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Abstract 

Modern software development practices require constant revalidation of changing 
UIs, but customary test automation frameworks are brittle in the face of such 

dynamic change. Maintenance of the test suite is the most costly part of any 
automation project. Customary automation patterns used by the industry tend to 
utilize static locators, which require meaningful manual maintenance if the 

underlying UI changes. Generally, machine learning on the automation frameworks 
set the basis for self-healing characteristics through smart object recognition 

models and self-adaptive algorithms that heal broken locators automatically. 
Empirical studies have shown the decreased maintenance costs with machine 

learning over the customarily used statically defined locators and the need for 
agentic automation architecture. For screenshots, visual pattern recognition 
techniques are used to control the program by simulating keyboard and mouse 

events. For DOM elements, multi-property analysis techniques extract a set of 
structural similarity and behavioral properties and use them to generate a weighted 

score. Reinforcement learning models are used for finding optimal corrections using 
experience replay learning and a deep Q-network architecture across UI, API, and 
database layers. Fault exposing potential can also be used in defect predictive 

systems for test case prioritization based on efficiency while keeping the defect 
detection coverage. The reliability of maintainability prediction can be examined 

through historical software metric measurements towards predictive systems that 
ascertain locator fragility before an execution-cycle failure. 
 

Keywords: Self-Healing Automation, Reinforcement Learning, Test Maintenance 
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I. Introduction 

Continuous user interface (UI) change validation is a core requirement in modern software development 

and testing. However, frequent UI changes make regular test automation frameworks too brittle. The bulk 

of the cost of test automation comes from tests that need to be changed or rewritten. Industrial case 

studies report that test failures generally occur with all types of test automation at the release transition 

[1]. Customary UI automation methods utilizing static locators such as XPath expressions, CSS selectors 

and element identifiers require considerable manual effort to fix tests due to UI changes, and hence 

constitute a bottleneck to continuous integration and to the pace of enterprise software releases. 

The instability of customary automation solutions is demonstrated in UI refactoring experiments. A case 

study using Selenium WebDriver test suites with multiple locator strategies found that all 25 test cases 

used at an industrial site failed against new releases of the application, regardless of the locator strategy. 

Test suites using ID-based locators were repaired in 43 minutes, making 9 changes to the automation 

scripts, while XPath locator strategy repairs took 183 minutes, making 96 changes to the scripts [1]. 

Furthermore, changing the XPath locators in page objects requires modifying around 73.28% of the 
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localization lines (i.e. 96 out of 131 localization lines) which fundamentally limits sustainability for the 

application evolution cycles. 

This is consistent with findings across the wider automation community, where in a survey of 72 

practitioners across 24 countries, maintainability (45.83%) and test flakiness (44.44%) are identified as 

the biggest concerns. In spite of best practices documenting the use of widely known automation design 

patterns such as Page Object Model, the use of such patterns in practice is somewhat limited (12.5%). The 

use of XPath expressions, which are known to be hard to maintain, is still prominent at 36.11% [2]. 

This preference is also observed on the toolchain side of the automation community. 98.61% of the 

respondents answered that their primary automation framework is Selenium WebDriver and 94.44% 

target browsers in Google Chrome. 72.22% of the respondents use Jenkins as a CI tool and 59.72% 

responded that they test with browsers on their local machines. Java (50% share) is the most common 

language, followed by Python (18.06%) and JavaScript (13.89%), and due to standardized technology 

choices similar conditions are created for maintenance to happen in a similar manner in different 

organizations [2]. 

When integrated with automation frameworks, ML algorithms offer the potential of building self-healing 

test systems, where they automatically fix their own scripts. Self-healing properties would address the 

brittle nature of static locator strategies since the test suites could automatically detect and repair the 

broken element locators without any human intervention. The comparatively high time on contrast with 

XPath and ID-based maintenance time (183 and 43 minutes respectively) would allow clever automation 

systems to reason about and autonomously choose locator mechanisms and adapt to structural UI changes 

without developer intervention [1]. Transitioning from reactive maintenance strategies to self-healing 

automation allows for sustainable automation that adapts to evolving software engineering practices. The 

fast pace of UI cycles and component-oriented programming models demand test automation that can be 

adapted and extended to the application under test. 

 

II. Problem Characterization and Research Gap 

Existing automation tools (like Selenium and Appium) employ deterministic approaches to locating 

elements within the DOM which bind tests to specific attributes or structural positions. As a result these 

solutions can fail when a UI component undergoes a refactoring which alters its attributes or hierarchical 

structure, or is dynamically rendered. While there are a wide variety of automated test tools that can be 

used for many quality assurance activities, test suite maintenance is often expensive, tedious and time 

consuming and may still be necessary when either application changes lead to broken or obsolete test 

cases that need to be repaired [3] or software changes that break automated regression tests [4]. The 

maintenance overhead is highest for applications tested through their GUI (graphical user interface) 

because the interface may change both in look and in underlying logic between releases. 

The fragility problem may be more or less severe for different locator strategies, and empirical research 

on the fragility of web element locators has found large differences for 48 websites with 801 targeted 

elements [4]. Absolute XPath locators have a failure rate of 83%, meaning they cannot find the target 

element after the web application is modified. Relative ID-based XPath locators have a failure rate of 

59% and perform better. The Selenium IDE locator approach achieves a non-location for 51% of web 

elements, while the Montoto algorithm achieves non-location for 47%. Even the strongest single-locator 

ROBULA+ can locate only 61% of the web elements, depending on how the website has evolved [4]. 

Even the best multi-locators, that combine the outputs of several such single-locators by some sort of 

voting mechanism, will have a failure rate of 27% in the limit case, where they return only when some 

constituent successfully returns the sought element. 

All customary locators lack the context and adaptive reasoning necessary to be strong, and single-locator 

approaches are single points of failure. If the DOM property targeted by the locator changes while the 

other properties are still the same, no matching elements are found. Absolute XPath locators are usually 

the most easily broken locators. This is because they specify an entire DOM tree traversal from the 

document root node to the desired target element, and any change to one of the intermediate nodes (tree 

restructuring, new element insertion, sibling rearrangement) invalidates the entire path expression. More 
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advanced locators like ID-based strategies also have to deal with mainstream evolution processes, such as 

changes in auto-generated identifiers and ID refactoring across application layers. 

With component-driven architectures, incremental UI component modifications, and modern 

development processes like CI/CD (constant integration/ constant delivery) there is a continuing cost to 

the automation infrastructure to account for changes to the UI without human intervention. Current 

frameworks are not able to discriminate between when UI changes would lead to changes in test logic or 

when changes are inconsequential and only require slight adaptation. Such frameworks create false 

positives, where automated tests fail even when manually passing, requiring manual debugging effort and 

increasing the maintenance burden of the tests. 

High-level multi-locators strategies defend against single-point failure by voting and aggregating data 

from multiple single-locators [4]. However, this strategy's theoretical upper bound (where correct element 

location succeeds if any constituent locator succeeds) leaves about 27% of elements unlocatable for many 

website evolution scenarios. This persistent gap between theoretical performance of multi-locator 

schemes and perfect robustness shows that integration of existing locator strategies, while improving 

overall performance, will not solve the problem of ensuring resilient element-identification across 

application evolution. 

 

Table 1: Comparative Analysis of Locator Strategies and Maintenance Complexity [3, 4].  

 

Locator 

Strategy 
Primary Characteristics Failure Vulnerability Maintenance Complexity 

Absolute 

XPath 

Encodes complete DOM 

tree traversal from root to 

target element 

Highest failure rate; any 

intermediate node 

modification invalidates 

entire path 

Extremely high; requires 

extensive code 

modifications across page 

objects 

Relative ID-

based XPath 

Uses identifier attributes 

with partial path 

specifications 

High failure rate; 

susceptible to auto-

generated identifier 

changes 

High; substantial line 

modifications required for 

restoration 

Selenium 

IDE Locator 

Automated locator 

generation through 

recording 

Moderate failure rate; 

limited contextual 

adaptation 

Moderate; manual 

intervention needed for 

complex scenarios 

Montoto 

Algorithm 

Enhanced locator 

generation with structural 

analysis 

Moderate failure rate; 

improved over basic 

approaches 

Moderate; reduced but still 

significant maintenance 

burden 

ROBULA+ 
Advanced single-locator 

strategy with optimization 

Lower failure rate among 

single-locator approaches 

Lower than alternatives but 

still requires manual 

updates 

Multi- 

Locator 

Aggregation 

Combines multiple single-

locators through voting 

mechanisms 

Lowest failure rate under 

theoretical conditions 

Reduced maintenance 

through redundancy but 

configuration complexity 

 

III. Self-Healing Architecture and Intelligent Recognition 

Self-healing frameworks address locator fragility with smart recognition frameworks that can auto-repair 

broken test scripts after a change in the UI. Visual automation is a form of automation where the 

automated tests drive the GUI by simulating low-level keyboard and mouse operations based on 

screenshots. These tests are portable to all applications and platforms [5]. Pattern matchers have similarity 

thresholds that allow tolerances for visual perturbations of the matched regions up to a certain degree. 

Trials have shown that typical 100×100 pixel targets can be matched in less than 200 milliseconds under 

standard resolution displays, showing its practical viability [5]. 
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Besides visual attributes, DOM-based self-healing systems use a multi-property analysis that, if the main 

locators fail, can find the DOM element. They can automatically extract 10 different properties from the 

DOM, such as attributes, the structure of an element, visual attributes and checksum associated with its 

content [6]. For breakage due to a UI change, repair algorithms take successful and failing executions of 

test scripts on the old and new versions of the application respectively. The algorithms cascade through a 

series of strategies: they match elements with preserved identifier properties and then compute similarity 

indices for target and candidate DOM elements. 

Structural similarity is a weighted score based on the normalized Levenshtein distance of pairs of XPath 

expressions to compare node positions in the DOM tree [6]. Behavioral similarity is calculated as the sum 

of binary similarity of screen coordinates, clickability, visibility, z-index and content hashes. A larger 

weight of 0.9 is assigned to structural properties. This is due to the fact that pairs are more frequently 

identified as similar based on the XPath than based on behavioral properties, which are only useful for 

discarding duplicated structurally similar candidates. Elements with similarity scores larger than the 

defined threshold 0.5 are considered repair candidates. The best matching element is selected to replace 

the locator. 

Empirical studies of real-life web applications have shown that automated repair approaches can work on 

production-level web applications. In particular, several studies have applied automated repair of broken 

test commands to real web content management systems using tools that select one to three candidate 

repairs per failure [6]. For Joomla CMS, out of four pairs of versions and six failing test cases, the 

automated repair system generated the same fix that the developer wrote in the corresponding version. 

The repair system has also been able to address cases of structural or identifier changes, and changes to 

assertions' content. The number of candidate repairs generated depends on the oracle strictness - oracle 

tests which do not contain assertions or only perform limited proofs of certain properties give up to 285 

suggestions for a failing data-driven test while strict testing gives one to three suggestions [6]. 

This blended visual and property-based DOM similarity matching allows for maintaining coverage of 

failure cases where locators fail due to a structural change in the DOM and the element's visual 

appearance has not changed. Property-based similarity matching is a good option when the same 

properties exist, but in different places. This could be for buttons and icons (dealt with by template 

matching) or for larger patterns, such as windows and dialog boxes, which needed to be scaled and/or 

rotated around the screen [5]. The specific algorithms for these techniques could easily be computed as 

part of the visual matching and property checking process occurring in sub-200 milliseconds, meaning 

they could be added to the continuous testing pipeline without introducing too much overhead. 

 

Table 2: Self-Healing Architecture Components and Functions [5, 6].  

 

Self-Healing 

Component 
Recognition Method Primary Application 

Visual Pattern 

Recognition 

Screenshot-based GUI element 

identification 

Universal accessibility across 

applications when visual appearance 

remains consistent 

Invariant Feature 

Voting 

Scale and rotation tolerant pattern 

analysis 

Complex interface elements requiring 

geometric transformation handling 

DOM Property 

Analysis 

Multi-attribute element 

examination 

Web applications with accessible DOM 

structure for comprehensive 

fingerprinting 

Structural Similarity 

Computation 

Normalized Levenshtein distance 

between XPath expressions 

DOM hierarchy analysis reflecting 

positional correspondence 

Behavioral 

Similarity 

Assessment 

Binary matching across element 

properties 

Interactive element characteristics 

including coordinates, clickability, and 

visibility 



Navya Reddy Kunta  

 

224 
 

Cascading Repair 

Strategy 

Progressive fallback through 

property hierarchies 

Failed locator recovery through ordered 

resolution attempts 

 

IV. Performance Metrics and Maintenance Reduction 

The use of self-healing test automation frameworks based on aspects of reinforcement learning (RL) has 

proven to be a game changer for addressing the problem of the maintenance effort intrinsic to customary 

test automation approaches. Building on these principles, test automation frameworks learn the most 

appropriate repair action through its execution in the test environment, obtaining a reward for a 

successfully healed test case and a penalty otherwise [7]. Both frameworks continuously improve their 

strategies for handling user interface (UI) element changes, API endpoint changes, and database schema 

changes. The agent generates state-action-reward tuples that it stores in its experience replay memory, and 

samples from this memory to generalize from many different types of failures in training. The target 

networks reduce correlated updates, and exploration-exploitation tradeoffs can be employed to explore 

several self-healing strategies to determine what has worked before [7]. 

Reinforcement learning applied to full stack test automation is effective for multi-layered applications 

such as e-commerce website or enterprise applications. When locator changes are applied during a 

checkout process, a reinforcement learning agent tests alternative locator strategies from neighboring 

elements or data attributes. If the element is found and the testing flow resumes, a reward is given; if too 

many attempts are made to find the element a penalty is given [7]. The agents learn to update the endpoint 

URL and payload structure at the API level, when the backend does not respond according to the 

specifications of the original request. At the database level, agents modify query patterns in response to 

schema changes, learning to add and prune fields and satisfy validation requirements in accordance with a 

schema change [7]. These frameworks, through continual learning, improve their performance across 

execution rounds and self-healing methods as the number and variety of failures increases. 

Additional research on test case prioritization has shown that good utilization of test ordering can further 

speed up defect detection in regression testing. For example, with an additional statement coverage based 

prioritization of test cases, the average APFD is 78.88 percent compared to 59.73 percent with randomly 

ordered test cases [8]. Average percentage of fault detected (APFD): function-level prioritization 

considering fault exposure potential achieves an APFD of 75.59%, supporting the hypothesis that coarse 

granularity is adequate when fine-grained fault-exposure instrumentation is not possible. This was 

coupled with statistical experimentation against 8 programs with randomly targeted faults yielding an 

optimal prioritization of 94.24% APFD, the best practical bound for heuristics [8]. Applying prioritization 

techniques to self-healing techniques produces synergies that prioritize the most important validations in 

each test cycle while keeping the test suite functional as the application evolves. 

Figure 1: Comparison Of Test Case Prioritization Techniques And Their Apfd Performance [8].  
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V. Future Directions and Agentic Evolution 

The ways in which deep learning, in conjunction with predictive maintenance, has been applied in 

software engineering lay the foundation for the implementation of completely autonomous-testing 

architectures. The number of papers applying deep learning in software engineering research was 9 in 

2016, and expanded to 25 in 2017 [9]. The most informative observed feature for deep learning 

applications is the architectural decision at 4.04 bits, followed by the data representation at 1.51 bits, the 

loss function at 1.14 bits and the architectural decision at 1.11 bits. This correlation implies that 

established deep learning methods for contextual reasoning can be used in a self-testing context to 

differentiate between how the user interface is expected to evolve and a regression defect [9]. 

Program synthesis has seen the most success with deep learning among all software engineering 

problems, with 22 of the 128 papers identified working with program synthesis. Additionally, code 

comprehension and source code retrieval tasks have seen other applications of deep learning. In tasks 

involving source code, the code completion, code synthesis, code summarization, and document 

generation tasks account for 3% to 5% each, with 70% of the tasks being different. This motivates the 

idea of having the autonomous testing systems use different deep learning models for different testing 

purposes, such as the interpretation of natural language test specifications and the automatic generation of 

assertions from requirement specifications. 

These predictive maintenance systems aim to locate source code fragility ahead of a failure during the 

execution of the tests using historical pattern recognition. It was shown that temporal data improved 

maintainability prediction accuracy using historical trends of software metrics for 40 open-source 

projects. The best results for the first prediction run were 0.570, for classification trees and random forest 

algorithms, and increased to 0.578 and 0.580 when measurement data of previous iterations were included 

to the model [10]. The F-score for the same experiment group went from a baseline of 0.436 to 0.531 and 

0.553 for the classification tree and random forest approaches respectively, which equals to an increase of 

0.095 and 0.117 percentage points. 

The project specific analysis is much more informative as all models are fitted to the individual software 

repositories rather than a general model. For instance, the httpcore project contains 35 releases of 225 

classes and 10439 lines of code, and the classification tree classification accuracy is 0.78 at the best 

parameter value, while the random forest classification accuracy is 0.87 at the best parameter value [10]. 

These capabilities are substantially more powerful than generalized models, suggesting that autonomous 

testing frameworks will benefit from learning that is adapted to the specific patterns and processes of 

individual projects. 

Advanced change impact analysis and its correlation of the code commits with the affected test coverage 

areas is an important feature for risk-optimal execution strategies. The metric analysis of the projects, 

with an average of 35,601 LOC and 494 classes and a 83.45 days time between deployments, allows an 

empirical analysis of temporal patterns [10]. Federated learning architectures will enable the federation of 

test intelligence across organizational boundaries while maintaining test intelligence privacy to ease 

federated autonomous testing evolution. The convergence of feature learning via deep learning, historical 

pattern analysis, and domain model specific tuning will enable a new generation of autonomous agents 

that will select, define, and execute validation strategies with minimal human intervention while 

maintaining competitive advantage and security. 
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Figure 2: Historical Pattern Recognition Performance Metrics [9, 10].  

 

Conclusion 

AI-augmented self-healing automation frameworks (involving contextual identification and adaptability 

mechanisms) provide an alternative to brittle test automation frameworks, reducing maintenance across 

enterprise-wide environments. By leveraging visual recognition mechanisms of interface components and 

DOM-based similarity measures of components, failure scenarios are comprehensively covered and 

manual verification processes are transformed to automated and resilient verification processes. 

Reinforcement learning agents for microservice self-healing have strong mechanisms to automatically 

handle changing locator and API endpoints, and adapt to database schema changes, owing to continued 

learning and adaptation of self-healing strategies across multiple execution cycles. Prioritizing statement 

coverage and fault-exposing potential improves fault detection and can provide synergistic value when 

combined with adaptive repair. Temporal software metric historical behavior monitoring across several 

release cycles can be a basis for predictive maintenance. Project/organization specific models consistently 

outperform general heuristics because they extract information about the development cycle and team 

dynamics. However, convergence of pattern recognition via deep learning feature extraction, temporal 

pattern analysis, outlier detection, and domain specific feature engineering may be the pathway to 

autonomous testing architectures. Organizations developing dynamic software systems with rapidly 

iterating user interfaces and component-oriented architectures require a transitional testing infrastructure 

to support the evolution of experiments towards production readiness. A completely agentic architecture 

represents a model shift of quality assurance as a space of smart, co-evolving agents operating under 

orchestration to achieve sustainable automation at the velocity of current development practices with 

continuous integration. 
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