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Abstract

Modern software development practices require constant revalidation of changing
Uls, but customary test automation frameworks are brittle in the face of such
dynamic change. Maintenance of the test suite is the most costly part of any
automation project. Customary automation patterns used by the industry tend to
utilize static locators, which require meaningful manual maintenance if the
underlying UI changes. Generally, machine learning on the automation frameworks
set the basis for self-healing characteristics through smart object recognition
models and self-adaptive algorithms that heal broken locators automatically.
Empirical studies have shown the decreased maintenance costs with machine
learning over the customarily used statically defined locators and the need for
agentic automation architecture. For screenshots, visual pattern recognition
techniques are used to control the program by simulating keyboard and mouse
events. For DOM elements, multi-property analysis techniques extract a set of
structural similarity and behavioral properties and use them to generate a weighted
score. Reinforcement learning models are used for finding optimal corrections using
experience replay learning and a deep Q-network architecture across UI, API, and
database layers. Fault exposing potential can also be used in defect predictive
systems for test case prioritization based on efficiency while keeping the defect
detection coverage. The reliability of maintainability prediction can be examined
through historical software metric measurements towards predictive systems that
ascertain locator fragility before an execution-cycle failure.

Keywords: Self-Healing Automation, Reinforcement Learning, Test Maintenance
Reduction, Intelligent Locator Repair, Adaptive Testing Frameworks.

I. Introduction

Continuous user interface (UI) change validation is a core requirement in modern software development
and testing. However, frequent UI changes make regular test automation frameworks too brittle. The bulk
of the cost of test automation comes from tests that need to be changed or rewritten. Industrial case
studies report that test failures generally occur with all types of test automation at the release transition
[1]. Customary Ul automation methods utilizing static locators such as XPath expressions, CSS selectors
and element identifiers require considerable manual effort to fix tests due to UI changes, and hence
constitute a bottleneck to continuous integration and to the pace of enterprise software releases.

The instability of customary automation solutions is demonstrated in Ul refactoring experiments. A case
study using Selenium WebDriver test suites with multiple locator strategies found that all 25 test cases
used at an industrial site failed against new releases of the application, regardless of the locator strategy.
Test suites using ID-based locators were repaired in 43 minutes, making 9 changes to the automation
scripts, while XPath locator strategy repairs took 183 minutes, making 96 changes to the scripts [1].
Furthermore, changing the XPath locators in page objects requires modifying around 73.28% of the
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localization lines (i.e. 96 out of 131 localization lines) which fundamentally limits sustainability for the
application evolution cycles.

This is consistent with findings across the wider automation community, where in a survey of 72
practitioners across 24 countries, maintainability (45.83%) and test flakiness (44.44%) are identified as
the biggest concerns. In spite of best practices documenting the use of widely known automation design
patterns such as Page Object Model, the use of such patterns in practice is somewhat limited (12.5%). The
use of XPath expressions, which are known to be hard to maintain, is still prominent at 36.11% [2].

This preference is also observed on the toolchain side of the automation community. 98.61% of the
respondents answered that their primary automation framework is Selenium WebDriver and 94.44%
target browsers in Google Chrome. 72.22% of the respondents use Jenkins as a CI tool and 59.72%
responded that they test with browsers on their local machines. Java (50% share) is the most common
language, followed by Python (18.06%) and JavaScript (13.89%), and due to standardized technology
choices similar conditions are created for maintenance to happen in a similar manner in different
organizations [2].

When integrated with automation frameworks, ML algorithms offer the potential of building self-healing
test systems, where they automatically fix their own scripts. Self-healing properties would address the
brittle nature of static locator strategies since the test suites could automatically detect and repair the
broken element locators without any human intervention. The comparatively high time on contrast with
XPath and ID-based maintenance time (183 and 43 minutes respectively) would allow clever automation
systems to reason about and autonomously choose locator mechanisms and adapt to structural UI changes
without developer intervention [1]. Transitioning from reactive maintenance strategiesto self-healing
automation allows for sustainable automation that adapts to evolving software engineering practices. The
fast pace of UI cycles and component-oriented programming models demand test automation that can be
adapted and extended to the application under test.

II. Problem Characterization and Research Gap

Existing automation tools (like Selenium and Appium) employ deterministic approaches to locating
elements within the DOM which bind tests to specific attributes or structural positions. As a result these
solutions can fail when a Ul component undergoes a refactoring which alters its attributes or hierarchical
structure, or is dynamically rendered. While there are a wide variety of automated test tools that can be
used for many quality assurance activities, test suite maintenance is often expensive, tedious and time
consuming and may still be necessary when either application changes lead to broken or obsolete test
cases that need to be repaired [3] or software changes that break automated regression tests [4]. The
maintenance overhead is highest for applications tested through their GUI (graphical user interface)
because the interface may change both in look and in underlying logic between releases.

The fragility problem may be more or less severe for different locator strategies, and empirical research
on the fragility of web element locators has found large differences for 48 websites with 801 targeted
elements [4]. Absolute XPath locators have a failure rate of 83%, meaning they cannot find the target
element after the web application is modified. Relative ID-based XPath locators have a failure rate of
59% and perform better. The Selenium IDE locator approach achieves a non-location for 51% of web
elements, while the Montoto algorithm achieves non-location for 47%. Even the strongest single-locator
ROBULA+ can locate only 61% of the web elements, depending on how the website has evolved [4].
Even the best multi-locators, that combine the outputs of several such single-locators by some sort of
voting mechanism, will have a failure rate of 27% in the limit case, where they return only when some
constituent successfully returns the sought element.

All customary locators lack the context and adaptive reasoning necessary to be strong, and single-locator
approaches are single points of failure. If the DOM property targeted by the locator changes while the
other properties are still the same, no matching elements are found. Absolute XPath locators are usually
the most easily broken locators. This is because they specify an entire DOM tree traversal from the
document root node to the desired target element, and any change to one of the intermediate nodes (tree
restructuring, new element insertion, sibling rearrangement) invalidates the entire path expression. More
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advanced locators like ID-based strategies also have to deal with mainstream evolution processes, such as
changes in auto-generated identifiers and ID refactoring across application layers.

With component-driven architectures, incremental Ul component modifications, and modern
development processes like CI/CD (constant integration/ constant delivery) there is a continuing cost to
the automation infrastructure to account for changes to the Ul without human intervention. Current
frameworks are not able to discriminate between when Ul changes would lead to changes in test logic or
when changes are inconsequential and only require slight adaptation. Such frameworks create false
positives, where automated tests fail even when manually passing, requiring manual debugging effort and
increasing the maintenance burden of the tests.

High-level multi-locators strategies defend against single-point failure by voting and aggregating data
from multiple single-locators [4]. However, this strategy's theoretical upper bound (where correct element
location succeeds if any constituent locator succeeds) leaves about 27% of elements unlocatable for many
website evolution scenarios. This persistent gap between theoretical performance of multi-locator
schemes and perfect robustness shows that integration of existing locator strategies, while improving
overall performance, will not solve the problem of ensuring resilient element-identification across
application evolution.

Table 1: Comparative Analysis of Locator Strategies and Maintenance Complexity [3, 4].

S t‘:_;ﬁ;; Primary Characteristics Failure Vulnerability Maintenance Complexity
Encodes complete DOM nghest fa1lgre rate; any Extremely hlgh; requires
Absolute intermediate node extensive code
tree traversal from root to . L . . .
XPath modification invalidates modifications across page
target element . .
entire path objects
. Uses identifier attributes High fallure rate; High; substantial line
Relative ID- with partial path susceptible to auto- modifications required for
based XPath P P generated identifier “d
specifications restoration
changes
Selenium Automated locator Moderate failure rate; Moderate; manual
IDE Locator generation through limited contextual intervention needed for
recording adaptation complex scenarios
Montoto Enhanced locator Moderate failure rate; Moderate; reduced but still
Aleoritl generation with structural improved over basic significant maintenance
& analysis approaches burden
. . L han al i
Advanced single-locator | Lower failure rate among ower than alternatives but
ROBULA+ . L . still requires manual
strategy with optimization | single-locator approaches
updates
Multi- Combines multiple single- . Reduced maintenance
. Lowest failure rate under
Locator locators through voting . o through redundancy but
. . theoretical conditions . )
Aggregation mechanisms configuration complexity

II1. Self-Healing Architecture and Intelligent Recognition

Self-healing frameworks address locator fragility with smart recognition frameworks that can auto-repair
broken test scripts after a change in the Ul Visual automation is a form of automation where the
automated tests drive the GUI by simulating low-level keyboard and mouse operations based on
screenshots. These tests are portable to all applications and platforms [5]. Pattern matchers have similarity
thresholds that allow tolerances for visual perturbations of the matched regions up to a certain degree.
Trials have shown that typical 100x100 pixel targets can be matched in less than 200 milliseconds under
standard resolution displays, showing its practical viability [5].
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Besides visual attributes, DOM-based self-healing systems use a multi-property analysis that, if the main
locators fail, can find the DOM element. They can automatically extract 10 different properties from the
DOM, such as attributes, the structure of an element, visual attributes and checksum associated with its
content [6]. For breakage due to a Ul change, repair algorithms take successful and failing executions of
test scripts on the old and new versions of the application respectively. The algorithms cascade through a
series of strategies: they match elements with preserved identifier properties and then compute similarity
indices for target and candidate DOM elements.

Structural similarity is a weighted score based on the normalized Levenshtein distance of pairs of XPath
expressions to compare node positions in the DOM tree [6]. Behavioral similarity is calculated as the sum
of binary similarity of screen coordinates, clickability, visibility, z-index and content hashes. A larger
weight of 0.9 is assigned to structural properties. This is due to the fact that pairs are more frequently
identified as similar based on the XPath than based on behavioral properties, which are only useful for
discarding duplicated structurally similar candidates. Elements with similarity scores larger than the
defined threshold 0.5 are considered repair candidates. The best matching element is selected to replace
the locator.

Empirical studies of real-life web applications have shown that automated repair approaches can work on
production-level web applications. In particular, several studies have applied automated repair of broken
test commands to real web content management systems using tools that select one to three candidate
repairs per failure [6]. For Joomla CMS, out of four pairs of versions and six failing test cases, the
automated repair system generated the same fix that the developer wrote in the corresponding version.
The repair system has also been able to address cases of structural or identifier changes, and changes to
assertions' content. The number of candidate repairs generated depends on the oracle strictness - oracle
tests which do not contain assertions or only perform limited proofs of certain properties give up to 285
suggestions for a failing data-driven test while strict testing gives one to three suggestions [6].

This blended visual and property-based DOM similarity matching allows for maintaining coverage of
failure cases where locators fail due to a structural change in the DOM and the element's visual
appearance has not changed. Property-based similarity matching is a good option when the same
properties exist, but in different places. This could be for buttons and icons (dealt with by template
matching) or for larger patterns, such as windows and dialog boxes, which needed to be scaled and/or
rotated around the screen [5]. The specific algorithms for these techniques could easily be computed as
part of the visual matching and property checking process occurring in sub-200 milliseconds, meaning
they could be added to the continuous testing pipeline without introducing too much overhead.

Table 2: Self-Healing Architecture Components and Functions [5, 6].

S(je(l)f;ll-;f)il::ﬁtg Recognition Method Primary Application
Visual Pattern Screenshot-based GUI element Umyersal aeeess! bility across
Recognition dentification applications when visual appearance

remains consistent

Invariant Feature Scale and rotation tolerant pattern Complex interface elements requiring
Voting analysis geometric transformation handling

Web applications with accessible DOM

DOM Property Multi-attribute element .
. o structure for comprehensive
Analysis examination e
fingerprinting
Structural Similarity | Normalized Levenshtein distance DOM hierarchy analysis reflecting
Computation between XPath expressions positional correspondence
Behavioral . . Interactive element characteristics
L Binary matching across element . . . . e
Similarity . including coordinates, clickability, and
properties e 1s
Assessment visibility
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Cascading Repair Progressive fallback through Failed locator recovery through ordered
Strategy property hierarchies resolution attempts

IV. Performance Metrics and Maintenance Reduction

The use of self-healing test automation frameworks based on aspects of reinforcement learning (RL) has
proven to be a game changer for addressing the problem of the maintenance effort intrinsic to customary
test automation approaches. Building on these principles, test automation frameworks learn the most
appropriate repair action through its execution in the test environment, obtaining a reward for a
successfully healed test case and a penalty otherwise [7]. Both frameworks continuously improve their
strategies for handling user interface (UI) element changes, API endpoint changes, and database schema
changes. The agent generates state-action-reward tuples that it stores in its experience replay memory, and
samples from this memory to generalize from many different types of failures in training. The target
networks reduce correlated updates, and exploration-exploitation tradeoffs can be employed to explore
several self-healing strategies to determine what has worked before [7].

Reinforcement learning applied to full stack test automation is effective for multi-layered applications
such as e-commerce website or enterprise applications. When locator changes are applied during a
checkout process, a reinforcement learning agent tests alternative locator strategies from neighboring
elements or data attributes. If the element is found and the testing flow resumes, a reward is given; if too
many attempts are made to find the element a penalty is given [7]. The agents learn to update the endpoint
URL and payload structure at the API level, when the backend does not respond according to the
specifications of the original request. At the database level, agents modify query patterns in response to
schema changes, learning to add and prune fields and satisfy validation requirements in accordance with a
schema change [7]. These frameworks, through continual learning, improve their performance across
execution rounds and self-healing methods as the number and variety of failures increases.

Additional research on test case prioritization has shown that good utilization of test ordering can further
speed up defect detection in regression testing. For example, with an additional statement coverage based
prioritization of test cases, the average APFD is 78.88 percent compared to 59.73 percent with randomly
ordered test cases [8]. Average percentage of fault detected (APFD): function-level prioritization
considering fault exposure potential achieves an APFD of 75.59%, supporting the hypothesis that coarse
granularity is adequate when fine-grained fault-exposure instrumentation is not possible. This was
coupled with statistical experimentation against 8§ programs with randomly targeted faults yielding an
optimal prioritization of 94.24% APFD, the best practical bound for heuristics [8]. Applying prioritization
techniques to self-healing techniques produces synergies that prioritize the most important validations in
each test cycle while keeping the test suite functional as the application evolves.

COMPARISON OF TEST CASE PRIORITIZATION
TECHNIQUES AND THEIR APFD PERFORMANCE

Optimal Prioritization (8 Programs with
e 94249
Random Faults)
Function-Level Prioritization (Fault )
P 75.59%
Exposure)
Random Test Case Ordering [N s5o.75%

Statement Coverage-Based Prioritization _ /8.88%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

Figure 1: Comparison Of Test Case Prioritization Techniques And Their Apfd Performance [§].
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V. Future Directions and Agentic Evolution

The ways in which deep learning, in conjunction with predictive maintenance, has been applied in
software engineering lay the foundation for the implementation of completely autonomous-testing
architectures. The number of papers applying deep learning in software engineering research was 9 in
2016, and expanded to 25 in 2017 [9]. The most informative observed feature for deep learning
applications is the architectural decision at 4.04 bits, followed by the data representation at 1.51 bits, the
loss function at 1.14 bits and the architectural decision at 1.11 bits. This correlation implies that
established deep learning methods for contextual reasoning can be used in a self-testing context to
differentiate between how the user interface is expected to evolve and a regression defect [9].

Program synthesis has seen the most success with deep learning among all software engineering
problems, with 22 of the 128 papers identified working with program synthesis. Additionally, code
comprehension and source code retrieval tasks have seen other applications of deep learning. In tasks
involving source code, the code completion, code synthesis, code summarization, and document
generation tasks account for 3% to 5% each, with 70% of the tasks being different. This motivates the
idea of having the autonomous testing systems use different deep learning models for different testing
purposes, such as the interpretation of natural language test specifications and the automatic generation of
assertions from requirement specifications.

These predictive maintenance systems aim to locate source code fragility ahead of a failure during the
execution of the tests using historical pattern recognition. It was shown that temporal data improved
maintainability prediction accuracy using historical trends of software metrics for 40 open-source
projects. The best results for the first prediction run were 0.570, for classification trees and random forest
algorithms, and increased to 0.578 and 0.580 when measurement data of previous iterations were included
to the model [10]. The F-score for the same experiment group went from a baseline of 0.436 to 0.531 and
0.553 for the classification tree and random forest approaches respectively, which equals to an increase of
0.095 and 0.117 percentage points.

The project specific analysis is much more informative as all models are fitted to the individual software
repositories rather than a general model. For instance, the httpcore project contains 35 releases of 225
classes and 10439 lines of code, and the classification tree classification accuracy is 0.78 at the best
parameter value, while the random forest classification accuracy is 0.87 at the best parameter value [10].
These capabilities are substantially more powerful than generalized models, suggesting that autonomous
testing frameworks will benefit from learning that is adapted to the specific patterns and processes of
individual projects.

Advanced change impact analysis and its correlation of the code commits with the affected test coverage
areas is an important feature for risk-optimal execution strategies. The metric analysis of the projects,
with an average of 35,601 LOC and 494 classes and a 83.45 days time between deployments, allows an
empirical analysis of temporal patterns [10]. Federated learning architectures will enable the federation of
test intelligence across organizational boundaries while maintaining test intelligence privacy to ease
federated autonomous testing evolution. The convergence of feature learning via deep learning, historical
pattern analysis, and domain model specific tuning will enable a new generation of autonomous agents
that will select, define, and execute validation strategies with minimal human intervention while
maintaining competitive advantage and security.
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Model Performance Comparison: Initial vs. Enhanced Metrics
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Figure 2: Historical Pattern Recognition Performance Metrics [9, 10].

Conclusion

Al-augmented self-healing automation frameworks (involving contextual identification and adaptability
mechanisms) provide an alternative to brittle test automation frameworks, reducing maintenance across
enterprise-wide environments. By leveraging visual recognition mechanisms of interface components and
DOM-based similarity measures of components, failure scenarios are comprehensively covered and
manual verification processes are transformed to automated and resilient verification processes.
Reinforcement learning agents for microservice self-healing have strong mechanisms to automatically
handle changing locator and API endpoints, and adapt to database schema changes, owing to continued
learning and adaptation of self-healing strategies across multiple execution cycles. Prioritizing statement
coverage and fault-exposing potential improves fault detection and can provide synergistic value when
combined with adaptive repair. Temporal software metric historical behavior monitoring across several
release cycles can be a basis for predictive maintenance. Project/organization specific models consistently
outperform general heuristics because they extract information about the development cycle and team
dynamics. However, convergence of pattern recognition via deep learning feature extraction, temporal
pattern analysis, outlier detection, and domain specific feature engineering may be the pathway to
autonomous testing architectures. Organizations developing dynamic software systems with rapidly
iterating user interfaces and component-oriented architectures require a transitional testing infrastructure
to support the evolution of experiments towards production readiness. A completely agentic architecture
represents a model shift of quality assurance as a space of smart, co-evolving agents operating under
orchestration to achieve sustainable automation at the velocity of current development practices with
continuous integration.
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