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Abstract

In large streaming platforms today, there are common operational issues, such as
data drift, throughput degradation, partition imbalance, and cascading failures, that
impact availability and performance. Existing monitoring and rule-based automatic
remediation solutions are unsuitable for workloads with millisecond-level latency
and high availability needs. This article introduces a fully self-healing Al-native real-
time data pipeline that integrates machine learning into the control plane of the
streaming platform. It presents an end-to-end architecture that leverages graph
neural networks and transformers for hybrid anomaly detection, LSTM-based
predictive fault modeling, and reinforcement learning-based agents that
autonomously select the best remediation policy (e.g., dynamic resource scaling,
partition rebalancing, and dataflow rerouting). The framework implements
continuous healing based on the detect-diagnose-predict-decide-act-verify-learn
loop. Evaluating the framework with synthetic and real-world high-throughput
streaming workloads shows improvements in downtime, latency, fault domains, and
resource utilization to establish a new model of autonomous stream processing
infrastructures that can continue to operate mission-critical workloads in cloud,
hybrid, and edge environments.

Keywords: Real-Time Streaming Systems, Self-Healing Architectures,
Reinforcement Learning, Anomaly Detection, Autonomous Fault Mitigation.

1. Introduction

1.1 Emergence of High-Velocity Data Ecosystems and Infrastructure Complications

Digital transformation initiatives across industries have fueled dramatic and continuous growth in the data
streaming from sensor networks, monitoring infrastructure, and behavior tracking interfaces. Today,
compute infrastructure must support the streaming of this data at unprecedented data rates and with the
latency on the order of microseconds and zero-downtime availability. Time-sensitive applications require
instantaneous collection of data, on-the-fly transformation pipelines of data, and real-time analytical
interpretation to create algorithms capable of reacting quickly enough. Instant processing architectures are
also needed in Internet of Things deployments as data velocity and volume storage requirements
accelerate [1]. Operational challenges in production-grade streaming environments pose a threat to the
reliability guarantees and throughput provided. Statistical pattern evolution introduces uncertainty in the
data characteristics over diverse time windows. Fluctuations in the computation requirements lead to
provisioning challenges not addressed by static resource allocation strategies. Various pipeline
bottlenecks introduce backpressure and reduce throughput. In distributed systems, hardware failures such
as crashes of servers and partitions between networked data centers can create further problems. Sub-
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millisecond latency requirements are so strict that there is virtually no headroom for recovery time or
latency of any kind.

1.2 Inadequacies of Conventional Oversight and Operator-Driven Remediation

Customary monitoring and manual processes have fundamental deficiencies when working in enterprise-
scale systems. Rule-based alert systems generate too many notifications for operations teams to handle,
and automatically initiated responses to incidents introduce delays between detection and recovery. Static
configuration methods cannot adapt to the continually changing workloads, while administrators with
limited human resources cannot manage the increasing complexity of the streaming service's topology
graph. This and the time it takes for the administrator functioning in the loop to act upon an anomaly can
lead to cascading failures, data loss events, and outages that obstruct key business operational goals.
Khattach et al. show how integrated architectural solutions with machine learning components can benefit
real-time analytics and predictive maintenance functions for loT platforms and highlight the shortcomings
of existing monitoring models [2].

1.3 Research Goals and Key Innovations

In this context, the project anticipated the embodiment of autonomous resilience capabilities into the
operational layer of streaming infrastructures by embedding computational learning models inside their
orchestration control planes, enabling automated anomaly detection, failure prediction, and fault
tolerance, without human intervention, setting the stage for continuous self-optimization and fault-tolerant
capabilities for edge infrastructures. An important result of the project was the definition of an integrated
framework for anomaly detection, predictive analytics, and reinforcement learning-based decision-
making mechanisms for streaming coordination subsystems. The proposed framework is a layered
architecture for hybrid detection engines comprising graph neural network topologies and transformer-
based resources for identifying complex failure patterns, as well as a long short-term memory forecasting
module designed to enable predictive resource management through early fault detection. An
optimization-based decision module can automatically select the best corrective actions from defined
strategy spaces. Experiments under high workload conditions show the benefits of improvements in
system availability, latency variability, and resource utilization.

I1. Related Work and Background

2.1 Evolution of Autonomous Systems and AIOps

From scripted automation through to autonomous computing systems, over many decades, AlOps
practices in their current form have emerged as the technical and operational complexity of distributed
computing environments has advanced to a point where organizations are looking to use machine
intelligence to reduce their reliance upon manual management. Initial implementations of the model have
been in narrow use cases such as log aggregation analysis and event correlation, later evolving into a
more enterprise-wide operational governance framework. This evolution signals a growing recognition
that customary approaches to infrastructure management do not scale to the complexity and pace of
operation of modern systems [3]. Modern autonomous architectures that include the perceptive,
diagnostic, planning, and executive layers create feedback control circuits that allow for continuous
adaptation to the environment. These technological changes have shifted the infrastructure management
perspective of enterprises from a reactive incident response approach to being proactive in improving the
performance of their organizations.

2.2 Existing Approaches to Fault Tolerance

Policy-driven systems are the basic resilience mechanisms. They express operational knowledge with
predefined policy rules to specify the behavior of infrastructure during irregular conditions. Such
mechanisms typically consist of triggering recovery actions when monitored properties cross some
operational threshold. Many rule-based monitoring systems have been built on top of such mechanisms,
specifying a set of conditional rules with branching pathways and proposed responses to observed
behavior. These approaches are deterministic, observably transitively closed, and dependably localized to
the state but are brittle to new manifestations of failure and continue to require manual calibration as the
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underlying infrastructure evolves. Fixed autoscaling implementations, specifically in cloud computing
environments, are a solution to the resource allocation problem via preconfigured elasticity policies
triggered by metric threshold crossings. These solutions lack workload awareness and cannot forecast
workload demand peaks and drops. Segregated machine learning anomaly identification is a recent subset
of these solutions based on probabilistic and deep learning algorithms to detect deviations from the
nominal operational signature. Such techniques have greater sensitivity to small disturbances but are
normally used as separate monitors rather than feedback control loops, resulting in a discontinuity
between sensing and correction.

Table I: Comparison of Fault Tolerance Approaches [3, 4]

Approach Detection Response - Workload Integration
Category Method Mechanism Adaptability Awareness Level
Policy-Based Thrqshqld Predefined Static Low Isolated
Systems Monitoring Rules
Rule-Drlyen Condltl_onal Alert. Limited Low Isolated
Monitoring Logic Generation
Static Metric Resource . - .
Autoscaling Thresholds Provisioning Fixed Policies | Minimal Platform-Level
Isolated ML Statistical External . Monitoring-
Anomaly . Moderate Medium
. Models Alerting Only
Detection
Al-Native Self- | Hybrid GNN + | Autonomous Dvnamic Hich Embedded
Healing Transformer Remediation Y & Control Plane

2.3 Gap Analysis and Streaming Platform Fundamentals

Architecturally, a challenge in existing fault tolerance frameworks is that they do not consistently
combine identification, prediction, and automated remediation. Existing frameworks tackle operational
gaps separately. These schemes lack integrated intelligence at all stages of fault management, including
surveillance, forecasting, decision synthesis, and execution. As a result, fragmented responses are
enforced, with potential inefficient resource allocation leading to over-engineering or under-engineering.
Streaming platforms are systems that continuously collect, aggregate, and process streamed data. For
example, Apache Kafka implements distributed event streaming based on partitioned topic logs and a
consumer group coordination protocol. Apache Flink provides stateful stream features using dataflow
programming abstractions with a temporal event model and exactly-once delivery guarantees. Spark
Structured Streaming extends batch execution programming models to micro-batch and progressive
computation [4]. These platforms are formulated as substrate infrastructures under which intelligence
layers achieve autonomous fault governance objectives, requiring computational learning to be deeply
embedded within stream processing execution topologies and orchestration control logic.

II1. System Architecture and Design

3.1 Five-Layer Architectural Framework

The architecture discussed in the paper implements a five-layer, hierarchical organization of functional
strata that support self-contained fault management. The lowest functional stratum, the Streaming
Ingestion Layer, is responsible for the acquisition of high-rate events from multiple event sources and the
persistence of message repositories that stabilize incoming streams at the event gate. The Distributed
Processing Layer runs parallelized computation frameworks to execute transformation functions, stateful
logic flows, and analytics on partitioned data constructs, while the Al Control Plane implements
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computational intelligence within infrastructure coordination substrates. In addition, prognostic models,
irregularity detection algorithms, and decision synthesis engines continuously assess the health of system
components. The Self-Healing Orchestration Engine translates diagnostics into reaction plans that
coordinate actions such as workload migration, partition equilibration, and repartitioning of resources,
thus enabling the system to act on its own. The Serving and Observability Layer provides universal
transparency across the architecture layers by aggregating all the telemetry information, creating
historical analysis of it, and giving proof-of-presence records for concurrent observation and back-in-time
forensics [6]. This multi-level decomposition of all other layers ensures modularization and functional
separation, while keeping the intelligence subsystems close-coupled to the conduits of operational

execution.

Table 2: Five-Layer Architecture Components and Functions [5, 6]

. . Key Operational Integration
Layer Primary Functions Technologies Scope Points
Streamin Event capture, message Processin,
ng buffering, durable Kafka, Pulsar Data acquisition g
Ingestion . Layer
queuing
Distributed Parallel computation, Flink, Spark Data Al Control
: stateful operations, 3 .
Processing . Streaming transformation Plane
transformations
Al Control Anoma.ly .detectlo_nz fault GNN, . Orchestration
Plane prediction, decision Transformer, Intelligence layer Engine
optimization LSTM, RL
Self-Healing Tasi?;ﬁ;izﬁ?’ p;lr(tiltlon Kubernetes, Automated All lavers
Orchestration & an YARN remediation Y
resource allocation
Serving and Telemetry c ollecnon,. Prometheus, Monitoring and
. trend analysis, and audit e All layers
Observability logging Grafana visibility

3.2 Integration of ML Models into Pipeline Control Plane

Machine learning algorithms are part of the governance layer that extends surveillance beyond external
APIs. Prognostic algorithms are embedded into stream processing job supervisors and cluster
administrators, where they consume active streams of telemetry data from operational computation tasks
and infrastructure vitality monitors. Detecting irregularities with Irregularity identification networks
involves taking into account execution topology metrics, resource consumption, and dataflow
characteristics to detect irregularities before they trigger failures. The projection modules provide
predictions based on historical performance sequences of resource requirements, queue build-up, and
future constraints over finite intervals. Decision synthesis components take the outputs of diagnostic
components and operational constraints to specify remediation strategies that optimize system objectives
subject to the associated disruption costs. This situating of the decision synthesis process avoids the
latency associated with the externally situated monitoring infrastructure, leading to sub-second response
times between irregularity detection and remediation. Model execution occurs within the same
operational context as the corresponding stream processing, using the same compute resources and
physically co-located state repositories.

3.3 Design Principles for Autonomous Operation

Autonomous operations models contrast with human-controlled systems based on the general principles
of perpetual observation mandates, which involve the instrumentation of all architectural layers to log
resource expenditures, dataflow rates, processing latencies, and frequencies of anomalous events.
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Whereas reactive incident engagement is triggered on service degradation, anticipatory cognizance
principles use projection models to chart trajectories of system behavior and point out incipient anomalies
before service disruption occurs. Closed-circuit automation addresses the steps of interruption
identification, interpretation, disruption decision-making, and disruption removal. By closing the loop in
this way, closed-circuit automation allows the fast closure of response loops and the containment of
disruptions. Acceptable degradation enables infrastructure to remain usable at reduced capability upon
component failures through prioritized processing and dynamic quality of service. Learning law, such as
feedback circuits, merges performance knowledge into models, creating channels, continually optimize
both prediction quality and determination reliability based on observed remediation outcomes amid
various failure conditions.

3.4 Deployment Considerations Across Computing Environments

The deployment architecture designation has a pronounced influence over the customizability and
operational characteristics of autonomous systems targeting cloud, hybrid, and edge implementations.
Cloud-indigenous deployments utilize elastic infrastructural provisioning and curatorial service
frameworks to help scale resources and reduce operational footprint through provider-managed
governance planes [5]. Hybrid architectures have processes split between premises-based and cloud-based
data facilities, balancing data sovereignty with on-demand scalability at the cost of latency and
synchronization. Edge computing architectures colocate processing resources with the data generation site
to reduce ingestion latencies and transmission overhead at the cost of scarcity and possibly intermittent
connectivity [5]. These deployment archetypes impose different requirements on the autonomous
administration mechanisms concerning their resource allocation strategies, disruption detection
thresholds, and remediation strategies. In cloud environments, aggressive autoscaling approaches and low
provisioning times may be possible, while in edge environments, resource conservation and the
possibility of limited functionality may become important in resource-constrained deployments. Hybrid
architectures, therefore, require cross-environment synchronization mechanics to allow consistent
behaviors across different infrastructures and network conditions.

IV. Al-Native Components and Methodology

4.1 Anomaly Detection Engine

The anomaly detection engine employs a graph neural network and transformer attention protocols to
detect anomalous behavior patterns across distributed streaming workloads. A graph neural network is
used to construct computational topology as an arrangement of interconnected vertices, effectively
capturing the spatial relationships between computational processing operators, data partitions, and
resource provisioning conditions. Transformer architectures can expand this spatial representation with
temporal attention constructs along with sequentially arranged metric progressions over observation
timelines, diagnosing subtle deviations in execution attributes that are precursors of eventual system
failures. This allows structural relationships of directed acyclic graph execution configurations and
temporal evolutions of metrics to be assessed jointly [7]. The detection system is supplied continuously
with telemetry currents, including operator throughput velocities, buffer saturation magnitudes,
checkpoint finalization intervals, and inter-task transmission delays. Feature derivation conduits recast
telemetry currents into standardized encodings suitably processed by the neural network. Attention weight
allocations pinpoint computational subgraphs showing deviant operational behavior. Within a detection
framework, probabilistic irregularity quantifications offer metrics of deviation severity. Subsequent
decision infrastructures use them to prioritize remediation activities according to the magnitude of
envisioned consequences.

4.2 Predictive Fault Modeling

Forecasting faults involves leveraging different long short-term memory network configurations to
predict the expected system degradation across various dimensions of the system. LSTM-based forecast
modules analyze long time series data of queue build-ups, processing delay distributions, and
backpressure distributions to forecast the next state of the infrastructure across customizable model
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horizons. These recurrent architectures contain internal memory states to encode the long-term temporal
patterns observed in the queueing process, allowing for the identification of degradation patterns when
observing the process over long horizons. Each projection module encodes a unique disruption type, with
dedicated networks for each of the configurations of queue growth rates (under insufficient processing
capacity), latency growth probabilities (under resource competition), and backpressure patterns (under
constraint). The node and partition disruption projection is improved with additional feature streams
containing hardware power measures, network connection assessments, and workload distribution
properties. Point extrapolations are accompanied by confidence boundaries. By running decision
infrastructures on top of the model, remediation efforts can be scaled by the degree of uncertainty and the
severity of consequences.

4.3 Reinforcement Learning Decision Engine

The reinforcement learning decision apparatus represents operational governance as a sequential decision
problem and allows autonomous agents to perform interventions that realize response options as part of a
long-term plan pertaining to the infrastructure. The response options are identified as: actions that
intervene through horizontal expansion as part of the deployment of processing capacity to change the
operator's concurrency levels, actions that migrate processed workloads to redistribute computations
across executive units, actions that reroute data traffic to change the structure of message paths, and
actions that balance partitions to redistribute parallel processing workloads. State encodings in stateful RL
techniques compress present infrastructure measurements, contemporary irregularity detection
conclusions, and operational workload specifications into compressed feature matrices encoding
operational circumstances [8]. The reward architecture construction assimilates numerous conflicting
targets through weighted amalgamations of processing delay sanctions, infrastructure constancy metrics
quantified through measurement fluctuation, and resource utilization expenditures mirroring platform
costs. Policy networks enact agent determination operations by mapping the observed conditions into
distributions over intervention probabilities, balancing the benefits of exploiting productive policies with
exploring alternate interventions. Off-policy learning protocols allow continuous policy improvement
from historical operational records, improving the quality of decisions through experiences gathered from
a range of disruptions and associated workload levels.

4.4 Autonomous Healing Loop

In order to autonomously ease closed-circuit operation for vitality stewardship of the streaming platform,
the autonomous healing circuit creates a seven-stage operational loop: Detection, which continuously
analyzes streaming telemetry data to identify anomalies between the measurements and the derived
baselines, or deviations resulting in anomalous patterns being identified. Diagnosis detected faults or
anomalies and their potential causes by studying the spreading of a disruption across the network in
computational topology and past data of incidents over a period. Prediction considered the likely
evolution of the infrastructure given the conditions at a given moment in time through degradation
timelines and expected disruptions in the processing phases. The Decide stage synthesizes diagnosis and
prognosis results to select the optimum remediation strategy from a set of interventions, considering their
costs and expected benefits [8]. The Act stage executes the selected remediation strategy using
orchestration interfaces by requesting resource provisioning, migrating workloads, and changing
configurations of components of the distributed platform. The Verify stage monitors operational
infrastructure, tracking the value of remedial efforts through metrics governing stabilization and
irregularity resolution. The Learn stage incorporates operational outcomes via conduits of model
refinement, adjusting detection sensitivity thresholds, prediction accuracy boundaries, and determination
policy coefficients depending on remedial impact observed, improving operational infrastructure
performance via autonomously evolving capabilities.

Table 3: AI-Native Component Specifications [7, 8]
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Architecture Output Operationa | Temporal
Component Type Input Features Products 1 Phase Scope
Operator
. throughput, buffer | p 4 irictic
Anomaly Hybrid GNN occupancy, .
. . anomaly scores, | Detection, .
Detection + checkpoint . . Real-time
. . subgraph Diagnosis
Engine Transformer duration, and CS.
Do highlights
communication
latency
Queue growth,
Predictive . laF eney Futpre > tate Short- to
LSTM distributions, projections, - .
Fault Prediction medium-
. Networks backpressure confidence
Modeling ) term
patterns, and intervals
hardware health
. Action
System metrics, probability
RL Deg1s1on Policy anomaly outputs, distributions, | Decide, Act | Real-time
Engine Network workload . X
.. intervention
characteristics :
selection
. Remediation
Multi-source .
Autonomous | Seven-Phase . directives, .
. telemetry, historical All phases | Continuous
Healing Loop Cycle performance
outcomes
feedback

V. Experimental Evaluation and Discussion

5.1 Experimental Setup and Evaluation Metrics

The experimental validation apparatus applies exhaustive measurement protocols to quantify the effective
potency of the autonomous healing infrastructure over a range of key operational dimensions. Downtime
reduction measurements quantify the aggregate duration of service unavailability experienced under
baseline conditions with manual intervention, versus deployments with autonomous healing, across the
various dimensions. Latency stability tests compute the variance of the processing delay, measuring the
capability of the infrastructure to keep its response features unchanged despite disturbances to the
underlying platform and load conditions. Fault containment potency measure is based on the
measurement of spatial fault boundaries, that is, the capability of the infrastructure to localize the
disturbances within computing domains. The resource usage productivity metric evaluates resource usage
properties of a computational resource provisioning, comparing the self-determined decisions to provision
to a maximum throughput-to-cost ratio against static provisioning and human-controlled orchestration of
provisioning. In evaluation frameworks for such metrics, synthetic workload generators are used to
produce controllable event streams. Production traces with specific workload characteristics can then be
reproduced. Measurement capture describes delay allocation telemetry at millisecond granularity, asset
consumption trajectories at the second interval, and event-magnitude processing throughput statistics
across a distributed computing assembly as clearly as possible.

Table 4: Experimental Evaluation Metrics and Workload Configurations [1, 2, 9, 10]
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Evaluation Measurement Unit Baseline Evaluation Collection
Metric Comparison Period Granularity
Downtime Seljvw? . Manual Extended
. unavailability . . ) Event-level
Reduction . intervention operations
intervals
Latency Processing delay Static Continuous Millisecond-
Stability variance configuration monitoring resolution
Faplt Spatial prop agation T.r adltlpnal Per-incident Subgraph-level
Containment boundaries isolation
Resource Throughput-to-cost Fixed Operational .
e . L e Second-interval
Utilization ratio provisioning lifetime

5.2 Performance Analysis Across High-Throughput Workloads

Performance tests use heterogencous high-throughput workload configurations across operational and
stress conditions. Steady state tests examine constant event rates near peak capacity boundaries and
infrastructure behavior under sustained resource contention conditions without inducing artificial
downtime. Burst tests repeatedly exceed baseline load to probe the ability to reduce demand surges and
quickly provision additional resources. Degrade tests do not involve an artificial load spike. Instead, they
simulate the progressive exhaustion of the platform's capacity by gradually increasing latency and adding
artificial interruptions to evaluate model accuracy and preemptive/predictive actions. Heterogeneous
workload scenarios combine streaming analytics, stateful aggregation, and complex event processing
(CEP) operations in one joint execution network, and experiment with various computational and
resource consumption footprints. A multi-tenant arrangement tests isolated application deployments
across a shared infrastructure, evaluating autonomous control in a mixed service contention and
separation environment. A geographic allocation arrangement tests how processing assemblies are split
across multiple data center regions, subjecting telecommunication to a range of latencies and enforcing
distributed healing protocol cooperation.

5.3 Limitations and Challenges

Despite its efficacy, several drawbacks still need to be addressed before the autonomous healing system
can be widely applicable. Model drift in dynamic workloads is a critical challenge since streaming
applications can vary considerably during their life cycles, impacting the ability to precisely recognize
and predict anomalies, especially when the training data is different from the active environment. In
practice, refinement protocols for the perpetual model incur a computational cost that needs to be
managed and orchestrated effectively, so as not to interfere with primary processing workloads. Unseen
failure configuration sensitivity can be viewed as a supervised learning problem, as novel failure
classifications with no prior knowledge in the longitudinal training data are often undetected or off-target
in remediation interventions. Confidence intervals become wider, and performance may degrade during
instability signatures for which there is no experience. Further, growing the reinforcement learning agent
would require more exploration time to develop a more complex policy, during which the agent may take
actions that lead to poorer results for the infrastructure. Successfully balancing exploration needs with
invariance requires advanced curriculum learning and safety constraints on exploration, at least in the
initial phases where these invariances are being cultured.

5.4 Future Research Directions

Future augmentations will propel autonomous streaming platforms further; digital twin simulations can be
used for protected policy analysis or to evaluate disruption situations without having any impact on the
production infrastructure [9]. Additionally, virtual twins, including the characteristics of the production
platform, can provide accelerated cultivation schedules, synthetic disruption for policy testing at scale,
and hypothetical tests for optimal bandwidth orchestration. Federated learning for distributed conduits can
enforce privacy preservation and geographic information sovereignty mandates by allowing the training
of a distributed model across organizational boundaries while preserving sensitive operational telemetry
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[10]. In the context of multiple organizations deploying similar streaming services, distributed learning
conventions enable a collaborative approach to improving irregularity detection architectures and
decision-making algorithms while keeping data custody and competitive integrity locally. Multi-agent
reinforcement learning approaches extend single-agent decision-making tools to multi-agent synchronous
optimization in a microservice architecture. Possible application domains include emergent
synchronization behavior assisting to achieve global infrastructure goals via localized decision-making,
exploring alternative models to classical, centralized governance approaches for tackling large-scale
distributed settings. Other areas of research to explore include explainable Al, creating operational
transparency, transfer learning for quick adaptation across diverse, streaming infrastructures, or quantum-
inspired optimization methods for complex resource allocation processes.

Conclusion

For large-scale streaming infrastructures where throughput and complexity grow rapidly, monitoring-
based repair as a default response is not viable. Article proposes a self-healing Al-native architecture for
autonomously resilient streaming infrastructures, which leverages embedded computational intelligence
for anomaly detection, predictive fault modeling, and reinforcement learning-based decision synthesis in
the streaming platform control plane. The architecture comprises five layers: ingestion layer, distributed
computing layer, Al control plane, self-healing orchestration layer, and observability layer, guided by a
seven-phase autonomous healing loop. Hybrid graph neural networks and transformers are used for
complex irregularity detection across computer topologies, and LSTM-based forecasting modules are
used to proactively anticipate and address potential disruptions. Practical reinforcement learning agents
automatically learn which remediation action from scaling, migration, rerouting, and rebalancing to take
to move the system towards its goals, given its operational history. Experiments with different high-
throughput workload scenarios show improvements in availability, latency variability, fault isolation, and
resource utilization. This article lays a foundation for next-generation streaming systems that enable
workload automation in cloud, hybrid, and edge environments, thereby realizing fully autonomous,
always-on data infrastructure ecosystems that continuously self-adapt, self-optimize, and self-repair
throughout their operational lifetime.
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