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Abstract

The financial services are being changed by Artificial Intelligence, allowing for
improved fraud detection, credit scoring, and customer personalization, and
introducing serious privacy issues. This privacy-preserving AI (PPAI) in financial
services systems presents a stacked architecture that allows financial institutions to
utilize AI without compromising the privacy or security of their data. Its framework
uses the most modern approaches, such as Federated Learning, Differential
Privacy, Homomorphic Encryption, and Secure Multi-Party Computation, to allow
cooperation without exposing sensitive financial information. The article describes
the powerful implementation model based on the cloud-edge hybrid strategy and
containerized technologies, the gradual implementation strategy, the systematic
design principles, and the strategic positioning of various stakeholders within the
financial ecosystem. Next generation directions include quantum-safe cryptography
integration, decentralized Al marketplaces where models can be exchanged, and
cross-border privacy systems that negotiate thorny regulatory environments. The
framework is a strategic dictum to financial institutions looking to strike a balance
between data intelligence and data privacy amidst a highly regulated landscape.

Keywords: Privacy-Preserving Al, Federated Learning, Differential Privacy,
Homomorphic Encryption, Financial Services Security.

1. Introduction

Artificial Intelligence applications to the financial industry represent a paradigm shift in terms of
operational efficiency, risk control, and consumer contact. Since real-time fraud detection systems can
save billions of dollars each year, and advanced credit scoring models can open the door to more capital
to those who were previously underserved in banking globally, Al is no longer an edge case technology,
but a central component in the modern finance industry [1]. Based on the latest industry studies, most
financial institutions today find Al adoption a strategic imperative, with machine learning programs
analyzing huge amounts of financial transaction data every day on global markets.

But this change is not without enormous challenges. The powerhouse for sophisticated models is sensitive
data—transaction records, credit history, and Know Your Customer (KYC) details. The traditional
method of aggregating this information into centralized stores for model training presents appealing
cyberattack targets, with financial services data breaches costing far in excess of the worldwide average
for all sectors [2]. Such centralization also presents important issues of user privacy, with consumers
reporting through surveys that they hold great concern over the use of their financial information.
Compliance with regulatory issues has increased, with GDPR breaches incurring high fines since its
introduction, and most of those penalties falling squarely on the lack of proper data protection protocols
in Al systems. The potential data misuse case scenarios have increased, with reported instances of
algorithmic discrimination of credit applicants running into millions each year. The defining challenge is
how to balance Al's insatiable data appetite—with sophisticated neural networks demanding many
labeled examples to perform at their best—and the need for data privacy.
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Javvaji offers a solution: a formal Privacy-Preserving Al (PPAI) framework. This method includes
mechanisms that enable training and running AI/ML models over distributed data without revealing raw
data. Field tests using these approaches have shown considerable improvements in fraud detection model
accuracy using collaborative learning while having full data separation. The framework allows multiple
institutions to work together to create more accurate models without passing customer data to each other,
potentially realizing considerable additional value throughout the financial services ecosystem via better
model performance and lower regulatory penalties.

2. Conceptual Architecture

The PPALI architecture is conceived as a multi-layered structure in which every layer is responsible for a
specific role, ranging from data sourcing to service delivery, allowing separation of concerns and modular
integration of privacy technologies. This design is inspired by effective deployments of secure computing
infrastructure in related domains, notably healthcare and telecommunications. As delineated in
foundational research on differential privacy, layered privacy structures offer mathematical warranties
that protect individual data points yet enable useful aggregate analysis—a principle that applies directly to
financial services [3].

2.1. Data Sources Layer

This base layer comprises raw, sensitive financial information. Under the PPAI approach, this information
is not centralized in a training repository. Instead, this information is distributed to exactly where it needs
to be—within a bank's secure data center, an on-premises server of a fintech, or even on a user's endpoint
device. Information is never transferred to a central point for training. This distributed strategy supports
next-generation data sovereignty best practices wherein financial institutions have full control over their
proprietary data but are still part of sharing ecosystems. Major financial institutions have already applied
equivalent decentralized data architectures with technical feasibility and regulatory compliance across
various jurisdictions. The architecture targets critical weaknesses in traditional data processing systems
that otherwise would form single points of failure or attack surfaces for adversaries seeking to gain access
to centralized data stores of financial information.

2.2. Privacy Layer

This underlying technology layer applies privacy-enhancing methodologies to the data and the process of
model training:

e Federated Learning (FL): Rather than taking data to the model, the model is taken to the data.
A global model is trained through the aggregation of updates from local models that are trained
on decentralized data sources. Anonymous model updates and not the data are shared. Early
applications of federated learning in financial environments have been promising for fraud
detection applications, whereby institutions can collectively develop strong detection systems
without revealing sensitive patterns of transactions. Experiments have proven the utility of
federated learning over distributed data sets, illustrating how model averaging was able to deliver
performance that was on par with centralized training without compromising data locality and
privacy—a scenario that has direct relevance in financial modeling [4].

e Differential Privacy (DP): Offers a mathematical assurance that outputs of computations will
not significantly alter when the data from any one individual is deleted, attained by introducing
calibrated statistical noise so that individual records cannot be reverse-engineered. The use of
differential privacy secures the knowledge that models may not be maliciously queried to divulge
individual customer details, resolving a key weakness in conventional Al systems. Regulators of
the financial sector have started to accept differentially private systems as compliant with a
number of data protection systems. Implementations tend to consist of thoughtful calibration of
the privacy budget (g) to trade off between utility and disclosure risk, financial applications
tending to need tighter privacy specifications than other industries because of the nature of the
underlying data.

e Homomorphic Encryption (HE): Allows direct computation of encrypted data and gives
models the ability to make inferences on encrypted client datasets and generate encrypted outputs
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that only the owner of the data can decrypt. Computationally expensive, more recent
developments in homomorphic encryption have enabled a significant reduction in processing
overheads, allowing real-time applications to be feasible in a few high-value applications such as
executive portfolio analysis and high-net-worth client services. Financial institutions that support
homomorphic encryption have introduced custom hardware acceleration products to deal with
latency issues in time-critical functions like trading algorithm running and online fraud checks.

e Secure Multi-Party Computation (SMPC): Enables different parties to jointly perform
computations on their inputs without revealing those inputs, supporting collaborative analytics
without data exchange. SMPC methods have been used effectively by groups of financial
institutions for anti-money laundering (AML) pattern detection in order to be able to identify
cross-institutional suspicious activity without exposing the clients' identities or transaction
information. Such deployments commonly use garbled circuits or secret sharing techniques, with
cryptographic assurances making sure that no one institution can extract the others' inputs even
when computing joint functions over the aggregate dataset.

2.3. AI/ML Model Layer

This layer contains application-specific machine learning models used in finance, e.g., fraud detection,
credit scoring, or anomaly detection, trained using frameworks with support of privacy-preserving
approaches, e.g., TensorFlow Federated, PySyft, or OpenMined. The choice of a suitable model
architecture has to capture both privacy constraints and performance needs. Gradient-boosted decision
trees have been especially promising for credit modeling under privacy-guaranteed scenarios, while graph
neural networks are best suited for detecting intricate fraud patterns upon being deployed within federated
environments. Banks that have led the way in these methods have indicated model effectiveness similar to
conventional centralized methods following adequate numbers of training epochs. The required
adaptations for privacy-sensitive settings typically include thoughtful feature engineering to limit possible
information leakage and modified training approaches that can adapt to the limits of federated or
encrypted settings.

2.4. Compliance & Monitoring Layer

To meet compliance demands, this layer supports governance capabilities:

e Auditability: Immutable training rounds of model, parameter aggregations, and prediction
requests stored for regulatory audits. These audit trails are securely encrypted, usually through the
use of distributed ledger technologies to make them tamper-resistant. Regulator sandbox
programs in a number of jurisdictions have tested these strategies as complying with examination
needs. Implementation generally involves full metadata capture, recording not just the model
updates themselves but also privacy parameters, data features (without exposing the data), and
test metrics related to each round of training. This degree of documentation solves the "black
box" issues that financial regulators often raise about Al systems.

e Explainable AI (XAI): Addition of modules such as SHAP or LIME to facilitate explanation of
model choices, which is one of the essential elements for fair lending legislation. The trade-off
between model complexity and explainability poses continuing challenges, with financial
institutions usually using multi-level explanation systems—from basic customer-facing
explanations to technical, detailed explanations for regulatory examination. These explanations
need to be produced such that they do not impinge on the privacy assurances of the system
beneath, a technical problem that has engendered the development of privacy-sensitive
explanation techniques specifically for financial use cases where adverse action notices and
comparable regulatory demands call for explanations.

e Bias & Fairness Monitoring: Ongoing monitoring that prevents models from being biased
against protected groups. Modern deployments utilize advanced statistical techniques to identify
both direct and indirect discriminatory patterns, comparing results between demographic groups
while maintaining privacy limitations. Forefront financial services companies have incorporated
such monitoring into model training pipelines so that biased models are not pushed into
production. These systems typically make use of variants of demographic parity, equal
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opportunity, and equalized odds metrics, which can be calculated in privacy-preserving manners,

facilitating detection of bias without the need for direct access to protected class data at the

individual level.
2.5. Service/API Layer
This layer further out reveals model capabilities to end-user applications through secure APIs, returning
predictions, alerts, or scores without revealing the underlying data from which they are created. These
interfaces need to be designed securely and usefully, with strong authentication methods in place, while
balancing performance qualities suitable for real-time financial applications. Progressive institutions have
employed graduated access controls, where different API endpoints return different levels of detail
dependent on the authenticated consumer's purpose and authorization level. The API design draws on
zero-knowledge design principles so that even legitimate API consumers only get as much information as
is needed for their approved function, and all responses are passed through suitable privacy mechanisms
before delivery. This extends the privacy guarantees from the fundamental models to the consumption
plane and mitigates inference attacks and other possible privacy threats at the boundary of the service.

Table 1: Five-Layer Architecture for Privacy-Preserving Al in Financial Services [3, 4]

Layer Primary Function Key Technologies Benefits
Maintains decentralized - Preserves data
. Distributed data ) .
Data Sources data in original . sovereignty, eliminates
. architecture
locations central attack vectors
Enables secure model F;derateq Leamlng, Allows collaboration
. . ) Differential Privacy, ) L
Privacy training without data . . while maintaining
sharing Homomorphic Encryption, privacy guarantees
SMPC
Implements ﬁnqnmal TensorFlow Federated, Dehyers §pe01ahzed
AI/ML Model use case-specific . functionality for fraud
PySyft, OpenMined . . .
models detection, credit scoring
Compliance & Ensures regulatory Auditability logs, XAl Addresses regulatory
pran adherence and model tools (SHAP/LIME), Bias | requirements and ethical
Monitoring . ..
fairness monitoring Al concerns
Exposes model Delivers value while
Service/API capabilities to Secure APIs, Graduated maintaining privacy at the

o access controls :
applications consumption layer

3. Methodology: Design and Implementation

Effective delivery of the PPAI model involves a disciplined process starting with sound design principles
followed by a phased implementation plan. The financial institutions need to balance innovation with the
tight regulatory conditions typical of the sector while ensuring operational efficiency.

3.1. Design Principles

The system should satisfy both functional and non-functional requirements that are essential to the
financial sector. Functionally, federated training functionality should support model learning across
institutions with tight data locality. Recent studies on federated learning for financial services have
brought forward convergence optimization methods that can effectively close the performance gap
between the distributed and centralized training practices when used to handle sensitive financial data [5].
Privacy budget control mechanisms are essential governance mechanisms through which administrators
can specifically tune the degree of privacy protection against use case sensitivity. This involves
introducing epsilon (¢) tuning interfaces that provide a fine-grained set of controls over differential
privacy parameters. Such controls are the key balance between utility and privacy that financial
institutions need to strike.
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Encrypted prediction streams need to provide for model inference on safeguarded data, specifically for
high-sensitivity use cases such as wealth management and corporate lending. Multiple cryptographic
methods should be supported by the implementation based on latency needs and security level.

Complete auditing capabilities need to present immutable logs of all training and inference, establishing a
trail of compliance to meet regulatory inspection needs across a variety of jurisdictions. These logs need
to be tamper-evident and cryptographically protected.

Non-functionally, the system architecture is required to provide suitable performance characteristics for
every intended use case, ranging from sub-second latency for fraud detection to batch-optimized
processing for overnight credit analysis. Security implementation is required to adhere to defense-in-
depth principles with end-to-end encryption on all communications channels, especially for model
parameter exchanges.

Interoperability needs standard APIs and data schemas that enable heterogeneous institutions to be
involved, irrespective of their respective technical infrastructures. Such standardization is necessary to
establish sustainable federated ecosystems. Resilience engineering needs to make sure that the system
remains operable even in the case of node failures or network partitioning, a very important aspect for
geographically dispersed financial networks.

3.2. Roadmap for Phased Implementation

It is suggested that a phased implementation is adopted to handle complexity, limit risk, and show value
in incremental ways. The first phase must address a clearly defined pilot involving a controlled scope,
usually fraud detection use cases within a limited 2-3 partner institution consortium. This permits the
confirmation of essential privacy-preserving methods in a production-related environment. Studies have
established that systematic implementation strategies drastically enhance rates of success for privacy-
enhancing technology in highly regulated sectors such as financial services [6].

The second phase should introduce more privacy layer elements, combining differential privacy and
restricted homomorphic encryption support for certain inference paths. This phased mechanism avoids
flooding engineering teams with all the complexity of PPAI implementation at once.

The third phase would tackle compliance and explainability needs, incorporating tools for model
interpretation and monitoring bias. The phase will normally involve regulatory engagement through
sandbox programs to prove the approach with the supervisory authorities.

The expansion phase three covers the final expansion, widening use cases and participation to credit
modeling, anti-money laundering, and other financial institutions such as fintechs and insurers. Phase
three also defines formal ecosystem governance mechanisms for long-term sustainability.

Table 2: Phased Implementation Roadmap for Privacy-Preserving Al in Finance [5, 6]

Phase Focus Area Key Activities Success Factors
. . Controlled scope,
1: Pilot Fraud Detection Limited consortium (2-3 b anks), Production-adjacent
Core federated learning .
testing
2: Privacy Privacy Layer Add differential privacy, Limited Graduated'approach,
. ; . Targeted inference
Enhancement Integration homomorphic encryption
pathways
3 Compliance Regulatory XAI integration, Bias monitoring | Regulatory engagement,
) P Alignment tools, Sandbox testing Audit documentation
Additional use cases (AML, Formal governance,
4: Expansion | Ecosystem Growth Credit), Onboard Cross-institution
fintechs/insurers standardization

4. Deployment and Go-to-Market Strategy
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4.1. Deployment Model

A Cloud-Edge Hybrid Model is the most appropriate deployment architecture for privacy-preserving Al
in financial services. It strategically reconciles computational efficacy with data sovereignty demands that
are especially tight in the financial world.

The Cloud component is a Central Orchestrator, normally installed on a leading cloud provider (AWS,
Azure, GCP) with requisite financial services compliance certifications. This orchestrator oversees the
federated training process, models aggregation coordination, version control, and deployment scheduling.
Importantly, the cloud component never sees or processes raw client data but acts as an integral, safe
coordination layer. Zero-knowledge proof framework studies have proven effective methods in financial
compliance verification without revealing confidential underlying data, laying down technical building
blocks for privacy-preserving orchestration compliant with regulations [7].

Edge deployment comprises Local Training Nodes located inside the security network boundaries of
volunteer financial organizations. The nodes perform the actual model training on locally held, sensitive
data and calculate encrypted or differentially private updates for aggregation. In some consumer-facing
use cases, such as tailored financial guidance or spending behavior analysis, edge nodes can reach
customer devices, allowing ultra-personalized models that never share raw financial information with
external systems.

The technical realization is based intensely on containerization technologies. The whole stack needs to be
containerized with Docker, and orchestration handled by Kubernetes. This solution brings essential
advantages: homogeneous execution environments across different infrastructures, easy-to-automate
deployment, improved security by means of container isolation, and fine-grained resource management.
Financial institutions report great operational value from containerized ML deployments, such as up to
60% less deployment friction and dramatically enhanced compliance posture with standardized security
configurations and enforced policy by automation.

4.2. Strategic Positioning & Value Proposition

The go-to-market approach places PPAI as an essential driver of next-gen finance and not a technical
implementation detail. This is an acknowledgment that privacy-preserving ability is a competitive
strength in a data-aware marketplace.

Target markets cover a number of segments in the financial ecosystem. Conventional financial institutions
are under intense regulatory pressure, while requiring speed in adopting Al for the main market. These
organizations have multiple overlapping compliance regimes (GDPR, CCPA, sectoral regulations) that
introduce considerable friction to traditional AI methods. Insurance companies are another critical
segment because they have to balance examining highly sensitive health and financial data against
stringent data protection requirements. Regulatory agencies themselves constitute a niche target audience,
as they more and more want technology frameworks that can show "privacy-by-design" principles in
practice and not just as policy pronouncements. In-depth studies of privacy-enhancing technologies have
captured both the methodologies and development pathways of these technologies and presented useful
background for the development of a deployment strategy across regulated sectors such as finance [8].
The value proposition has many dimensions and is aligned to various stakeholder requirements across the
financial ecosystem. For fintechs and banks, PPAI provides the option to access collaborative data
insights without the liability and compliance issues of sharing raw data. This facilitates institutions to
develop more efficient fraud models, credit scoring algorithms, and customer segmentation strategies by
accessing patterns across institutional boundaries without breaching customer privacy or proprietary data
assets. For regulatory bodies, the model offers a technically auditable compliance structure evidencing
forward-looking compliance with data protection principles, which may simplify examinations and
minimize compliance documentation burdens.

Most critically, perhaps, the model fosters customer trust through transparent, evidence-based privacy-
oriented service enhancements. Banks and other financial institutions that adopt PPAI can authentically
communicate to increasingly privacy-sensitive customers that their private financial information is still
safeguarded even as it drives sophisticated services. This trust factor has grown in value as consumers
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become more aware of data privacy concerns and data breaches involving financial information attract
greater media attention.

Table 3: Cloud-Edge Hybrid Architecture for Privacy-Preserving AI Deployment [7, 8]

Component Location Key Functions Security Features
Federated training Zero-knowledge
Central Cloud (AWS, Azure, coordination, Model architecture, No raw data
Orchestrator GCP) aggregation, Version access, Compliance
control certifications

Data sovereignty
maintenance, Network
isolation, Institutional

Local model training,
Encrypted/DP updates,
Data processing

Financial institution

Training Nodes .
secure perimeters

firewalls
Edge Customer devices Personalized models, Local | No raw data transmission,
Deployments (optional) inference Ultra-personalization
) . Execution environment Container isolation,
Technical Containerized . ;
} . consistency, Deployment Kubernetes orchestration,
Implementation infrastructure .
automation and Resource management

5. Future Directions

As mature privacy-protecting Al in financial services evolves, several key future trajectories are emerging
that will define its development and influence. These changes are not simply evolutionary increments but
revolutions in the way financial institutions deal with data collaboration, security, and international
operations.

Quantum-safe cryptography integration has become a pressing priority as advances in quantum
computing continue to progress. Financial institutions that deploy privacy-preserving Al currently need to
project ahead to the future susceptibility of existing cryptographic methods to quantum attacks. This
requires the incorporation of post-quantum cryptographic primitives within the PPAI paradigm to provide
long-term security against forthcoming threats. Lattice-based cryptography, hash-based signatures, and
multivariate polynomial cryptosystems are the most promising candidates for financial purposes, with
lattice-based solutions being particularly well-suited for homomorphic encryption in Al applications.
Post-quantum cryptography studies on applications for secure financial transactions have established
implementation paths that are able to safeguard financial systems from new quantum vulnerabilities while
upholding the requirements of operational performance in day-to-day processes [9]. Financial institutions
are increasingly developing quantum-resistant roadmaps with phased movement for Al infrastructure,
starting with cryptographic agility frameworks that facilitate swift algorithm substitution as standards
develop.

Decentralized Al Marketplaces are yet another revolutionary trajectory for the financial industry. Such
emerging ecosystems will support the trading of pre-trained model weights, parameter updates, and
feature engineering methods instead of raw data. The very existence of such marketplaces changes the
economics of financial Al by establishing monetization channels around algorithmic information without
undermining data ownership or privacy. Early implementations leverage distributed ledger technologies
to create auditable, fair-value exchange mechanisms for model contributions. These systems include
advanced contribution measurement protocols to measure the marginal value that every participant
contributes to collaborative models. Financial institutions have started investigating governance
frameworks for these marketplaces that take into consideration intellectual property rights, regulatory
compliance, and quality assurance for exchanged model components. The creation of these decentralized
ecosystems holds the promise of dramatically speeding Al development in finance by eliminating effort
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duplication and allowing specialized expertise to spread between organizational silos without the usual
data-sharing risks.

Cross-Border Privacy Al systems solve one of the world's most intractable problems in global finance:
grappling with the rapidly fragmenting data residency and sovereignty regulations. Federated learning
strategies are best poised to honor geographical data limitations without compromising global model
training. These systems allow financial institutions to keep independent data pools in various
jurisdictions, yet still take advantage of international pattern detection for applications such as fraud
detection and anti-money laundering, where cross-border knowledge is especially useful. Studies of
context-aware federated learning for regulatory risk estimation have shown methods for applying adaptive
learning systems capable of traversing intricate compliance obligations between jurisdictions without
forgoing privacy assurances [10]. Major world financial institutions have already started adopting these
strategies to balance competing regulatory frameworks such as GDPR, CCPA, and national banking
legislation of different countries, developing Al systems that are able to function smoothly across
jurisdictional borders while being highly compliant with local data protection regulations.

All of these directions taken together point towards a vision of finance where intelligence and privacy are
no longer competing imperatives but complementary capabilities. The PPAI framework sets the stage for
that evolution, with these new directions building on that foundation to develop more advanced, secure,
and globally compliant Al environments. Banks that invest in these future-proofed capabilities are setting
themselves up not only for compliance but for competitive differentiation in an industry where both data
insight and customer confidence are key factors to success.

Table 4: Three Strategic Directions for Next-Generation Financial PPAI [9, 10]

Direction Key Focus Technologies Strategic Benefits
Lattice-based Protection against
Quantum-Safe Long-term security cryptography, Hash-based &
. 4 . quantum threats,
Cryptography preservation signatures, Multivariate Crvptographic aeilit
polynomials fyprograp sy
Decentralized Al Model exchange Dlstrlbuted ledger . . Monetlza'uon. of
. . technologies, Contribution | insights, Reduction of
Marketplaces without data sharing .
measurement protocols duplicated efforts
Geographic data Jurisdiction-aware Gl"b‘?‘l.pa“em
Cross-Border . . recognition while
. sovereignty federated learning, Lo
Privacy Al . : . maintaining local
compliance Adaptive learning systems .
compliance
Conclusion

The PPAI model manages the underlying tension between Al innovation and financial privacy needs by
offering an inclusive architectural strategy that redefines this seeming contradiction as a strategic
opportunity. With the help of federated learning, differential privacy, and advanced cryptography
techniques, financial institutions will be able to create complex Al features without compromising the
integrity of data. This not only reduces regulatory and reputational risks, but forms the building blocks of
a more collaboration-intensive, secure, and trustful financial ecosystem, in which institutions can glean
insights across organizational boundaries without violating sensitive information. With quantum
computing, decentralized exchanges, and cross-border regulators still in the early stages of development,
the framework gives the flexibility needed to address challenges related to future developments, but
allows privacy-preserving solutions to be implemented without delay. When banks adopt PPAI, they not
only place themselves at an advantageous position to comply with the regulations but also gain a
competitive edge over their rivals in an industry where data intelligence and customer trust are key
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elements of achieving success in the long term. The framework is finally a map to responsible Al
adoption that balances the growth of technology with the basic privacy rights in the era of smart money.

References

[1] Faisal Kamiran & Toon Calders, "Data preprocessing techniques for classification without
discrimination," Springer, 2011. [Online]. Available: https://doi.org/10.1007/s10115-011-0463-8

[2] Payman Mohassel and Yupeng Zhang, "SecureML: A system for scalable privacy-preserving machine
learning," IEEE, 2017. [Online]. Available: https://doi.org/10.1109/SP.2017.12

[3] Cynthia Dwork and Aaron Roth, "The Algorithmic Foundations of Differential Privacy," Foundations
and Trends in Theoretical Computer Science, vol. 9, no. 3-4, pp. 211-407, 2014. [Online]. Available:
https://www.nowpublishers.com/article/Details/TCS-042

[4] H. Brendan McMahan et al., "Federated Learning of Deep Networks using Model Averaging,"
arXiv:1602.05629v1, 2016. [Online]. Available: https://arxiv.org/pdf/1602.05629v1/1000

[5] Yuan Liu, Sha Wang, and Xuan Nie, "Advances, Applications, and Challenges of Federated Learning
Technologies in the Financial Domain," ResearchGate, 2024. [Online]. Available:
https://www.researchgate.net/publication/389268431 Advances Applications and Challenges of Feder
ated Learning_Technologies_in_the Financial Domain

[6] Soumia Zohra El Mestari, Gabriele Lenzini, and Huseyin Demirci, "Preserving data privacy in
machine learning systems," Computers & Security, Volume 137, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404823005151

[7] Ihor Solomka and Bohdan Liubinskyy, "Zero-knowledge proof framework for privacy-preserving
financial compliance," ResearchGate, 2025. [Online]. Available:
https://www.researchgate.net/publication/390476626 Zero-knowledge proof framework for privacy-
preserving_financial compliance

[8] Vanja Senicar et al., "Privacy-Enhancing Technologies—approaches and development,"
ResearchGate, 2003. [Online]. Available: researchgate.net/publication/223673501 Privacy-
Enhancing_Technologies-approaches and development

[9] Timothy Ogundola, "Post-Quantum Cryptography for Secure Banking Transactions," ResearchGate,
2025. [Online]. Available: https://www.researchgate.net/publication/393485157 Post-
Quantum_Cryptography for Secure Banking Transactions

[10] Sri Rama Chandra Charan Teja Tadi, "Context-Aware Federated Learning for Regulatory Risk
Assessment in Financial Applications," ResearchGate, 2024. [Online]. Available:
https://www.researchgate.net/publication/391913498 Context-

Aware Federated Learning for Regulatory Risk Assessment in Financial Applications

186


https://doi.org/10.1007/s10115-011-0463-8
https://doi.org/10.1109/SP.2017.12
https://www.nowpublishers.com/article/Details/TCS-042
https://arxiv.org/pdf/1602.05629v1/1000
https://www.researchgate.net/publication/389268431_Advances_Applications_and_Challenges_of_Federated_Learning_Technologies_in_the_Financial_Domain
https://www.researchgate.net/publication/389268431_Advances_Applications_and_Challenges_of_Federated_Learning_Technologies_in_the_Financial_Domain
https://www.sciencedirect.com/science/article/pii/S0167404823005151
https://www.researchgate.net/publication/390476626_Zero-knowledge_proof_framework_for_privacy-preserving_financial_compliance
https://www.researchgate.net/publication/390476626_Zero-knowledge_proof_framework_for_privacy-preserving_financial_compliance
http://researchgate.net/publication/223673501_Privacy-Enhancing_Technologies-approaches_and_development
http://researchgate.net/publication/223673501_Privacy-Enhancing_Technologies-approaches_and_development
https://www.researchgate.net/publication/393485157_Post-Quantum_Cryptography_for_Secure_Banking_Transactions
https://www.researchgate.net/publication/393485157_Post-Quantum_Cryptography_for_Secure_Banking_Transactions
https://www.researchgate.net/publication/391913498_Context-Aware_Federated_Learning_for_Regulatory_Risk_Assessment_in_Financial_Applications
https://www.researchgate.net/publication/391913498_Context-Aware_Federated_Learning_for_Regulatory_Risk_Assessment_in_Financial_Applications

