JOURNAL OF INTERNATIONAL CRISIS AND RISK COMMUNICATION RESEARCH
ISSN: 2576-0017
2026, VOL 9, NO 2

Enhancing Mean Time To Resolution (MTTR) In
High-Frequency Financial Platforms: A Dual-Stage
Retrieval-Augmented Generation (RAG) Approach
With Metadata-Aware Re-Ranking

Tina Lekshmi Kanth
Illinois Institute of Technology, Illinois, USA.

Abstract

Financial systems operating in high-frequency trading and real-time settlement
environments face critical challenges in incident response, where rapid diagnosis
directly impacts financial exposure and regulatory compliance. Traditional diagnostic
workflows require engineers to manually correlate millions of log entries with
proprietary code and documentation under extreme time pressure, resulting in
extended resolution cycles. While Large Language Models offer powerful reasoning
capabilities, parametric models hallucinate when lacking domain-specific knowledge,
and conventional Retrieval-Augmented Generation systems fail to differentiate
between data sources of varying epistemic fidelity. This introduces a Dual-Stage RAG
architecture with Metadata-Aware Re-Ranking that addresses the knowledge
heterogeneity problem by explicitly prioritizing transactional ground-truth logs over
general documentation. The architecture implements query parsing to extract
transaction identifiers, enabling filtered retrieval of operational data, combined with
a weighted re-ranking function that assigns source credibility weights based on
evidential hierarchy principles. Experimental validation using the RAGAS framework
demonstrates substantial improvements: the Hybrid system achieves a significant
reduction in diagnostic latency, improves Context Precision substantially, and
achieves strong Faithfulness scores while reducing hallucination rates significantly.
The system successfully concentrates high-fidelity transactional logs in top retrieval
positions, ensuring LLMs receive better-targeted evidence that enables precise root
cause identification with explicit temporal and quantitative evidence citations,
offering actionable remediation guidance for production incident response teams.

Keywords: Retrieval-Augmented Generation, Financial Incident Response,
Metadata Filtering, Source Fidelity Weighting, Mean Time To Resolution.

1. Introduction

1.1 Problem Context and Motivation

Innovative financial systems functioning in high-stakes, low-latency settings - especially high-frequency
trading (HFT) and real-time settlement solutions- produce large volumes of heterogeneous data. The
responders have to quickly cross-reference the findings of different sources of information during system
events, such as operational logs, proprietary codebases, architecture documentation, and troubleshooting
documentation. Mean time to resolution (MTTR) has a direct influence on financial exposure, regulatory
compliance, and market confidence. Conventional incident response processes have been severely



Tina Lekshmi Kanth

inefficient: engineers have to perform searches through millions of log machine entries, match code
registries, and sift through documentation, frequently working under severe time constraints. More recent
industry studies have shown that spending a minute of system downtime in high-frequency trading realities
can cost in advance of a few millions of transactions, and regulatory fines associated with outages that are
long-lasting can run into the millions of dollars yearly. The average incident response team processes about
50,000-200,000 log entries per incident, and manual correlation can range between 45 minutes and 3 hours
based on the complexity of the system [1]. This has already been compounded by the fact that microservices
architectures have been growing exponentially, with modern financial architectures comprising 200 and
500 autonomous services, each with 10,000 and 50,000 achievable log entries per minute at peak times.
1.2 The Limitations of Current Approaches

Standard Large Language Models, while powerful for general reasoning tasks, exhibit two critical failures
in this domain. First, these models hallucinate responses when lacking domain-specific knowledge,
potentially leading responders down incorrect diagnostic paths. The foundational work by Lewis et al.
demonstrated that parametric models without external knowledge sources produce factually incorrect
responses in a significant proportion of knowledge-intensive tasks, establishing the necessity for grounded
retrieval mechanisms [1]. Second, basic Retrieval-Augmented Generation systems, which ground LLM
responses in retrieved documents, fail to differentiate between data sources of varying fidelity. A
semantically similar design document may rank equally with—or even above—the actual transactional log
evidence that contains the root cause. Empirical analysis of conventional RAG implementations shows that
generic semantic search retrieves relevant transactional logs in only 62% of queries, with high-level
documentation frequently occupying 4 to 6 of the top 10 retrieval positions despite containing no actionable
diagnostic evidence [2]. This knowledge heterogeneity problem represents a fundamental gap in existing
RAG architectures, where semantic similarity scoring treats a 6-month-old architectural specification
document equivalently to real-time error logs capturing the exact failure signature. The cost of this
limitation manifests in extended diagnostic cycles, with baseline RAG systems requiring substantially
longer processing times compared to human experts accessing properly indexed log databases directly.

1.3 Proposed Solution and Contributions

This article introduces a Dual-Stage RAG architecture with Metadata-Aware Re-Ranking that addresses
the knowledge heterogeneity challenge through two key innovations. First, a query parsing mechanism
extracts transaction identifiers from natural language queries, enabling filtered retrieval of ground-truth
operational data with high accuracy on standardized transaction key formats. Second, a weighted re-ranking
function explicitly prioritizes high-fidelity transactional logs over contextual documentation based on
assignable source credibility weights, reducing retrieval latency substantially while improving context
precision significantly. The approach builds upon recent advances in retrieval-augmented generation
surveyed by Gao et al., extending existing frameworks to explicitly model epistemic distinctions between
heterogeneous information sources [2]. The primary contributions include: (1) a novel metadata-aware re-
ranking algorithm that combines semantic similarity with explicit source fidelity weighting; (2) a dual-stage
retrieval architecture that orchestrates parallel filtered and general searches across three heterogeneous
indices; (3) empirical validation using the RAGAS evaluation framework demonstrating measurable
improvements in Context Precision, Answer Faithfulness, and MTTR reduction; and (4) a comprehensive
methodology for indexing and chunking heterogeneous financial data sources with appropriate metadata
schemas supporting multiple log entries per incident across transactional, semantic, and code indices.

1.4 This Article’s Organization

The remainder of this article is organized as follows: Section 2 reviews related work in RAG systems,
hybrid search architectures, and applications in financial services. Section 3 details the Dual-Stage RAG
methodology, including indexing strategies, query orchestration, and the metadata-aware re-ranking
algorithm. Section 4 describes experimental design, evaluation metrics, and dataset construction. Section 5
presents results and analysis of MTTR reduction, optimal weighting parameters, and quality metrics.
Section 6 concludes with implications for production systems and directions for future research.



Enhancing Mean Time To Resolution (MTTR) In High-Frequency Financial Platforms: A Dual-Stage Retrieval-
Augmented Generation (RAG) Approach With Metadata-Aware Re-Ranking

RAG System Retrieval metrics

2,50,000
2,00,000
2,00,000
1,50,000
1,00,000
50,000 50,000
50,000
500 10,000
200
0 Ja—
Log entries per Log entries per Independent Independent Log entries per Log entries per
incident {min.) Incident (max.) services in sarvices In minute per service minute per service
platforms (min.) platforms {max.) {min.) {max.)
®m Value

Figure 1: RAG System Retrieval metrics [1,2]
2. Related Work and Background

2.1 Retrieval-Augmented Generation Fundamentals

Retrieval-Augmented Generation has been developed as a paradigm that eliminates the limitations of
knowledge and hallucination tendencies that were present with large language models. The seminal work
by Lewis et al. introduced the foundational RAG architecture, which combines a neural retriever component
with a generative language model [1]. The retriever identifies relevant documents from a knowledge corpus
using dense vector representations, while the generator conditions its output on both the input query and
retrieved passages. Dense Passage Retrieval implementations, as demonstrated by Karpukhin et al., achieve
substantial improvements over traditional sparse retrieval baselines when processing large-scale corpora,
with the approach utilizing dual-encoder architectures to map questions and passages into a shared
embedding space [3]. This methodology has demonstrated significant improvements in knowledge-
intensive NLP tasks, including open-domain question answering and fact verification, where grounding
generation in retrieved evidence substantially reduces hallucination rates compared to parametric-only
models.

Subsequent developments have refined both retrieval and generation components. Recent surveys catalog
advances in retrieval mechanisms spanning sparse, dense, and hybrid approaches, along with indexing
strategies including flat, hierarchical, and graph-based structures, and integration patterns encompassing
sequential, parallel, and iterative workflows [2]. Modern dense retrievers employ bi-encoder architectures
with high-dimensional embeddings generated from transformer models, enabling rapid retrieval latency
across indices containing millions of documents when deployed with approximate nearest neighbor search
algorithms. However, most existing work assumes relatively homogeneous document collections and does
not address scenarios where retrieved passages have fundamentally different epistemic statuses—the
distinction between observed facts captured in operational logs versus interpreted knowledge documented
in technical guides. Benchmark evaluations on standardized datasets demonstrate that conventional RAG
systems maintain consistent retrieval performance across document types, with ranking metrics varying
minimally regardless of source authority or temporal freshness [4].

2.2 RAG Applications in Financial Services



Tina Lekshmi Kanth

Financial institutions have begun exploring RAG systems for various applications spanning multiple
operational domains. Compliance and risk analysis systems use RAG to ground regulatory interpretations
in specific legal texts and historical precedents, processing regulatory document corpora containing
hundreds of thousands to millions of pages with retrieval precision requirements exceeding stringent
thresholds to meet audit standards. Customer service chatbots retrieve account-specific information to
personalize responses while maintaining privacy, handling substantial daily query volumes with response
generation times constrained to seconds. Portfolio analysis tools synthesize market commentary with
quantitative data to generate investment insights, integrating real-time price feeds updating at sub-second
intervals with historical analysis documents spanning decades of market data.

However, financial RAG systems face unique challenges beyond typical enterprise deployments. Data
sensitivity requires sophisticated access controls and audit trails, with transaction logs requiring multi-year
retention periods under regulatory frameworks and encryption standards supporting advanced
cryptographic protocols for data at rest. Regulatory requirements demand explainability and traceability of
Al-generated insights, necessitating citation mechanisms that track document provenance through multiple
intermediate processing layers. Domain-specific language—including technical jargon, proprietary
terminology, and numerical precision requirements—necessitates specialized embedding models and
careful prompt engineering [3]. Financial terminology embeddings require fine-tuning on substantial
domain-specific text pairs to achieve semantic similarity correlation scores substantially higher than
general-purpose embeddings. Most critically, the high cost of errors in financial contexts, both monetary
and reputational, demands exceptionally high precision and reliability thresholds that exceed typical NLP
benchmarks, with acceptable false positive rates often constrained far below standard information retrieval
tolerances.

2.3 Hybrid Search and Metadata Filtering

Modern information retrieval is beginning to incorporate the use of multiple modalities of search to make
use of the complementary advantages of the various retrieval paradigms. Sparse retrieval methods excel at
exact keyword matching and are computationally efficient, processing queries against million-document
corpora in milliseconds with minimal memory overhead for inverted index structures. Dense retrieval
methods capture semantic similarity but may miss specific terminology, requiring substantial GPU memory
for real-time inference [3]. Hybrid approaches fuse these signals, typically through reciprocal rank fusion
or learned weighting schemes, demonstrating combined performance improvements over single-modality
baselines when evaluated on heterogeneous query sets containing both keyword-specific and conceptual
information needs.

Metadata filtering has emerged as a critical method to increase the accuracy of retrieval in the case of
structured or semi-structured corpora that include a variety of document types. Metadata-aware systems do
not view all documents as equal applicants, but instead, pre-filter or post-filter the results based on
structured properties, including date ranges, document types, user permissions, and access controls. Recent
work has explored two primary approaches: metadata-as-context, where metadata is embedded within
document text, and metadata-as-filter, where structured attributes enable deterministic exclusion before
semantic scoring. The latter approach provides stronger guarantees that critical constraints are satisfied,
reducing irrelevant retrieval substantially in enterprise search deployments while maintaining minimal
filtering overhead through optimized index structures supporting multiple filterable attributes per document
[4].

2.4 The Knowledge Heterogeneity Gap

Despite these advances, a critical gap persists in RAG research: most systems treat all retrieved documents
as epistemically equivalent, differing only in semantic relevance to the query. This assumption fails in
domains where information sources have fundamentally different relationships to ground truth. In financial
incident response, operational logs represent direct observations of system behavior—primary evidence
with temporal precision to the millisecond and numerical accuracy to multiple decimal places. Code
represents the implemented logic that produced the behavior—mechanistic truth captured in substantial
lines of production source code per major service component. Documentation represents human



Enhancing Mean Time To Resolution (MTTR) In High-Frequency Financial Platforms: A Dual-Stage Retrieval-
Augmented Generation (RAG) Approach With Metadata-Aware Re-Ranking

interpretation and guidance—secondary knowledge that may be outdated or incorrect, with typical staleness
periods spanning months between code updates and documentation revisions.

Existing RAG architectures lack mechanisms to explicitly encode and leverage these fidelity distinctions
across heterogeneous knowledge sources. A semantically relevant design document describing expected
behavior may rank higher than the actual log entry showing unexpected behavior, leading the LLM to
generate confident but incorrect diagnostic hypotheses with substantial hallucination rates in multi-source
retrieval scenarios [4]. Empirical analysis reveals that conventional semantic rankers assign similarity
scores differing minimally between high-fidelity logs and low-fidelity outdated documentation when both
contain matching keywords. While some recent work has explored source-aware generation distinguishing
citations from different publication venues, the application of explicit source fidelity weighting in re-
ranking—particularly with user-provided transactional identifiers enabling deterministic filtering—remains
unexplored. This article addresses this gap through metadata-aware re-ranking that prioritizes ground-truth
transactional evidence, reducing diagnostic latency substantially while improving answer faithfulness
scores across synthetic incident scenarios.

3. Methodology: The Dual-Stage RAG Architecture

3.1 System Overview and Design Principles

The Dual-Stage RAG architecture is designed around 3 core principles derived from the requirements of
financial incident response. First, ground-truth prioritization ensures that transactional logs filtered by
specific identifiers must receive higher consideration than general documentation. Second, knowledge
source differentiation mandates that the system must explicitly model that different data sources have
different epistemic statuses and diagnostic value. Third, operational efficiency requires that the architecture
must support sub-second retrieval latency to enable interactive diagnostic workflows, with target response
times maintained below thresholds necessary for acceptable user experience in production environments
[5].

The system consists of 4 primary components: a heterogeneous knowledge corpus with specialized indexing
strategies per data type supporting hundreds of thousands to millions of document chunks; a query parser
that extracts structured filters from natural language inputs with high accuracy on transaction identifier
extraction tasks; a dual-stage retrieval orchestrator that executes parallel filtered and general searches with
aggregate processing times measured in milliseconds; and a metadata-aware re-ranker that weights results
by both semantic relevance and source fidelity before presentation to the LLM, processing candidate chunks
rapidly using cross-encoder models with millions of parameters.

3.2 Data Corpus and Indexing Strategy

The knowledge base encompasses 3 logically distinct indices, each optimized for data characteristics and
retrieval patterns across heterogeneous information sources. Each index stores both the original content and
its corresponding vector embeddings in a specialized vector database, enabling efficient similarity search
operations critical for rapid incident response.

3.2.1 Transactional Index (Kusto Logs)

This index contains operational telemetry from production trading and settlement systems, accumulating
millions of log entries daily during peak trading periods. Chunking follows log-line granularity to preserve
atomic events, with each chunk averaging character lengths suitable for embedding models and tagged with
critical metadata fields: Transaction Key as a unique identifier for each trade or transaction, Service Name
indicating originating microservice from hundreds of distinct services, Timestamp providing event time
with millisecond precision supporting temporal queries with sub-second resolution, and Severity Level
classifications. The Transaction Key is implemented as a filterable field supporting exact-match retrieval
with logarithmic lookup complexity through optimized indexing structures. Vector embeddings are
generated using domain-adapted models fine-tuned on substantial financial telemetry examples to capture
semantic patterns in error messages, stack traces, and system events, achieving cosine similarity correlation
scores substantially higher on financial terminology benchmarks compared to general-purpose embedders
[6]. These embeddings, typically 768 to 1536 dimensions, are stored in the vector database alongside their

5



Tina Lekshmi Kanth

metadata, enabling the system to perform filtered vector searches that combine semantic similarity with
transaction-specific constraints.

3.2.2 Semantic Index (Documentation and Guides)

This index contains architectural documentation, design specifications, runbooks, and troubleshooting
guides spanning thousands of distinct documents with total corpus sizes ranging from millions to tens of
millions of tokens. Documents are chunked using an overlapping window strategy with specific token
counts and overlap percentages to maintain contextual coherence across chunk boundaries, generating
multiple chunks per page of documentation. Metadata includes Document Type classifications,
Section Header preserving document structure through hierarchical levels, Last Updated for version
tracking supporting freshness scoring with decay functions over specified day periods, and Owner Team
for maintenance responsibility across dozens of engineering teams. The overlap strategy is critical for
documents where causal explanations or procedural steps span multiple paragraphs, reducing context
fragmentation errors substantially compared to non-overlapping chunking approaches evaluated on multi-
step diagnostic procedures [5]. Each documentation chunk is converted into dense vector representations
and stored in the vector database, where the embeddings capture semantic relationships between
troubleshooting procedures, error patterns, and system behaviors, facilitating retrieval of contextually
relevant guidance even when exact keyword matches are absent.

3.2.3 Code Index (Source Code Repository)

This index encompasses the actual implementation of trading algorithms, settlement logic, and
infrastructure services across codebases containing hundreds of thousands to millions of lines of production
code distributed across thousands of source files. Semantic chunking operates at the function and class
level, with each chunk representing a logically complete unit of code, averaging tens to over a hundred
lines per chunk. Metadata captures File Path supporting hierarchical directory navigation across multiple
depth levels, Function Name, Class Name, Language supporting multiple programming languages with
language-specific parsing, and Git Commit Hash enabling precise traceability through version control
with cryptographic identifiers. Comments and docstrings are preserved within chunks to maintain
implementation intent, contributing substantial percentages of chunk token counts. Embeddings are
generated using CodeBERT or similar models trained on code-text pairs, processing token sequences per
code chunk with embedding generation latency measured in milliseconds per chunk on GPU infrastructure
[6]. The vector database stores these code embeddings in a format optimized for semantic code search,
enabling the retrieval of relevant implementations based on functional similarity rather than strict syntactic
matching, which proves essential when diagnostic queries describe behavior patterns that may be
implemented differently across services.

The vector database infrastructure supporting these three indices employs specialized data structures such
as Hierarchical Navigable Small World (HNSW) graphs or Product Quantization techniques to enable
approximate nearest neighbor search at scale. This architecture allows the system to maintain sub-second
query latency even when searching across millions of embedded chunks, while the metadata filtering
capabilities ensure that transaction-specific constraints can be applied efficiently before or during the vector
similarity computation

3.3 Query Parsing and Orchestration (Stage 1: Retrieval)

The incident response workflow begins when an engineer submits a query combining a transaction
identifier with a natural language diagnostic question through web interfaces or command-line tools
supporting hundreds to thousands of daily query volumes. The Query Parser employs a hybrid approach:
regex-based extraction for transaction keys following known formats, including alphanumeric patterns
spanning specific character lengths with optional prefixes, combined with a small classification model
containing millions of parameters to identify the semantic query component. Pattern matching achieves
precision exceeding ninety-nine percent on well-formed transaction identifiers, while the neural classifier
handles substantial percentages of natural language segmentation tasks correctly, with fallback mechanisms
requesting user clarification for ambiguous inputs occurring in minimal percentages of queries [5].

The Retrieval Orchestrator then initiates two parallel retrieval paths executing concurrently on a distributed
infrastructure supporting thousands of queries per second aggregate throughput. Path 1 performs filtered

6



Enhancing Mean Time To Resolution (MTTR) In High-Frequency Financial Platforms: A Dual-Stage Retrieval-
Augmented Generation (RAG) Approach With Metadata-Aware Re-Ranking

retrieval where the semantic query component is first converted into a query embedding using the same
domain-adapted embedding model used for corpus indexing. This query embedding is then used to execute
a vector similarity search against the Transactional and Code indices in the vector database, with a hard
constraint requiring Transaction Key matching the extracted identifier. The vector database efficiently
combines these two operations—semantic similarity computation via cosine distance in the embedding
space and metadata filtering on the Transaction Key field—to return only those log entries and code
executions directly associated with the problematic transaction. This deterministic filter ensures that only
relevant chunks are retrieved, reducing candidate set sizes from millions of corpus chunks down to tens to
hundreds of transaction-specific chunks. The k parameter is set dynamically based on log volume, with
typical values for high-frequency transactions generating hundreds to thousands of log entries per
transaction, versus smaller values for batch processes generating fewer log entries per transaction. Filtered
retrieval completes in hundreds of milliseconds, including query embedding generation, vector similarity
computation across the stored embeddings, and metadata constraint evaluation [6].

Path 2 executes general retrieval, where the same query embedding is used to perform a standard vector
similarity search against all three indices in the vector database, excluding the Transaction_Key filter. This
path leverages the semantic relationships captured in the vector embeddings to retrieve documentation,
guides, and code examples that are semantically relevant to the failure mode descriptors but not specific to
the individual transaction, sourcing from the full corpus of hundreds of thousands to millions of chunks.
The vector database computes cosine similarity scores between the query embedding and all stored chunk
embeddings, retrieving chunks with the highest similarity scores. This ensures the system has access to
general troubleshooting knowledge and architectural context, retrieving chunks with the highest cosine
similarity scores on relevant queries. General retrieval completes in hundreds of milliseconds, including
dense vector search operations across the embedding space.

Result Aggregation creates the union of top-k results from both paths, typically yielding dozens of total
chunks after deduplication, with deduplication based on content hash using cryptographic fingerprinting,
removing percentages of duplicate chunks that appear in both retrieval paths. Aggregation and
deduplication take hardly any time, in the range of milliseconds. Every chunk has metadata that enforces
the location of its retrieval and type of source, which occupies hundreds of bytes of metadata storage per
chunk [5].

3.4 Metadata-Aware Re-Ranking (Stage 2: Re-Ranking)

The retrieval results undergo re-ranking to ensure that high-fidelity transactional evidence comes first
before semantically similar sources, which are out of authority. A weighted scoring function combines
semantic relevance with explicit source credibility through linear interpolation of normalized scores. The
final weighted score for each chunk equals alpha multiplied by the similarity score plus beta multiplied by
the source weight, where alpha and beta are tunable coefficients satisfying the constraint that alpha plus
beta equals one. The similarity score represents the normalized semantic relevance from a cross-encoder
model processing query-chunk pairs. Cross-encoder implementations utilizing architectures achieve
ranking metric scores exceeding benchmarks on domain-specific ranking tasks with inference latency of
several milliseconds per chunk pair on GPU infrastructure [6].

Source weight assignment reflects the epistemic status of each data source based on evidential hierarchy
principles. Kusto Logs filtered by Transaction Key receive maximum weight, representing direct
observational evidence of what actually happened in the specific transaction with millisecond-precision
timestamps and exact numerical values—ground truth with error rates below fractions of a percent in
production telemetry systems. Code Snippets receive moderate-high weight, as source code shows
implemented logic explaining why certain behaviors occur, but represents intended behavior rather than
observed behavior, with potential divergence due to runtime conditions, configuration differences, or
undocumented behavior in percentages of complex scenarios. Troubleshooting Guides receive moderate
weight, providing prescriptive diagnostic procedures based on historical patterns documented across dozens
to hundreds of prior incident cases, but remaining human-curated content that may not cover novel failure
modes emerging in percentages of incidents. Design Documents and Architecture Specs receive minimal



Tina Lekshmi Kanth

weight, describing system design intent but potentially outdated with staleness periods spanning months,
incomplete coverage of actual implementation details, or describing ideal rather than actual behavior [5].
Parameter tuning determines the balance between semantic similarity and source fidelity empirically
through grid search over validation sets containing dozens of representative incidents, evaluating alpha
values across specified ranges in incremental steps. Empirical evaluation indicates that in high-precision
diagnostic contexts, source fidelity should carry substantial weight, while maintaining sufficient semantic
filtering to avoid retrieving irrelevant high-fidelity chunks. Optimal configurations typically achieve
Context Precision improvements while maintaining Answer Relevance scores above acceptable thresholds.
After scoring, chunks are sorted by weighted scores in descending order, with computational complexity
proportional to the number of chunks, completing in milliseconds. The top-N chunk, depending on the LLM
context window constraint, is passed to the generation stage, ensuring the LLM receives a context window
dominated by transactional ground truth when available, with empirical distributions showing multiple log
chunks, code chunks, and documentation chunks in top positions for transaction-specific queries [6].

3.5 Generation and Answer Synthesis

The final stage employs carefully engineered prompt templates instructing the LLM with substantial
parameter counts to synthesize diagnostic insights from re-ranked context windows containing thousands
of tokens. The prompt emphasizes explicit citation of log entries and timestamps with high temporal
precision, distinguishing between observed facts from logs with high confidence levels and hypothesized
causes from code and documentation with moderate confidence levels, and actionable remediation steps
prioritized by estimated resolution time and resource requirements. The LLM is instructed to indicate
confidence levels and identify information gaps requiring additional investigation, supporting escalation to
senior engineers when diagnostic certainty falls below specified thresholds or when multiple competing
hypotheses score within narrow margins of each other. Generation completes in seconds with temperature
settings configured to minimize hallucination while maintaining natural language fluency [5].

Table 1: Three-Index Architecture Design and Configuration [5,6]

Architecture Component Specification
Core design principles 3
Primary system components 4
Logically distinct indices 3
Query Parser precision on identifiers Exceeding 99%
Retrieval paths executing concurrently 2

4. Experimental Design and Evaluation

4.1 Dataset Construction and Scenario Design

Evaluating RAG systems for financial incident response presents unique challenges: production incident
data is highly sensitive, real incidents are sparse and non-reproducible, and ground-truth diagnostic paths
are rarely documented. To address these constraints, a synthetic incident dataset was developed, designed
to represent realistic failure patterns while enabling controlled experimentation with reproducible
evaluation protocols. The dataset comprises one hundred synthetic financial incidents spanning five
common failure categories: settlement timing issues affecting nearly a quarter of incidents, data validation
failures, connectivity problems and logic errors, each accounting for roughly 20% of the incidents, and
concurrency conflicts constituting the remaining portion of incidents. Each incident comprises multiple
heterogeneous components totaling thousands of tokens per incident scenario [7].

Transaction_Key identifiers follow a standardized format associated with synthetic log entries spanning
transaction sequences from initiation through failure detection across time periods ranging from fractions
of a second to nearly a minute of system execution time. Synthetic Logs contain varying numbers of log
entries per incident, including timestamps with millisecond precision, service names drawn from dozens of



Enhancing Mean Time To Resolution (MTTR) In High-Frequency Financial Platforms: A Dual-Stage Retrieval-
Augmented Generation (RAG) Approach With Metadata-Aware Re-Ranking

distinct microservice components, error messages containing substantial character counts with stack traces
spanning multiple function call levels, and severity classifications distributed across INFO, WARN,
ERROR, and CRITICAL categories. Related Code encompasses several code snippets implementing
relevant business logic with dozens to over a hundred lines per snippet, totaling hundreds of lines of code
context per incident. Documentation includes several relevant documentation chunks providing
architectural context and diagnostic procedures with hundreds of tokens per chunk [8].

Ground Truth Answer components were manually crafted by domain experts with substantial years of
financial systems experience, producing diagnostic explanations containing hundreds of words identifying
root causes, citing multiple specific log evidence entries, and recommending remediation steps with
estimated implementation times spanning tens of minutes. Diagnostic Path Time represents expert-
estimated time for a senior engineer to reach the GTA through manual investigation, ranging from several
minutes to three-quarters of an hour, with mean and median values reflecting realistic investigation
complexity for production scenarios. To ensure ecological validity, log entries were generated using
templates derived from actual financial system telemetry patterns with anonymization preserving structural
and semantic characteristics. Error messages include realistic stack traces following various programming
language exception formats with authentic library references and memory addresses [7]. Numerical values
reflect trading volumes ranging across multiple orders of magnitude, prices spanning wide ranges with
multiple decimal precision, and settlement amounts varying from thousands to millions per transaction.
Temporal patterns match market hours and settlement windows, with substantial percentages of incidents
occurring during peak trading periods versus after-hours settlement processing, mirroring actual incident
distribution patterns in production trading systems [8].

4.2 Baseline and Comparison Models

The proposed system was evaluated against 2 baseline configurations representing current state-of-practice
and intermediate architectural approaches. Baseline RAG represents a standard semantic search RAG
implementation without metadata filtering or source weighting processes. This system performs pure vector
search across all indices using the full natural language query while ignoring the transaction key component,
ranks results by cosine similarity scores, and passes the top chunks to the LLM generation stage. This
represents the current state-of-practice for many enterprise RAG deployments evaluated in recent surveys,
with parameters including no source weighting, single-stage retrieval with specific average latency ranges,
and embedding dimensions using standard text embedding models [7].

Filtered RAG represents an intermediate system that implements transaction key filtering but lacks source-
aware re-ranking mechanisms. This configuration isolates the contribution of metadata filtering from the
contribution of weighted re-ranking, enabling ablation analysis of architectural components. Parameters
include dual-stage retrieval enabled with parallel execution, reducing latency to specific ranges, no source
weighting regardless of epistemic fidelity, filtered retrieval returning specific numbers of chunks from
transaction-specific logs, while general retrieval contributes additional chunks from the documentation
corpus. Hybrid RAG represents the complete system implementing both dual-stage retrieval and metadata-
aware re-ranking with optimized weighting parameters. Parameters include optimal alpha-beta ratio
determined through validation set grid search, evaluating dozens of parameter combinations across
validation incidents, with anticipated ranges based on preliminary experiments. Final configuration
processes aggregated chunks through cross-encoder re-ranking before selecting top chunks for the
generation context [8].

4.3 Evaluation Metrics Framework

A comprehensive evaluation framework was adopted, spanning 4 critical dimensions relevant to incident
response effectiveness, incorporating both automated metrics and manual expert assessment. Speed and
Efficiency metrics include MTTR Prox, measuring end-to-end latency from query submission to final
answer generation, measured in seconds with high precision. While true MTTR includes human decision-
making time typically spanning substantial minutes for interpretation and action, system latency is a critical
component and proxy for overall resolution acceleration, with target thresholds maintained for interactive
diagnostic workflows. Retrieval Latency isolates time to complete dual-stage retrieval and re-ranking,



Tina Lekshmi Kanth

assessed separately to evaluate scalability under concurrent load conditions of hundreds to thousands of
queries per minute [7].

Retrieval Quality metrics from the RAGAS Framework include Context Precision, measuring the
proportion of retrieved chunks that are actually relevant to answering the query, formally computed as the
fraction of chunks cited in the generated answer. Values range from 0 to 1, with scores above specific
thresholds indicating high-quality retrieval. Specific tracking monitors whether Kusto logs appear in the
top positions, as these should dominate for transaction-specific queries with a target concentration of
multiple log chunks in the top positions. Context Recall quantifies the proportion of information in the
ground truth answer that appears somewhere in the retrieved context, ensuring the system has access to
necessary evidence even if it appears lower in the ranking, with acceptable thresholds above specified
values for comprehensive coverage [8].

Generation Quality metrics from the RAGAS Framework include Faithfulness, measuring the degree to
which claims in the generated answer are supported by the retrieved context, computed by decomposing
the answer into atomic claims and verifying each against the context chunks using an entailment model,
achieving specific accuracy ranges on claim verification tasks. This directly quantifies hallucination
reduction—the primary motivation for RAG over pure LLM generation—with target faithfulness scores
above specified thresholds. Answer Relevance assesses semantic similarity between the generated answer
and the original query using cosine similarity of answer and query embeddings, ensuring the system
addresses the engineer's specific diagnostic question rather than providing generic information, with
acceptable thresholds above specified values. Factual Accuracy metrics include Fact Recall, representing
the percentage of factual claims in the Ground Truth Answer that appear in the system's generated answer.
This is manually evaluated through claim matching by domain experts using structured rubrics scoring
semantic equivalence, with inter-annotator agreement kappa scores within acceptable ranges. Fact Precision
quantifies the percentage of factual claims in the generated answer that are correct, with manual verification
against log evidence and code implementations [7].

Statistical Analysis reports mean, median, and high percentile values across the incident test set, providing
comprehensive distribution characterization. Wilcoxon signed-rank tests assess the statistical significance
of improvements using standard thresholds with paired comparisons across incident scenarios.
Additionally, stratified analysis by incident category identifies systematic strengths and weaknesses,
revealing that certain incident types benefit most from metadata-aware re-ranking with substantial MTTR
reductions while other incident types show moderate improvements due to complex multi-service
interaction patterns requiring broader contextual evidence [8].

4.4 Implementation Details

The system is implemented in Python using a technical stack deployed on cloud infrastructure supporting
thousands of concurrent sessions. Vector Database utilizes Qdrant with cosine similarity for dense retrieval,
supporting millions of document chunks with high-dimensional embeddings stored in a substantial memory
footprint, achieving query latencies in millisecond ranges for top-k retrieval. The vector database
architecture employs HNSW indexing to enable efficient approximate nearest neighbor search, maintaining
separate collections for each of the three logical indices (Transactional, Semantic, and Code) while
supporting cross-collection queries when needed. Embeddings employ OpenAl text-embedding models
with domain adaptation via fine-tuning on thousands of financial text pairs covering trading terminology,
settlement procedures, and error patterns, improving domain-specific similarity correlation substantially.
The vector storage layer persists both the original chunk content and the embedding vectors, along with
associated metadata fields, enabling filtered vector searches that combine semantic similarity with attribute-
based constraints. Cross-Encoder utilizes Cohere re-rank models for semantic similarity scoring in re-
ranking, processing dozens of query-chunk pairs in millisecond ranges with ranking metric scores within
specific performance ranges. LLM generation employs GPT-4 Turbo with a large context window
supporting thousands of token contexts with low temperature settings for reproducibility, generating
answers of hundreds of words in several seconds. Evaluation leverages the RAGAS framework for
automated metric computation, processing the complete incident set in substantial time periods [7].

10



Enhancing Mean Time To Resolution (MTTR) In High-Frequency Financial Platforms: A Dual-Stage Retrieval-
Augmented Generation (RAG) Approach With Metadata-Aware Re-Ranking

Experiments are conducted on workstations with substantial RAM, an NVIDIA RTX GPU with large
VRAM supporting batch inference of multiple concurrent generations, and NVMe SSD storage providing
high read throughput for rapid index access. The vector database benefits from GPU acceleration for
embedding generation and similarity computation, while the SSD storage ensures rapid access to the
underlying chunk content once relevant embeddings are identified. Each configuration is evaluated with
multiple random seeds to account for LLM generation variability with a coefficient of variation within
specific ranges across metrics, with final metrics averaged across seeds using the arithmetic mean and
confidence intervals computed via bootstrap resampling with substantial iterations [8].

Table 2: Test Set Construction and Multi-Dimensional Assessment Strategy [7,8]

Dataset/Evaluation Element Description
Synthetic incident dataset Realistic failure patterns enabled
Dataset challenges addressed Sensitivity, sparsity, non-
reproducibility
Failure category 1 Settlement timing issues
Failure category 2 Data validation failures
Failure category 3 Connectivity problems
Failure category 4 Logic errors
Failure category 5 Concurrency conflicts
Baseline RAG configuration Pure vector search, no filtering
Filtered RAG configuration Transaction key filtering enabled
Hybrid RAG configuration Dual-stage with metadata re-ranking

5. Results and Discussion

5.1 Mean Time to Resolution (MTTR) Reduction

The primary focus of this research is to speed up incident diagnostics and shorten the time it takes to get to
the root cause and actionable remediation recommendations. End-to-end latency measurements across all
test incidents reveal substantial performance improvements through the proposed architectural
enhancements. The Hybrid RAG system achieves a notable reduction in mean diagnostic latency compared
to the Baseline RAG, demonstrating substantial practical impact, with mean latency decreasing from nearly
19 seconds to approximately 11 seconds. This represents time savings exceeding 7 seconds per incident,
which translates to substantial minutes saved across daily incidents or dozens of hours monthly for high-
volume incident response teams processing thousands of incidents per month [9]. Median latency
improvements are even more pronounced, dropping from over 16 seconds to below 10 seconds, indicating
that the Hybrid system provides consistent acceleration across typical incident scenarios rather than only
benefiting outlier cases. Notably, the Filtered RAG already provides significant improvement with a
reduction exceeding 30%, confirming that transaction key filtering alone is highly valuable, reducing mean
latency substantially. However, the additional metadata-aware re-ranking in the Hybrid system provides
further reduction, representing additional improvement over the Filtered configuration, which is statistically
significant with the Wilcoxon signed-rank test yielding a p-value far below standard significance thresholds
[10].

The high percentile improvements are even more pronounced, with the Hybrid system achieving times
substantially below the Baseline, indicating that the Hybrid system particularly excels in complex scenarios
where the Baseline struggles with multi-service failures requiring correlation across numerous distinct log
sources. Latency profiling reveals that the primary time savings come from improved context quality: when
the LLM receives better-targeted evidence, it requires fewer tokens of context and generates more concise,
focused answers with substantial reductions in extraneous explanations requiring post-generation filtering

[9].

11



Tina Lekshmi Kanth

5.2 Optimal Weighting Parameters

To determine the optimal balance between semantic similarity and source fidelity in the re-ranking function,
a grid search was conducted over alpha values across specified ranges, with beta calculated as the
complement, evaluated on a validation set representing diverse failure modes. The trade-off analysis
between Context Precision and Answer Relevance across different parameter settings revealed non-
monotonic relationships requiring careful calibration. The optimal configuration with alpha at 0.6 and beta
at 0.4 yields the best balance: sufficient semantic filtering ensures that only contextually relevant chunks
are promoted, achieving cosine similarity thresholds above acceptable levels for included chunks, while
substantial source weighting ensures that high-fidelity transactional logs dominate over less reliable
documentation with substantial majorities of top positions occupied by logs and code versus documentation
[10].

Interestingly, increasing beta beyond the optimal point begins to degrade performance, as some
semantically distant but high-fidelity logs are promoted over more relevant mid-fidelity chunks, introducing
Context Precision degradation and Answer Relevance decline at higher beta values. This phenomenon
occurs because semantically irrelevant logs from the same transaction receive excessive prioritization over
highly relevant code comments explaining system logic. Stratified analysis reveals heterogeneous optimal
parameters across incident categories. Data validation failures benefit from higher beta values, where log
evidence of malformed data is definitive with explicit error messages containing rejected field values and
validation rule violations, achieving Faithfulness scores exceeding the standard configuration. Conversely,
concurrency conflicts benefit from higher alpha values, where code logic explaining thread synchronization
and lock hierarchies is often more diagnostic than ambiguous race condition logs showing only temporal
overlaps without causal explanations, improving Answer Relevance substantially [9].

5.3 Context Precision and Source Distribution

A key hypothesis of this work is that explicit source weighting leads to a higher concentration of ground-
truth logs in the top-K retrieved chunks presented to the LLM. Analysis of source distribution in the top-
five chunks for transaction-specific queries validates this hypothesis through quantitative measurement of
chunk composition. The Hybrid system achieves nearly four Kusto logs in the top-five on average,
compared to fewer than two for the Baseline, representing over 100% increase in ground-truth evidence
concentration. This dramatic shift toward ground-truth evidence directly translates to improved Context
Precision with values approaching 90%, meaning that nearly all retrieved chunks are actually utilized by
the LLM in generating its diagnostic answer, with citation rates of approximately 4.5 out of 5 chunks in
Hybrid versus roughly 3 out of 5 chunks in Baseline [10].

The Baseline's relatively balanced distribution reflects its inability to distinguish source fidelity, treating all
semantically similar chunks equivalently, with cosine similarity scores varying minimally across source
types. The Filtered RAG achieves intermediate performance with over 3 logs in top-5, demonstrating that
transaction key filtering contributes a substantial majority of the improvement while metadata-aware re-
ranking contributes the remaining portion. Critically, while the Hybrid system deprioritizes documentation
with fewer than 0.5 documentation chunks in top-5 compared to over 1.5 in Baseline, qualitative analysis
of the documentation chunks appearing in top-5 positions across incidents confirms that these are high-
value troubleshooting guides highly relevant to the specific failure mode, not generic architecture
documents [9]. Analysis reveals that over 90% of retained documentation chunks contain prescriptive
diagnostic procedures directly applicable to the observed error patterns, with semantic similarity scores
above threshold values to the query. This demonstrates that the system maintains semantic filtering even
while imposing source weighting, avoiding blind prioritization that would include irrelevant high-fidelity
content [10].

5.4 Impact on Answer Faithfulness and Factual Accuracy

The ultimate measure of RAG system quality is whether generated answers are faithful to retrieved evidence
and factually correct. Generation quality metrics from the RAGAS framework demonstrate substantial
improvements across all evaluation dimensions. The Hybrid system achieves a Faithfulness score exceeding
0.9, representing substantial relative improvement over the Baseline at roughly 0.7 and moderate
improvement over Filtered RAG at approximately 0.8. This directly validates the central hypothesis: by

12



Enhancing Mean Time To Resolution (MTTR) In High-Frequency Financial Platforms: A Dual-Stage Retrieval-
Augmented Generation (RAG) Approach With Metadata-Aware Re-Ranking

ensuring that high-fidelity transactional logs dominate the context, LLM hallucination is measurably
reduced. Research by Mallen et al. demonstrates that language models exhibit varying reliability when
answering questions with and without access to external knowledge, with non-parametric retrieval
substantially improving factual accuracy in knowledge-intensive domains [9].

Decomposition analysis reveals that the Hybrid system generates answers containing dozens of atomic
claims per response, of which substantial majorities are verifiable against retrieved context, yielding
hallucination rates below 10% compared to over 25% for Baseline. The improvement in Fact Recall
demonstrates that the system successfully surfaces and integrates critical log-derived facts that the Baseline
misses or underweights, with the Hybrid system capturing over 10 out of approximately 12 ground truth
facts on average versus fewer than 8 out of 12 for Baseline. Temporal facts, including timestamps,
durations, and sequence, show particularly great improvements with recall exceeding 90% in Hybrid versus
below 60% in Baseline [10].

The modest improvement in Answer Relevance suggests that semantic similarity already provides
reasonable query-answer alignment, but the real value of source weighting is in factual grounding rather
than topical relevance, with Answer Relevance varying minimally across configurations while Faithfulness
varies substantially. The Fact Precision improvement indicates substantially fewer incorrect or unsupported
claims in generated answers, reducing false positive diagnostic suggestions from nearly 33% to
approximately 12.5% of generated remediation recommendations. Manual review of the small percentage
of unfaithful claims in the Hybrid system reveals 2 primary failure modes with distinct root causes. First,
temporal reasoning errors where the LLM incorrectly infers causality from log sequence occur in several
percent of claims, particularly in scenarios with concurrent service execution where timestamps differ by
less than 50 milliseconds, leading to incorrect precedence assumptions. Second, numerical hallucinations
where the LLM synthesizes approximate values not present in logs occur in several percent of claims,
reflecting the LLM's tendency toward round numbers when processing precise quantitative data [9]. These
failures suggest opportunities for structured data extraction, preprocessing, and temporal logic engines that
explicitly model causal relationships using directed acyclic graphs rather than relying on LLM inference
[10].

5.5 Qualitative Case Study and Computational Considerations

To illustrate the practical impact, a representative incident provides a clear demonstration of the
architectural benefits. The Baseline RAG response generated in over 16 seconds provided generic
diagnostic guidance based on architecture documentation but failed to access transaction-specific logs,
resulting in answers that are generically plausible but lack transactional specificity, leading engineers down
incorrect diagnostic paths. Conversely, the Hybrid RAG response generated in under 10 seconds retrieved
and prioritized specific logs, enabling precise timestamp-based root cause identification with millisecond-
level temporal analysis. The answer cites specific log lines with service names and line numbers, provides
quantitative evidence including precise timing measurements and request counts, and offers actionable
remediation directly addressing the confirmed bottleneck [9].

While the Dual-Stage RAG architecture provides substantial quality improvements, it introduces additional
computational overhead requiring careful resource planning for production deployment. Latency profiling
shows that the metadata-aware re-ranking adds approximately 0.8 seconds per query for cross-encoder
inference, consuming substantial GPU memory for batch processing of concurrent queries. In high-
frequency incident response scenarios where seconds matter, this is a worthwhile trade-off given the
substantial average time savings from improved context quality, yielding net latency reduction exceeding
6 seconds, representing the substantial majority of gross savings. For organizations with cost constraints, a
hybrid approach is recommended: use the Baseline configuration for exploratory queries without
transaction keys estimated at substantial percentages of total query volume, and activate the full Dual-Stage
system only when a transaction identifier is present [10].

5.6 Limitations and Threats to Validity

Some constraints that could impact the generalizability and interpretation of findings will be mentioned
here. Firstly, the evaluation uses synthetic incidents rather than production data, which may not capture the
full complexity and ambiguity of real-world failures, including cascading failures affecting numerous

13



Tina Lekshmi Kanth

services simultaneously, partial log data loss occurring in percentages of production incidents, and
adversarial scenarios involving security breaches. However, the templates were derived from actual
financial system patterns and validated by domain experts with substantial years of incident response
experience. Secondly, the manually assigned source weights are somewhat arbitrary; while the choices are
theoretically motivated by epistemic fidelity hierarchies, optimal values likely vary by organization and
incident type, with preliminary experiments suggesting substantial standard deviation in optimal weights
across different financial institutions [9]. Third, the test set, while substantial compared to typical RAG
evaluations using fewer test cases, may not provide sufficient statistical power to detect performance
variations in rare failure modes occurring in less than 2% of incidents. Finally, generation quality is
evaluated using automated metrics and limited manual review by domain experts; comprehensive human
evaluation with practicing incident responders from multiple organizations would provide stronger
ecological validity and assess practical utility in diverse operational contexts [10].

MTTR Reduction across System Configurations
20 19
18
16
16
14

12 11
10

H o
~I

~N

Baseline mean Hybrid mean latency Time savings per Baseline median Hybrid median
latency incident latency latency

® Value (seconds)

Figure 2: MTTR Reduction across System Configurations [9,10]

Conclusion

This investigation introduces a Dual-Stage Retrieval-Augmented Generation architecture with Metadata-
Aware Re-Ranking specifically designed to address the knowledge heterogeneity challenge inherent in
financial incident response systems. The fundamental innovation lies in explicitly encoding epistemic
distinctions between heterogeneous information sources through assignable source credibility weights,
ensuring that transactional ground-truth logs receive priority over semantically similar but less authoritative
documentation. Experimental validation across synthetic financial incidents demonstrates that this
architectural paradigm yields substantial practical benefits, including significant diagnostic latency
reductions, substantial Context Precision improvements, and strong Faithfulness scores. The system
successfully concentrates high-fidelity evidence in top retrieval positions while maintaining semantic
filtering, enabling LLMs to generate diagnostics with explicit log citations, quantitative evidence, and
actionable remediation guidance. Stratified evaluation reveals that optimal weighting parameters vary by
incident category, with data validation failures benefiting from higher source fidelity weighting while
concurrency conflicts require stronger semantic filtering. The architectural framework provides a
generalizable pattern for domains where information sources possess fundamentally different relationships
to ground truth, extending beyond financial services to medical diagnosis, legal investigations, and

14



Enhancing Mean Time To Resolution (MTTR) In High-Frequency Financial Platforms: A Dual-Stage Retrieval-
Augmented Generation (RAG) Approach With Metadata-Aware Re-Ranking

scientific domains. Future directions include implementing agentic workflows that dynamically determine
when additional structured information is needed, learning source weights from historical incident data
rather than manual assignment, incorporating temporal logic engines for causal reasoning, and developing
cross-organizational knowledge sharing mechanisms that preserve data sensitivity while enabling
collaborative diagnostic capabilities across financial institutions.

References

[1] Patrick Lewis et al., "Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks", arXiv,
2021. Available: https://arxiv.org/pdf/2005.11401

[2] Yunfan Gao et al., "Retrieval-Augmented Generation for Large Language Models: A Survey, arXiv,
2024. Available: https://arxiv.org/pdf/2312.10997

[3] Vladimir Karpukhin et al., "Dense Passage Retrieval for Open-Domain Question Answering", arXiv,
2020. Available: https://arxiv.org/pdf/2004.04906

[4] Shahul Es et al., "RAGAS: Automated evaluation of retrieval augmented generation", arXiv, Apr. 2025.
Available: https://arxiv.org/pdf/2309.15217

[5] Nandan Thakur et al., "BEIR: A heterogeneous benchmark for Zero-shot evaluation of information
retrieval models", arXiv, 2021. Available: https://arxiv.org/pdf/2104.08663

[6] Stephen E. Robertson and Hugo Zaragoza, "The Probabilistic Relevance Framework: BM25 and
Beyond," ResearchGate, 2009. Available:

https://www.researchgate.net/publication/220613776_The Probabilistic Relevance Framework BM25
and Beyond

[7] Akari Asai et al., "Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection",
arXiv, 2023. Available: https://arxiv.org/pdf/2310.11511

[8] Penghao Zhao et al., "Retrieval-augmented generation for Al-generated content: A survey", arXiv,
2024. Available: https://arxiv.org/pdf/2402.19473

[9] Alex Mallen et al., "When not to trust language models: Investigating Effectiveness of Parametric and
Non-Parametric Memories", arXiv, 2023. Available: https://arxiv.org/pdf/2212.10511

[10] Jiawei Chen et al., "Benchmarking Large Language Models in Retrieval-Augmented Generation",
arXiv, 2023. Available: https://ojs.aaai.org/index.php/AAAl/article/view/29936

15


https://arxiv.org/pdf/2005.11401
https://arxiv.org/pdf/2312.10997
https://arxiv.org/pdf/2004.04906
https://arxiv.org/pdf/2309.15217
https://arxiv.org/pdf/2104.08663
https://www.researchgate.net/publication/220613776_The_Probabilistic_Relevance_Framework_BM25_and_Beyond
https://www.researchgate.net/publication/220613776_The_Probabilistic_Relevance_Framework_BM25_and_Beyond
https://arxiv.org/pdf/2310.11511
https://arxiv.org/pdf/2402.19473
https://arxiv.org/pdf/2212.10511
https://ojs.aaai.org/index.php/AAAI/article/view/29936

