
JOURNAL OF INTERNATIONAL CRISIS AND RISK COMMUNICATION RESEARCH
ISSN: 2576-0017
2026, VOL 9, NO 2

220

Next-Generation Resiliency: Evaluating Ai-Augmented Self-
Healing Automation Frameworks

Navya Reddy Kunta

Independent Researcher, USA

Abstract

Modern software development practices require constant revalidation of changing
UIs, but customary test automation frameworks are brittle in the face of such

dynamic change. Maintenance of the test suite is the most costly part of any
automation project. Customary automation patterns used by the industry tend to
utilize static locators, which require meaningful manual maintenance if the

underlying UI changes. Generally, machine learning on the automation frameworks
set the basis for self-healing characteristics through smart object recognition

models and self-adaptive algorithms that heal broken locators automatically.
Empirical studies have shown the decreased maintenance costs with machine

learning over the customarily used statically defined locators and the need for
agentic automation architecture. For screenshots, visual pattern recognition
techniques are used to control the program by simulating keyboard and mouse

events. For DOM elements, multi-property analysis techniques extract a set of
structural similarity and behavioral properties and use them to generate a weighted

score. Reinforcement learning models are used for finding optimal corrections using
experience replay learning and a deep Q-network architecture across UI, API, and
database layers. Fault exposing potential can also be used in defect predictive

systems for test case prioritization based on efficiency while keeping the defect
detection coverage. The reliability of maintainability prediction can be examined

through historical software metric measurements towards predictive systems that
ascertain locator fragility before an execution-cycle failure.

Keywords: Self-Healing Automation, Reinforcement Learning, Test Maintenance
Reduction, Intelligent Locator Repair, Adaptive Testing Frameworks.

I. Introduction

Continuous user interface (UI) change validation is a core requirement in modern software development

and testing. However, frequent UI changes make regular test automation frameworks too brittle. The bulk

of the cost of test automation comes from tests that need to be changed or rewritten. Industrial case

studies report that test failures generally occur with all types of test automation at the release transition

[1]. Customary UI automation methods utilizing static locators such as XPath expressions, CSS selectors

and element identifiers require considerable manual effort to fix tests due to UI changes, and hence

constitute a bottleneck to continuous integration and to the pace of enterprise software releases.

The instability of customary automation solutions is demonstrated in UI refactoring experiments. A case

study using Selenium WebDriver test suites with multiple locator strategies found that all 25 test cases

used at an industrial site failed against new releases of the application, regardless of the locator strategy.

Test suites using ID-based locators were repaired in 43 minutes, making 9 changes to the automation

scripts, while XPath locator strategy repairs took 183 minutes, making 96 changes to the scripts [1].

Furthermore, changing the XPath locators in page objects requires modifying around 73.28% of the

Next-Generation Resiliency: Evaluating Ai-Augmented Self-Healing Automation Frameworks

221

localization lines (i.e. 96 out of 131 localization lines) which fundamentally limits sustainability for the

application evolution cycles.

This is consistent with findings across the wider automation community, where in a survey of 72

practitioners across 24 countries, maintainability (45.83%) and test flakiness (44.44%) are identified as

the biggest concerns. In spite of best practices documenting the use of widely known automation design

patterns such as Page Object Model, the use of such patterns in practice is somewhat limited (12.5%). The

use of XPath expressions, which are known to be hard to maintain, is still prominent at 36.11% [2].

This preference is also observed on the toolchain side of the automation community. 98.61% of the

respondents answered that their primary automation framework is Selenium WebDriver and 94.44%

target browsers in Google Chrome. 72.22% of the respondents use Jenkins as a CI tool and 59.72%

responded that they test with browsers on their local machines. Java (50% share) is the most common

language, followed by Python (18.06%) and JavaScript (13.89%), and due to standardized technology

choices similar conditions are created for maintenance to happen in a similar manner in different

organizations [2].

When integrated with automation frameworks, ML algorithms offer the potential of building self-healing

test systems, where they automatically fix their own scripts. Self-healing properties would address the

brittle nature of static locator strategies since the test suites could automatically detect and repair the

broken element locators without any human intervention. The comparatively high time on contrast with

XPath and ID-based maintenance time (183 and 43 minutes respectively) would allow clever automation

systems to reason about and autonomously choose locator mechanisms and adapt to structural UI changes

without developer intervention [1]. Transitioning from reactive maintenance strategies to self-healing

automation allows for sustainable automation that adapts to evolving software engineering practices. The

fast pace of UI cycles and component-oriented programming models demand test automation that can be

adapted and extended to the application under test.

II. Problem Characterization and Research Gap

Existing automation tools (like Selenium and Appium) employ deterministic approaches to locating

elements within the DOM which bind tests to specific attributes or structural positions. As a result these

solutions can fail when a UI component undergoes a refactoring which alters its attributes or hierarchical

structure, or is dynamically rendered. While there are a wide variety of automated test tools that can be

used for many quality assurance activities, test suite maintenance is often expensive, tedious and time

consuming and may still be necessary when either application changes lead to broken or obsolete test

cases that need to be repaired [3] or software changes that break automated regression tests [4]. The

maintenance overhead is highest for applications tested through their GUI (graphical user interface)

because the interface may change both in look and in underlying logic between releases.

The fragility problem may be more or less severe for different locator strategies, and empirical research

on the fragility of web element locators has found large differences for 48 websites with 801 targeted

elements [4]. Absolute XPath locators have a failure rate of 83%, meaning they cannot find the target

element after the web application is modified. Relative ID-based XPath locators have a failure rate of

59% and perform better. The Selenium IDE locator approach achieves a non-location for 51% of web

elements, while the Montoto algorithm achieves non-location for 47%. Even the strongest single-locator

ROBULA+ can locate only 61% of the web elements, depending on how the website has evolved [4].

Even the best multi-locators, that combine the outputs of several such single-locators by some sort of

voting mechanism, will have a failure rate of 27% in the limit case, where they return only when some

constituent successfully returns the sought element.

All customary locators lack the context and adaptive reasoning necessary to be strong, and single-locator

approaches are single points of failure. If the DOM property targeted by the locator changes while the

other properties are still the same, no matching elements are found. Absolute XPath locators are usually

the most easily broken locators. This is because they specify an entire DOM tree traversal from the

document root node to the desired target element, and any change to one of the intermediate nodes (tree

restructuring, new element insertion, sibling rearrangement) invalidates the entire path expression. More

Navya Reddy Kunta

222

advanced locators like ID-based strategies also have to deal with mainstream evolution processes, such as

changes in auto-generated identifiers and ID refactoring across application layers.

With component-driven architectures, incremental UI component modifications, and modern

development processes like CI/CD (constant integration/ constant delivery) there is a continuing cost to

the automation infrastructure to account for changes to the UI without human intervention. Current

frameworks are not able to discriminate between when UI changes would lead to changes in test logic or

when changes are inconsequential and only require slight adaptation. Such frameworks create false

positives, where automated tests fail even when manually passing, requiring manual debugging effort and

increasing the maintenance burden of the tests.

High-level multi-locators strategies defend against single-point failure by voting and aggregating data

from multiple single-locators [4]. However, this strategy's theoretical upper bound (where correct element

location succeeds if any constituent locator succeeds) leaves about 27% of elements unlocatable for many

website evolution scenarios. This persistent gap between theoretical performance of multi-locator

schemes and perfect robustness shows that integration of existing locator strategies, while improving

overall performance, will not solve the problem of ensuring resilient element-identification across

application evolution.

Table 1: Comparative Analysis of Locator Strategies and Maintenance Complexity [3, 4].

Locator

Strategy
Primary Characteristics Failure Vulnerability Maintenance Complexity

Absolute

XPath

Encodes complete DOM

tree traversal from root to

target element

Highest failure rate; any

intermediate node

modification invalidates

entire path

Extremely high; requires

extensive code

modifications across page

objects

Relative ID-

based XPath

Uses identifier attributes

with partial path

specifications

High failure rate;

susceptible to auto-

generated identifier

changes

High; substantial line

modifications required for

restoration

Selenium

IDE Locator

Automated locator

generation through

recording

Moderate failure rate;

limited contextual

adaptation

Moderate; manual

intervention needed for

complex scenarios

Montoto

Algorithm

Enhanced locator

generation with structural

analysis

Moderate failure rate;

improved over basic

approaches

Moderate; reduced but still

significant maintenance

burden

ROBULA+
Advanced single-locator

strategy with optimization

Lower failure rate among

single-locator approaches

Lower than alternatives but

still requires manual

updates

Multi-

Locator

Aggregation

Combines multiple single-

locators through voting

mechanisms

Lowest failure rate under

theoretical conditions

Reduced maintenance

through redundancy but

configuration complexity

III. Self-Healing Architecture and Intelligent Recognition

Self-healing frameworks address locator fragility with smart recognition frameworks that can auto-repair

broken test scripts after a change in the UI. Visual automation is a form of automation where the

automated tests drive the GUI by simulating low-level keyboard and mouse operations based on

screenshots. These tests are portable to all applications and platforms [5]. Pattern matchers have similarity

thresholds that allow tolerances for visual perturbations of the matched regions up to a certain degree.

Trials have shown that typical 100×100 pixel targets can be matched in less than 200 milliseconds under

standard resolution displays, showing its practical viability [5].

Next-Generation Resiliency: Evaluating Ai-Augmented Self-Healing Automation Frameworks

223

Besides visual attributes, DOM-based self-healing systems use a multi-property analysis that, if the main

locators fail, can find the DOM element. They can automatically extract 10 different properties from the

DOM, such as attributes, the structure of an element, visual attributes and checksum associated with its

content [6]. For breakage due to a UI change, repair algorithms take successful and failing executions of

test scripts on the old and new versions of the application respectively. The algorithms cascade through a

series of strategies: they match elements with preserved identifier properties and then compute similarity

indices for target and candidate DOM elements.

Structural similarity is a weighted score based on the normalized Levenshtein distance of pairs of XPath

expressions to compare node positions in the DOM tree [6]. Behavioral similarity is calculated as the sum

of binary similarity of screen coordinates, clickability, visibility, z-index and content hashes. A larger

weight of 0.9 is assigned to structural properties. This is due to the fact that pairs are more frequently

identified as similar based on the XPath than based on behavioral properties, which are only useful for

discarding duplicated structurally similar candidates. Elements with similarity scores larger than the

defined threshold 0.5 are considered repair candidates. The best matching element is selected to replace

the locator.

Empirical studies of real-life web applications have shown that automated repair approaches can work on

production-level web applications. In particular, several studies have applied automated repair of broken

test commands to real web content management systems using tools that select one to three candidate

repairs per failure [6]. For Joomla CMS, out of four pairs of versions and six failing test cases, the

automated repair system generated the same fix that the developer wrote in the corresponding version.

The repair system has also been able to address cases of structural or identifier changes, and changes to

assertions' content. The number of candidate repairs generated depends on the oracle strictness - oracle

tests which do not contain assertions or only perform limited proofs of certain properties give up to 285

suggestions for a failing data-driven test while strict testing gives one to three suggestions [6].

This blended visual and property-based DOM similarity matching allows for maintaining coverage of

failure cases where locators fail due to a structural change in the DOM and the element's visual

appearance has not changed. Property-based similarity matching is a good option when the same

properties exist, but in different places. This could be for buttons and icons (dealt with by template

matching) or for larger patterns, such as windows and dialog boxes, which needed to be scaled and/or

rotated around the screen [5]. The specific algorithms for these techniques could easily be computed as

part of the visual matching and property checking process occurring in sub-200 milliseconds, meaning

they could be added to the continuous testing pipeline without introducing too much overhead.

Table 2: Self-Healing Architecture Components and Functions [5, 6].

Self-Healing

Component
Recognition Method Primary Application

Visual Pattern

Recognition

Screenshot-based GUI element

identification

Universal accessibility across

applications when visual appearance

remains consistent

Invariant Feature

Voting

Scale and rotation tolerant pattern

analysis

Complex interface elements requiring

geometric transformation handling

DOM Property

Analysis

Multi-attribute element

examination

Web applications with accessible DOM

structure for comprehensive

fingerprinting

Structural Similarity

Computation

Normalized Levenshtein distance

between XPath expressions

DOM hierarchy analysis reflecting

positional correspondence

Behavioral

Similarity

Assessment

Binary matching across element

properties

Interactive element characteristics

including coordinates, clickability, and

visibility

Navya Reddy Kunta

224

Cascading Repair

Strategy

Progressive fallback through

property hierarchies

Failed locator recovery through ordered

resolution attempts

IV. Performance Metrics and Maintenance Reduction

The use of self-healing test automation frameworks based on aspects of reinforcement learning (RL) has

proven to be a game changer for addressing the problem of the maintenance effort intrinsic to customary

test automation approaches. Building on these principles, test automation frameworks learn the most

appropriate repair action through its execution in the test environment, obtaining a reward for a

successfully healed test case and a penalty otherwise [7]. Both frameworks continuously improve their

strategies for handling user interface (UI) element changes, API endpoint changes, and database schema

changes. The agent generates state-action-reward tuples that it stores in its experience replay memory, and

samples from this memory to generalize from many different types of failures in training. The target

networks reduce correlated updates, and exploration-exploitation tradeoffs can be employed to explore

several self-healing strategies to determine what has worked before [7].

Reinforcement learning applied to full stack test automation is effective for multi-layered applications

such as e-commerce website or enterprise applications. When locator changes are applied during a

checkout process, a reinforcement learning agent tests alternative locator strategies from neighboring

elements or data attributes. If the element is found and the testing flow resumes, a reward is given; if too

many attempts are made to find the element a penalty is given [7]. The agents learn to update the endpoint

URL and payload structure at the API level, when the backend does not respond according to the

specifications of the original request. At the database level, agents modify query patterns in response to

schema changes, learning to add and prune fields and satisfy validation requirements in accordance with a

schema change [7]. These frameworks, through continual learning, improve their performance across

execution rounds and self-healing methods as the number and variety of failures increases.

Additional research on test case prioritization has shown that good utilization of test ordering can further

speed up defect detection in regression testing. For example, with an additional statement coverage based

prioritization of test cases, the average APFD is 78.88 percent compared to 59.73 percent with randomly

ordered test cases [8]. Average percentage of fault detected (APFD): function-level prioritization

considering fault exposure potential achieves an APFD of 75.59%, supporting the hypothesis that coarse

granularity is adequate when fine-grained fault-exposure instrumentation is not possible. This was

coupled with statistical experimentation against 8 programs with randomly targeted faults yielding an

optimal prioritization of 94.24% APFD, the best practical bound for heuristics [8]. Applying prioritization

techniques to self-healing techniques produces synergies that prioritize the most important validations in

each test cycle while keeping the test suite functional as the application evolves.

Figure 1: Comparison Of Test Case Prioritization Techniques And Their Apfd Performance [8].

Next-Generation Resiliency: Evaluating Ai-Augmented Self-Healing Automation Frameworks

225

V. Future Directions and Agentic Evolution

The ways in which deep learning, in conjunction with predictive maintenance, has been applied in

software engineering lay the foundation for the implementation of completely autonomous-testing

architectures. The number of papers applying deep learning in software engineering research was 9 in

2016, and expanded to 25 in 2017 [9]. The most informative observed feature for deep learning

applications is the architectural decision at 4.04 bits, followed by the data representation at 1.51 bits, the

loss function at 1.14 bits and the architectural decision at 1.11 bits. This correlation implies that

established deep learning methods for contextual reasoning can be used in a self-testing context to

differentiate between how the user interface is expected to evolve and a regression defect [9].

Program synthesis has seen the most success with deep learning among all software engineering

problems, with 22 of the 128 papers identified working with program synthesis. Additionally, code

comprehension and source code retrieval tasks have seen other applications of deep learning. In tasks

involving source code, the code completion, code synthesis, code summarization, and document

generation tasks account for 3% to 5% each, with 70% of the tasks being different. This motivates the

idea of having the autonomous testing systems use different deep learning models for different testing

purposes, such as the interpretation of natural language test specifications and the automatic generation of

assertions from requirement specifications.

These predictive maintenance systems aim to locate source code fragility ahead of a failure during the

execution of the tests using historical pattern recognition. It was shown that temporal data improved

maintainability prediction accuracy using historical trends of software metrics for 40 open-source

projects. The best results for the first prediction run were 0.570, for classification trees and random forest

algorithms, and increased to 0.578 and 0.580 when measurement data of previous iterations were included

to the model [10]. The F-score for the same experiment group went from a baseline of 0.436 to 0.531 and

0.553 for the classification tree and random forest approaches respectively, which equals to an increase of

0.095 and 0.117 percentage points.

The project specific analysis is much more informative as all models are fitted to the individual software

repositories rather than a general model. For instance, the httpcore project contains 35 releases of 225

classes and 10439 lines of code, and the classification tree classification accuracy is 0.78 at the best

parameter value, while the random forest classification accuracy is 0.87 at the best parameter value [10].

These capabilities are substantially more powerful than generalized models, suggesting that autonomous

testing frameworks will benefit from learning that is adapted to the specific patterns and processes of

individual projects.

Advanced change impact analysis and its correlation of the code commits with the affected test coverage

areas is an important feature for risk-optimal execution strategies. The metric analysis of the projects,

with an average of 35,601 LOC and 494 classes and a 83.45 days time between deployments, allows an

empirical analysis of temporal patterns [10]. Federated learning architectures will enable the federation of

test intelligence across organizational boundaries while maintaining test intelligence privacy to ease

federated autonomous testing evolution. The convergence of feature learning via deep learning, historical

pattern analysis, and domain model specific tuning will enable a new generation of autonomous agents

that will select, define, and execute validation strategies with minimal human intervention while

maintaining competitive advantage and security.

Navya Reddy Kunta

226

Figure 2: Historical Pattern Recognition Performance Metrics [9, 10].

Conclusion

AI-augmented self-healing automation frameworks (involving contextual identification and adaptability

mechanisms) provide an alternative to brittle test automation frameworks, reducing maintenance across

enterprise-wide environments. By leveraging visual recognition mechanisms of interface components and

DOM-based similarity measures of components, failure scenarios are comprehensively covered and

manual verification processes are transformed to automated and resilient verification processes.

Reinforcement learning agents for microservice self-healing have strong mechanisms to automatically

handle changing locator and API endpoints, and adapt to database schema changes, owing to continued

learning and adaptation of self-healing strategies across multiple execution cycles. Prioritizing statement

coverage and fault-exposing potential improves fault detection and can provide synergistic value when

combined with adaptive repair. Temporal software metric historical behavior monitoring across several

release cycles can be a basis for predictive maintenance. Project/organization specific models consistently

outperform general heuristics because they extract information about the development cycle and team

dynamics. However, convergence of pattern recognition via deep learning feature extraction, temporal

pattern analysis, outlier detection, and domain specific feature engineering may be the pathway to

autonomous testing architectures. Organizations developing dynamic software systems with rapidly

iterating user interfaces and component-oriented architectures require a transitional testing infrastructure

to support the evolution of experiments towards production readiness. A completely agentic architecture

represents a model shift of quality assurance as a space of smart, co-evolving agents operating under

orchestration to achieve sustainable automation at the velocity of current development practices with

continuous integration.

Next-Generation Resiliency: Evaluating Ai-Augmented Self-Healing Automation Frameworks

227

References

[1] Maurizio Leotta et al., "Comparing the Maintainability of Selenium WebDriver Test Suites

Employing Different Locators: A Case Study," Proceedings of the 2013 International Workshop on

Joining AcadeMiA and Industry Contributions to testing Automation, 2013. [Online]. Available:

https://dl.acm.org/doi/pdf/10.1145/2489280.2489284

[2] Boni García et al., "A Survey of the Selenium Ecosystem," MDPI, 2020. [Online]. Available:

https://www.mdpi.com/2079-9292/9/7/1067

[3] FEDERICO FORMICA et al., "Search-Based Software Testing Driven by Automatically Generated

and Manually Defined Fitness Functions," ACM Transactions on Soware Engineering and Methodology,

2024. [Online]. Available: https://dl.acm.org/doi/pdf/10.1145/3624745

[4] MICHEL NASS et al., "Similarity-based Web Element Localization for Robust Test Automation,"

ACM Transactions on Software Engineering and Methodology, 2023. [Online]. Available:

https://dl.acm.org/doi/pdf/10.1145/3571855

[5] Tom Yeh et al., "Sikuli: Using GUI Screenshots for Search and Automation," Proceedings of the 22nd

annual ACM symposium on User interface soware and technology, 2009. [Online]. Available:

https://dl.acm.org/doi/pdf/10.1145/1622176.1622213

[6] Shauvik Roy Choudhary et al., "WATER: Web Application TEst Repair," Proceedings of the First

International Workshop on End-to-End Test Script Engineering, 2011. [online]. Available:

https://dl.acm.org/doi/pdf/10.1145/2002931.2002935

[7] Hariprasad Sivaraman, "Self-Healing Test Automation Frameworks Using Reinforcement Learning

for Full-Stack Test Automation," Journal of Artificial Intelligence & Cloud Computing, 2022. [Online].

Available: https://www.researchgate.net/profile/Hariprasad-Sivaraman/publication/386507161

[8] Sebastian Elbaum et al., "Prioritizing Test Cases for Regression Testing," Proceedings of the 2000

ACM SIGSOFT international symposium on Soware testing and analysis, 2000. [Online]. Available:

https://dl.acm.org/doi/pdf/10.1145/347324.348910

[9] CODY WATSON et al., "A Systematic Literature Review on the Use of Deep Learning in Software

Engineering Research," ACM, 2022 . [Online]. Available: https://dl.acm.org/doi/pdf/10.1145/3485275

[10] Mitja Gradišnik et al., "Impact of Historical Software Metric Changes in Predicting Future

Maintainability Trends in Open-Source Software Development," MDPI, 2020. [Online]. Available:

https://www.mdpi.com/2076-3417/10/13/4624

https://dl.acm.org/doi/pdf/10.1145/2489280.2489284
https://www.mdpi.com/2079-9292/9/7/1067
https://dl.acm.org/doi/pdf/10.1145/3624745
https://dl.acm.org/doi/pdf/10.1145/3571855
https://dl.acm.org/doi/pdf/10.1145/1622176.1622213
https://dl.acm.org/doi/pdf/10.1145/2002931.2002935
https://www.researchgate.net/profile/Hariprasad-Sivaraman/publication/386507161_Self-Healing_Test_Automation_Frameworks_Using_Reinforcement_Learning_for_Full-Stack_Test_Automation/links/675b0d05da24c8537c6808c0/Self-Healing-Test-Automation-Frameworks-Using-Reinforcement-Learning-for-Full-Stack-Test-Automation.pdf
https://www.researchgate.net/profile/Hariprasad-Sivaraman/publication/386507161
https://dl.acm.org/doi/pdf/10.1145/347324.348910
https://dl.acm.org/doi/pdf/10.1145/3485275
https://www.mdpi.com/2076-3417/10/13/4624

