. Int J Oral Maxillofac Surg. 2015;44(3):377–88. doi: 10.1016/j.ijom.2014.10.023. [DOI] [PubMed] [Google Scholar]
- Khader YS, Dauod AS, El-Qaderi SS, Alkafajei A, Batayha WQ. Periodontal status of diabetics compared with nondiabetics: a meta-analysis. J Diabetes Complications. 2006;20(1):59–68. doi: 10.1016/j.jdiacomp.2005.05.006. [DOI] [PubMed] [Google Scholar]
- Abiko Y, Selimovic D. The mechanism of protracted wound healing on oral mucosa in diabetes. Review. Bosn J Basic Med Sci. 2010;10(3):186–91. doi: 10.17305/bjbms.2010.2683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet (London, England) 2011;378(9785):31–40. doi: 10.1016/S0140-6736(11)60679-X. [DOI] [PubMed] [Google

- Scholar]
- Chrcanovic BR, Albrektsson T, Wennerberg A. Diabetes and oral implant failure: a systematic review. J Dent Res. 2014;93(9):859–67. doi: 10.1177/0022034514538820. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. doi: 10.1371/journal.pmed.1000097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Viswanathan M, Ansari MT, Berkman ND, Chang S, Hartling L, McPheeters LM, Santaguida PL, Shamliyan T, Singh K, Tsertsvadze A, Treadwell JR. Assessing the risk of bias of individual studies in systematic reviews of health care interventions. Agency for Healthcare Research and Quality Methods Guide for Comparative Effectiveness Reviews. March 2012. AHRQ Publication No. 12- EHC047-EF. Available at: http://www.effectivehealthcare.ahrq.gov/ehc/products/322/998/MethodsGuideforCERs_V iswanathan_IndividualStudies.pdf [PubMed]
- Oates TW, Dowell S, Robinson M, McMahan CA. Glycemic control and implant stabilization in type 2 diabetes mellitus. J Dent Res. 2009;88(4):367–71. doi: 10.1177/0022034509334203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oates TW, Jr, Galloway P, Alexander P, Vargas Green A, Huynh-Ba G, Feine J, et al. The effects of elevated hemoglobin A(1c) in patients with type 2 diabetes mellitus on dental implants: survival and stability at one year. J Am Dent Assoc. 2014;145(12):1218–26. doi: 10.14219/jada.2014.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aguilar-Salvatierra A, Calvo-Guirado JL, Gonzalez-Jaranay M, Moreu G, Delgado-Ruiz RA, Gomez-Moreno G. Peri-implant evaluation of immediately loaded implants placed in esthetic zone in patients with diabetes mellitus type 2: a two-year study. Clin Oral Implants Res. 2015;27(2):156–61. doi: 10.1111/clr.12552. [DOI] [PubMed] [Google Scholar]