
JOURNAL OF INTERNATIONAL CRISIS AND RISK COMMUNICATION RESEARCH 
ISSN: 2576-0017 
2026, VOL 9, NO 1 

 

 

440 
 

Self-Healing AI-Native Real-Time Data Pipelines: 

Autonomous Resilience For Large-Scale Streaming 

Systems 
 

Yogesh Pugazhendhi Duraisamy Rajamani 
 
Independent researcher, USA 

 
Abstract 

In large streaming platforms today, there are common operational issues, such as 
data drift, throughput degradation, partition imbalance, and cascading failures, that 
impact availability and performance. Existing monitoring and rule-based automatic 

remediation solutions are unsuitable for workloads with millisecond-level latency 
and high availability needs. This article introduces a fully self-healing AI-native real-

time data pipeline that integrates machine learning into the control plane of the 
streaming platform. It presents an end-to-end architecture that leverages graph 
neural networks and transformers for hybrid anomaly detection, LSTM-based 

predictive fault modeling, and reinforcement learning-based agents that 
autonomously select the best remediation policy (e.g., dynamic resource scaling, 

partition rebalancing, and dataflow rerouting). The framework implements 
continuous healing based on the detect-diagnose-predict-decide-act-verify-learn 
loop. Evaluating the framework with synthetic and real-world high-throughput 

streaming workloads shows improvements in downtime, latency, fault domains, and 
resource utilization to establish a new model of autonomous stream processing 

infrastructures that can continue to operate mission-critical workloads in cloud, 
hybrid, and edge environments. 
 

Keywords: Real-Time Streaming Systems, Self-Healing Architectures, 
Reinforcement Learning, Anomaly Detection, Autonomous Fault Mitigation. 
 

I. Introduction 

 

1.1 Emergence of High-Velocity Data Ecosystems and Infrastructure Complications 

Digital transformation initiatives across industries have fueled dramatic and continuous growth in the data 

streaming from sensor networks, monitoring infrastructure, and behavior tracking interfaces. Today, 

compute infrastructure must support the streaming of this data at unprecedented data rates and with the 

latency on the order of microseconds and zero-downtime availability. Time-sensitive applications require 

instantaneous collection of data, on-the-fly transformation pipelines of data, and real-time analytical 

interpretation to create algorithms capable of reacting quickly enough. Instant processing architectures are 

also needed in Internet of Things deployments as data velocity and volume storage requirements 

accelerate [1]. Operational challenges in production-grade streaming environments pose a threat to the 

reliability guarantees and throughput provided. Statistical pattern evolution introduces uncertainty in the 

data characteristics over diverse time windows. Fluctuations in the computation requirements lead to 

provisioning challenges not addressed by static resource allocation strategies. Various pipeline 

bottlenecks introduce backpressure and reduce throughput. In distributed systems, hardware failures such 

as crashes of servers and partitions between networked data centers can create further problems. Sub-



Self-Healing AI-Native Real-Time Data Pipelines: Autonomous Resilience For Large-Scale Streaming Systems 

 

441 
 

millisecond latency requirements are so strict that there is virtually no headroom for recovery time or 

latency of any kind. 

1.2 Inadequacies of Conventional Oversight and Operator-Driven Remediation 

Customary monitoring and manual processes have fundamental deficiencies when working in enterprise-

scale systems. Rule-based alert systems generate too many notifications for operations teams to handle, 

and automatically initiated responses to incidents introduce delays between detection and recovery. Static 

configuration methods cannot adapt to the continually changing workloads, while administrators with 

limited human resources cannot manage the increasing complexity of the streaming service's topology 

graph. This and the time it takes for the administrator functioning in the loop to act upon an anomaly can 

lead to cascading failures, data loss events, and outages that obstruct key business operational goals. 

Khattach et al. show how integrated architectural solutions with machine learning components can benefit 

real-time analytics and predictive maintenance functions for IoT platforms and highlight the shortcomings 

of existing monitoring models [2]. 

1.3 Research Goals and Key Innovations 

In this context, the project anticipated the embodiment of autonomous resilience capabilities into the 

operational layer of streaming infrastructures by embedding computational learning models inside their 

orchestration control planes, enabling automated anomaly detection, failure prediction, and fault 

tolerance, without human intervention, setting the stage for continuous self-optimization and fault-tolerant 

capabilities for edge infrastructures. An important result of the project was the definition of an integrated 

framework for anomaly detection, predictive analytics, and reinforcement learning-based decision-

making mechanisms for streaming coordination subsystems. The proposed framework is a layered 

architecture for hybrid detection engines comprising graph neural network topologies and transformer-

based resources for identifying complex failure patterns, as well as a long short-term memory forecasting 

module designed to enable predictive resource management through early fault detection. An 

optimization-based decision module can automatically select the best corrective actions from defined 

strategy spaces. Experiments under high workload conditions show the benefits of improvements in 

system availability, latency variability, and resource utilization. 

 

II. Related Work and Background 

 

2.1 Evolution of Autonomous Systems and AIOps 

From scripted automation through to autonomous computing systems, over many decades, AIOps 

practices in their current form have emerged as the technical and operational complexity of distributed 

computing environments has advanced to a point where organizations are looking to use machine 

intelligence to reduce their reliance upon manual management. Initial implementations of the model have 

been in narrow use cases such as log aggregation analysis and event correlation, later evolving into a 

more enterprise-wide operational governance framework. This evolution signals a growing recognition 

that customary approaches to infrastructure management do not scale to the complexity and pace of 

operation of modern systems [3]. Modern autonomous architectures that include the perceptive, 

diagnostic, planning, and executive layers create feedback control circuits that allow for continuous 

adaptation to the environment. These technological changes have shifted the infrastructure management 

perspective of enterprises from a reactive incident response approach to being proactive in improving the 

performance of their organizations. 

2.2 Existing Approaches to Fault Tolerance 

Policy-driven systems are the basic resilience mechanisms. They express operational knowledge with 

predefined policy rules to specify the behavior of infrastructure during irregular conditions. Such 

mechanisms typically consist of triggering recovery actions when monitored properties cross some 

operational threshold. Many rule-based monitoring systems have been built on top of such mechanisms, 

specifying a set of conditional rules with branching pathways and proposed responses to observed 

behavior. These approaches are deterministic, observably transitively closed, and dependably localized to 

the state but are brittle to new manifestations of failure and continue to require manual calibration as the 



Yogesh Pugazhendhi Duraisamy Rajamani 

 

442 
 

underlying infrastructure evolves. Fixed autoscaling implementations, specifically in cloud computing 

environments, are a solution to the resource allocation problem via preconfigured elasticity policies 

triggered by metric threshold crossings. These solutions lack workload awareness and cannot forecast 

workload demand peaks and drops. Segregated machine learning anomaly identification is a recent subset 

of these solutions based on probabilistic and deep learning algorithms to detect deviations from the 

nominal operational signature. Such techniques have greater sensitivity to small disturbances but are 

normally used as separate monitors rather than feedback control loops, resulting in a discontinuity 

between sensing and correction. 

 

Table I: Comparison of Fault Tolerance Approaches [3, 4] 

 

Approach 

Category 

Detection 

Method 

Response 

Mechanism 
Adaptability 

Workload 

Awareness 

Integration 

Level 

Policy-Based 

Systems 

Threshold 

Monitoring 

Predefined 

Rules 
Static Low Isolated 

Rule-Driven 

Monitoring 

Conditional 

Logic 

Alert 

Generation 
Limited Low Isolated 

Static 

Autoscaling 

Metric 

Thresholds 

Resource 

Provisioning 
Fixed Policies Minimal Platform-Level 

Isolated ML 

Anomaly 

Detection 

Statistical 

Models 

External 

Alerting 
Moderate Medium 

Monitoring-

Only 

AI-Native Self-

Healing 

Hybrid GNN + 

Transformer 

Autonomous 

Remediation 
Dynamic High 

Embedded 

Control Plane 

 

2.3 Gap Analysis and Streaming Platform Fundamentals 

Architecturally, a challenge in existing fault tolerance frameworks is that they do not consistently 

combine identification, prediction, and automated remediation. Existing frameworks tackle operational 

gaps separately. These schemes lack integrated intelligence at all stages of fault management, including 

surveillance, forecasting, decision synthesis, and execution. As a result, fragmented responses are 

enforced, with potential inefficient resource allocation leading to over-engineering or under-engineering. 

Streaming platforms are systems that continuously collect, aggregate, and process streamed data. For 

example, Apache Kafka implements distributed event streaming based on partitioned topic logs and a 

consumer group coordination protocol. Apache Flink provides stateful stream features using dataflow 

programming abstractions with a temporal event model and exactly-once delivery guarantees. Spark 

Structured Streaming extends batch execution programming models to micro-batch and progressive 

computation [4]. These platforms are formulated as substrate infrastructures under which intelligence 

layers achieve autonomous fault governance objectives, requiring computational learning to be deeply 

embedded within stream processing execution topologies and orchestration control logic. 

 

III. System Architecture and Design 

 

3.1 Five-Layer Architectural Framework 

The architecture discussed in the paper implements a five-layer, hierarchical organization of functional 

strata that support self-contained fault management. The lowest functional stratum, the Streaming 

Ingestion Layer, is responsible for the acquisition of high-rate events from multiple event sources and the 

persistence of message repositories that stabilize incoming streams at the event gate. The Distributed 

Processing Layer runs parallelized computation frameworks to execute transformation functions, stateful 

logic flows, and analytics on partitioned data constructs, while the AI Control Plane implements 



Self-Healing AI-Native Real-Time Data Pipelines: Autonomous Resilience For Large-Scale Streaming Systems 

 

443 
 

computational intelligence within infrastructure coordination substrates. In addition, prognostic models, 

irregularity detection algorithms, and decision synthesis engines continuously assess the health of system 

components. The Self-Healing Orchestration Engine translates diagnostics into reaction plans that 

coordinate actions such as workload migration, partition equilibration, and repartitioning of resources, 

thus enabling the system to act on its own. The Serving and Observability Layer provides universal 

transparency across the architecture layers by aggregating all the telemetry information, creating 

historical analysis of it, and giving proof-of-presence records for concurrent observation and back-in-time 

forensics [6]. This multi-level decomposition of all other layers ensures modularization and functional 

separation, while keeping the intelligence subsystems close-coupled to the conduits of operational 

execution. 

 

Table 2: Five-Layer Architecture Components and Functions [5, 6] 

 

Layer Primary Functions 
Key 

Technologies 

Operational 

Scope 

Integration 

Points 

Streaming 

Ingestion 

Event capture, message 

buffering, durable 

queuing 

Kafka, Pulsar Data acquisition 
Processing 

Layer 

Distributed 

Processing 

Parallel computation, 

stateful operations, 

transformations 

Flink, Spark 

Streaming 

Data 

transformation 

AI Control 

Plane 

AI Control 

Plane 

Anomaly detection, fault 

prediction, decision 

optimization 

GNN, 

Transformer, 

LSTM, RL 

Intelligence layer 
Orchestration 

Engine 

Self-Healing 

Orchestration 

Task migration, partition 

rebalancing, and 

resource allocation 

Kubernetes, 

YARN 

Automated 

remediation 
All layers 

Serving and 

Observability 

Telemetry collection, 

trend analysis, and audit 

logging 

Prometheus, 

Grafana 

Monitoring and 

visibility 
All layers 

 

3.2 Integration of ML Models into Pipeline Control Plane 

Machine learning algorithms are part of the governance layer that extends surveillance beyond external 

APIs. Prognostic algorithms are embedded into stream processing job supervisors and cluster 

administrators, where they consume active streams of telemetry data from operational computation tasks 

and infrastructure vitality monitors. Detecting irregularities with Irregularity identification networks 

involves taking into account execution topology metrics, resource consumption, and dataflow 

characteristics to detect irregularities before they trigger failures. The projection modules provide 

predictions based on historical performance sequences of resource requirements, queue build-up, and 

future constraints over finite intervals. Decision synthesis components take the outputs of diagnostic 

components and operational constraints to specify remediation strategies that optimize system objectives 

subject to the associated disruption costs. This situating of the decision synthesis process avoids the 

latency associated with the externally situated monitoring infrastructure, leading to sub-second response 

times between irregularity detection and remediation. Model execution occurs within the same 

operational context as the corresponding stream processing, using the same compute resources and 

physically co-located state repositories. 

3.3 Design Principles for Autonomous Operation 

Autonomous operations models contrast with human-controlled systems based on the general principles 

of perpetual observation mandates, which involve the instrumentation of all architectural layers to log 

resource expenditures, dataflow rates, processing latencies, and frequencies of anomalous events. 



Yogesh Pugazhendhi Duraisamy Rajamani 

 

444 
 

Whereas reactive incident engagement is triggered on service degradation, anticipatory cognizance 

principles use projection models to chart trajectories of system behavior and point out incipient anomalies 

before service disruption occurs. Closed-circuit automation addresses the steps of interruption 

identification, interpretation, disruption decision-making, and disruption removal. By closing the loop in 

this way, closed-circuit automation allows the fast closure of response loops and the containment of 

disruptions. Acceptable degradation enables infrastructure to remain usable at reduced capability upon 

component failures through prioritized processing and dynamic quality of service. Learning law, such as 

feedback circuits, merges performance knowledge into models, creating channels, continually optimize 

both prediction quality and determination reliability based on observed remediation outcomes amid 

various failure conditions. 

3.4 Deployment Considerations Across Computing Environments 

The deployment architecture designation has a pronounced influence over the customizability and 

operational characteristics of autonomous systems targeting cloud, hybrid, and edge implementations. 

Cloud-indigenous deployments utilize elastic infrastructural provisioning and curatorial service 

frameworks to help scale resources and reduce operational footprint through provider-managed 

governance planes [5]. Hybrid architectures have processes split between premises-based and cloud-based 

data facilities, balancing data sovereignty with on-demand scalability at the cost of latency and 

synchronization. Edge computing architectures colocate processing resources with the data generation site 

to reduce ingestion latencies and transmission overhead at the cost of scarcity and possibly intermittent 

connectivity [5]. These deployment archetypes impose different requirements on the autonomous 

administration mechanisms concerning their resource allocation strategies, disruption detection 

thresholds, and remediation strategies. In cloud environments, aggressive autoscaling approaches and low 

provisioning times may be possible, while in edge environments, resource conservation and the 

possibility of limited functionality may become important in resource-constrained deployments. Hybrid 

architectures, therefore, require cross-environment synchronization mechanics to allow consistent 

behaviors across different infrastructures and network conditions. 

 

IV. AI-Native Components and Methodology 

 

4.1 Anomaly Detection Engine 

The anomaly detection engine employs a graph neural network and transformer attention protocols to 

detect anomalous behavior patterns across distributed streaming workloads. A graph neural network is 

used to construct computational topology as an arrangement of interconnected vertices, effectively 

capturing the spatial relationships between computational processing operators, data partitions, and 

resource provisioning conditions. Transformer architectures can expand this spatial representation with 

temporal attention constructs along with sequentially arranged metric progressions over observation 

timelines, diagnosing subtle deviations in execution attributes that are precursors of eventual system 

failures. This allows structural relationships of directed acyclic graph execution configurations and 

temporal evolutions of metrics to be assessed jointly [7]. The detection system is supplied continuously 

with telemetry currents, including operator throughput velocities, buffer saturation magnitudes, 

checkpoint finalization intervals, and inter-task transmission delays. Feature derivation conduits recast 

telemetry currents into standardized encodings suitably processed by the neural network. Attention weight 

allocations pinpoint computational subgraphs showing deviant operational behavior. Within a detection 

framework, probabilistic irregularity quantifications offer metrics of deviation severity. Subsequent 

decision infrastructures use them to prioritize remediation activities according to the magnitude of 

envisioned consequences. 

4.2 Predictive Fault Modeling 

Forecasting faults involves leveraging different long short-term memory network configurations to 

predict the expected system degradation across various dimensions of the system. LSTM-based forecast 

modules analyze long time series data of queue build-ups, processing delay distributions, and 

backpressure distributions to forecast the next state of the infrastructure across customizable model 



Self-Healing AI-Native Real-Time Data Pipelines: Autonomous Resilience For Large-Scale Streaming Systems 

 

445 
 

horizons. These recurrent architectures contain internal memory states to encode the long-term temporal 

patterns observed in the queueing process, allowing for the identification of degradation patterns when 

observing the process over long horizons. Each projection module encodes a unique disruption type, with 

dedicated networks for each of the configurations of queue growth rates (under insufficient processing 

capacity), latency growth probabilities (under resource competition), and backpressure patterns (under 

constraint). The node and partition disruption projection is improved with additional feature streams 

containing hardware power measures, network connection assessments, and workload distribution 

properties. Point extrapolations are accompanied by confidence boundaries. By running decision 

infrastructures on top of the model, remediation efforts can be scaled by the degree of uncertainty and the 

severity of consequences. 

4.3 Reinforcement Learning Decision Engine 

The reinforcement learning decision apparatus represents operational governance as a sequential decision 

problem and allows autonomous agents to perform interventions that realize response options as part of a 

long-term plan pertaining to the infrastructure. The response options are identified as: actions that 

intervene through horizontal expansion as part of the deployment of processing capacity to change the 

operator's concurrency levels, actions that migrate processed workloads to redistribute computations 

across executive units, actions that reroute data traffic to change the structure of message paths, and 

actions that balance partitions to redistribute parallel processing workloads. State encodings in stateful RL 

techniques compress present infrastructure measurements, contemporary irregularity detection 

conclusions, and operational workload specifications into compressed feature matrices encoding 

operational circumstances [8]. The reward architecture construction assimilates numerous conflicting 

targets through weighted amalgamations of processing delay sanctions, infrastructure constancy metrics 

quantified through measurement fluctuation, and resource utilization expenditures mirroring platform 

costs. Policy networks enact agent determination operations by mapping the observed conditions into 

distributions over intervention probabilities, balancing the benefits of exploiting productive policies with 

exploring alternate interventions. Off-policy learning protocols allow continuous policy improvement 

from historical operational records, improving the quality of decisions through experiences gathered from 

a range of disruptions and associated workload levels. 

4.4 Autonomous Healing Loop 

In order to autonomously ease closed-circuit operation for vitality stewardship of the streaming platform, 

the autonomous healing circuit creates a seven-stage operational loop: Detection, which continuously 

analyzes streaming telemetry data to identify anomalies between the measurements and the derived 

baselines, or deviations resulting in anomalous patterns being identified. Diagnosis detected faults or 

anomalies and their potential causes by studying the spreading of a disruption across the network in 

computational topology and past data of incidents over a period. Prediction considered the likely 

evolution of the infrastructure given the conditions at a given moment in time through degradation 

timelines and expected disruptions in the processing phases. The Decide stage synthesizes diagnosis and 

prognosis results to select the optimum remediation strategy from a set of interventions, considering their 

costs and expected benefits [8]. The Act stage executes the selected remediation strategy using 

orchestration interfaces by requesting resource provisioning, migrating workloads, and changing 

configurations of components of the distributed platform. The Verify stage monitors operational 

infrastructure, tracking the value of remedial efforts through metrics governing stabilization and 

irregularity resolution. The Learn stage incorporates operational outcomes via conduits of model 

refinement, adjusting detection sensitivity thresholds, prediction accuracy boundaries, and determination 

policy coefficients depending on remedial impact observed, improving operational infrastructure 

performance via autonomously evolving capabilities. 

 

Table 3: AI-Native Component Specifications [7, 8] 

 



Yogesh Pugazhendhi Duraisamy Rajamani 

 

446 
 

Component 
Architecture 

Type 
Input Features 

Output 

Products 

Operationa

l Phase 

Temporal 

Scope 

Anomaly 

Detection 

Engine 

Hybrid GNN 

+ 

Transformer 

Operator 

throughput, buffer 

occupancy, 

checkpoint 

duration, and 

communication 

latency 

Probabilistic 

anomaly scores, 

subgraph 

highlights 

Detection, 

Diagnosis 
Real-time 

Predictive 

Fault 

Modeling 

LSTM 

Networks 

Queue growth, 

latency 

distributions, 

backpressure 

patterns, and 

hardware health 

Future state 

projections, 

confidence 

intervals 

Prediction 

Short- to 

medium-

term 

RL Decision 

Engine 

Policy 

Network 

System metrics, 

anomaly outputs, 

workload 

characteristics 

Action 

probability 

distributions, 

intervention 

selection 

Decide, Act Real-time 

Autonomous 

Healing Loop 

Seven-Phase 

Cycle 

Multi-source 

telemetry, historical 

outcomes 

Remediation 

directives, 

performance 

feedback 

All phases Continuous 

 

V. Experimental Evaluation and Discussion 

 

5.1 Experimental Setup and Evaluation Metrics 

The experimental validation apparatus applies exhaustive measurement protocols to quantify the effective 

potency of the autonomous healing infrastructure over a range of key operational dimensions. Downtime 

reduction measurements quantify the aggregate duration of service unavailability experienced under 

baseline conditions with manual intervention, versus deployments with autonomous healing, across the 

various dimensions. Latency stability tests compute the variance of the processing delay, measuring the 

capability of the infrastructure to keep its response features unchanged despite disturbances to the 

underlying platform and load conditions. Fault containment potency measure is based on the 

measurement of spatial fault boundaries, that is, the capability of the infrastructure to localize the 

disturbances within computing domains. The resource usage productivity metric evaluates resource usage 

properties of a computational resource provisioning, comparing the self-determined decisions to provision 

to a maximum throughput-to-cost ratio against static provisioning and human-controlled orchestration of 

provisioning. In evaluation frameworks for such metrics, synthetic workload generators are used to 

produce controllable event streams. Production traces with specific workload characteristics can then be 

reproduced. Measurement capture describes delay allocation telemetry at millisecond granularity, asset 

consumption trajectories at the second interval, and event-magnitude processing throughput statistics 

across a distributed computing assembly as clearly as possible. 

 

Table 4: Experimental Evaluation Metrics and Workload Configurations [1, 2, 9, 10] 

 

 

 

 



Self-Healing AI-Native Real-Time Data Pipelines: Autonomous Resilience For Large-Scale Streaming Systems 

 

447 
 

Evaluation 

Metric 
Measurement Unit 

Baseline 

Comparison 

Evaluation 

Period 

Collection 

Granularity 

Downtime 

Reduction 

Service 

unavailability 

intervals 

Manual 

intervention 

Extended 

operations 
Event-level 

Latency 

Stability 

Processing delay 

variance 

Static 

configuration 

Continuous 

monitoring 

Millisecond-

resolution 

Fault 

Containment 

Spatial propagation 

boundaries 

Traditional 

isolation 
Per-incident Subgraph-level 

Resource 

Utilization 

Throughput-to-cost 

ratio 

Fixed 

provisioning 

Operational 

lifetime 
Second-interval 

 

5.2 Performance Analysis Across High-Throughput Workloads 

Performance tests use heterogeneous high-throughput workload configurations across operational and 

stress conditions. Steady state tests examine constant event rates near peak capacity boundaries and 

infrastructure behavior under sustained resource contention conditions without inducing artificial 

downtime. Burst tests repeatedly exceed baseline load to probe the ability to reduce demand surges and 

quickly provision additional resources. Degrade tests do not involve an artificial load spike. Instead, they 

simulate the progressive exhaustion of the platform's capacity by gradually increasing latency and adding 

artificial interruptions to evaluate model accuracy and preemptive/predictive actions. Heterogeneous 

workload scenarios combine streaming analytics, stateful aggregation, and complex event processing 

(CEP) operations in one joint execution network, and experiment with various computational and 

resource consumption footprints. A multi-tenant arrangement tests isolated application deployments 

across a shared infrastructure, evaluating autonomous control in a mixed service contention and 

separation environment. A geographic allocation arrangement tests how processing assemblies are split 

across multiple data center regions, subjecting telecommunication to a range of latencies and enforcing 

distributed healing protocol cooperation. 

5.3 Limitations and Challenges 

Despite its efficacy, several drawbacks still need to be addressed before the autonomous healing system 

can be widely applicable. Model drift in dynamic workloads is a critical challenge since streaming 

applications can vary considerably during their life cycles, impacting the ability to precisely recognize 

and predict anomalies, especially when the training data is different from the active environment. In 

practice, refinement protocols for the perpetual model incur a computational cost that needs to be 

managed and orchestrated effectively, so as not to interfere with primary processing workloads. Unseen 

failure configuration sensitivity can be viewed as a supervised learning problem, as novel failure 

classifications with no prior knowledge in the longitudinal training data are often undetected or off-target 

in remediation interventions. Confidence intervals become wider, and performance may degrade during 

instability signatures for which there is no experience. Further, growing the reinforcement learning agent 

would require more exploration time to develop a more complex policy, during which the agent may take 

actions that lead to poorer results for the infrastructure. Successfully balancing exploration needs with 

invariance requires advanced curriculum learning and safety constraints on exploration, at least in the 

initial phases where these invariances are being cultured. 

5.4 Future Research Directions 

Future augmentations will propel autonomous streaming platforms further; digital twin simulations can be 

used for protected policy analysis or to evaluate disruption situations without having any impact on the 

production infrastructure [9]. Additionally, virtual twins, including the characteristics of the production 

platform, can provide accelerated cultivation schedules, synthetic disruption for policy testing at scale, 

and hypothetical tests for optimal bandwidth orchestration. Federated learning for distributed conduits can 

enforce privacy preservation and geographic information sovereignty mandates by allowing the training 

of a distributed model across organizational boundaries while preserving sensitive operational telemetry 



Yogesh Pugazhendhi Duraisamy Rajamani 

 

448 
 

[10]. In the context of multiple organizations deploying similar streaming services, distributed learning 

conventions enable a collaborative approach to improving irregularity detection architectures and 

decision-making algorithms while keeping data custody and competitive integrity locally. Multi-agent 

reinforcement learning approaches extend single-agent decision-making tools to multi-agent synchronous 

optimization in a microservice architecture. Possible application domains include emergent 

synchronization behavior assisting to achieve global infrastructure goals via localized decision-making, 

exploring alternative models to classical, centralized governance approaches for tackling large-scale 

distributed settings. Other areas of research to explore include explainable AI, creating operational 

transparency, transfer learning for quick adaptation across diverse, streaming infrastructures, or quantum-

inspired optimization methods for complex resource allocation processes. 

 

Conclusion 

For large-scale streaming infrastructures where throughput and complexity grow rapidly, monitoring-

based repair as a default response is not viable. Article proposes a self-healing AI-native architecture for 

autonomously resilient streaming infrastructures, which leverages embedded computational intelligence 

for anomaly detection, predictive fault modeling, and reinforcement learning-based decision synthesis in 

the streaming platform control plane. The architecture comprises five layers: ingestion layer, distributed 

computing layer, AI control plane, self-healing orchestration layer, and observability layer, guided by a 

seven-phase autonomous healing loop. Hybrid graph neural networks and transformers are used for 

complex irregularity detection across computer topologies, and LSTM-based forecasting modules are 

used to proactively anticipate and address potential disruptions. Practical reinforcement learning agents 

automatically learn which remediation action from scaling, migration, rerouting, and rebalancing to take 

to move the system towards its goals, given its operational history. Experiments with different high-

throughput workload scenarios show improvements in availability, latency variability, fault isolation, and 

resource utilization. This article lays a foundation for next-generation streaming systems that enable 

workload automation in cloud, hybrid, and edge environments, thereby realizing fully autonomous, 

always-on data infrastructure ecosystems that continuously self-adapt, self-optimize, and self-repair 

throughout their operational lifetime. 

 

References 

[1] P. Rajasekar, et al., "Real-time Stream Processing in IoT Environments," in 2024 Ninth International 

Conference on Science Technology Engineering and Mathematics (ICONSTEM), Chennai, India, June 

28, 2024, pp. 1-6. [Online]. Available: https://ieeexplore.ieee.org/document/10568668 

[2] Ouiam Khattach, et al., "End-to-End Architecture for Real-Time IoT Analytics and Predictive 

Maintenance Using Stream Processing and ML Pipelines," Sensors, vol. 25, no. 9, p. 2945, May 7, 2025. 

[Online]. Available: https://www.mdpi.com/1424-8220/25/9/2945 

[3] Kyriakos M. Deliparaschos, et al., "Facilitating Autonomous Systems with AI-Based Fault Tolerance 

and Computational Resource Economy," Electronics, vol. 9, no. 5, p. 788, May 10, 2020. [Online]. 

Available: https://www.mdpi.com/2079-9292/9/5/788 

[4] Williams Sarah, "A Performance Benchmark of Apache Flink, Apache Spark, and Kafka Streams in 

Real-Time ML Pipelines," ResearchGate Preprint, February 2, 2025. [Online]. Available: 

https://www.researchgate.net/publication/391644409 

[5] Francesco Cosimo Andriulo, et al., "Edge Computing and Cloud Computing for Internet of Things: A 

Review," Informatics, vol. 11, no. 4, p. 71, September 30, 2024. [Online]. Available: 

https://www.mdpi.com/2227-9709/11/4/71 

[6] Alexandros Papanikolaou, et al., "Introducing Responsibly Self-Healing into the Incident 

Management Lifecycle," in Proceedings of the 16th International Conference on Pervasive Technologies 

Related to Assistive Environments (PETRA '23), July 2023. [Online]. Available: 

https://dl.acm.org/doi/fullHtml/10.1145/3594806.3594837 

https://ieeexplore.ieee.org/document/10568668
https://ieeexplore.ieee.org/document/10568668
https://www.mdpi.com/1424-8220/25/9/2945
https://www.mdpi.com/1424-8220/25/9/2945
https://www.mdpi.com/2079-9292/9/5/788
https://www.mdpi.com/2079-9292/9/5/788
https://www.researchgate.net/publication/391644409_A_Performance_Benchmark_of_Apache_Flink_Apache_Spark_and_Kafka_Streams_in_Real-Time_ML_Pipelines
https://www.researchgate.net/publication/391644409_A_Performance_Benchmark_of_Apache_Flink_Apache_Spark_and_Kafka_Streams_in_Real-Time_ML_Pipelines
https://www.researchgate.net/publication/391644409
https://www.mdpi.com/2227-9709/11/4/71
https://www.mdpi.com/2227-9709/11/4/71
https://www.mdpi.com/2227-9709/11/4/71
https://dl.acm.org/doi/fullHtml/10.1145/3594806.3594837
https://dl.acm.org/doi/fullHtml/10.1145/3594806.3594837
https://dl.acm.org/doi/fullHtml/10.1145/3594806.3594837


Self-Healing AI-Native Real-Time Data Pipelines: Autonomous Resilience For Large-Scale Streaming Systems 

 

449 
 

[7] Qian Yang, et al., "Graph Transformer Network Incorporating Sparse Representation for Multivariate 

Time Series Anomaly Detection," Electronics, vol. 13, no. 11, p. 2032, May 23, 2024. [Online]. 

Available: https://www.mdpi.com/2079-9292/13/11/2032 

[8] Mirco Theile, et al., "Position Paper: Deep Reinforcement Learning for Real-Time Resource 

Management," Real-Time Systems, June 5, 2025. [Online]. Available: 

https://link.springer.com/article/10.1007/s11241-025-09443-x 

[9] Han Li and Tianzhen Hong, "A digital twin platform for building performance monitoring and 

optimization: Performance simulation and case studies," Building Simulation, June 13, 2025. [Online]. 

Available: https://link.springer.com/article/10.1007/s12273-025-1290-2 

[10] Bassel Soudan, et al., "Scalability and performance evaluation of federated learning frameworks: a 

comparative analysis," International Journal of Machine Learning and Cybernetics, February 1, 2025. 

[Online]. Available: https://link.springer.com/article/10.1007/s13042-024-02453-4 

https://www.mdpi.com/2079-9292/13/11/2032
https://www.mdpi.com/2079-9292/13/11/2032
https://link.springer.com/article/10.1007/s11241-025-09443-x
https://link.springer.com/article/10.1007/s11241-025-09443-x
https://link.springer.com/article/10.1007/s11241-025-09443-x
https://link.springer.com/article/10.1007/s12273-025-1290-2
https://link.springer.com/article/10.1007/s12273-025-1290-2
https://link.springer.com/article/10.1007/s13042-024-02453-4
https://link.springer.com/article/10.1007/s13042-024-02453-4

