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Abstract

The evolution of 5G networks introduces unprecedented challenges in network
security due to increased complexity, programmability, and distributed architecture.
The User Plane Function (UPF) operates as a critical nexus for traffic forwarding
between User Equipment (UEs) and external data networks, making it a prime
target for cyber attacks such as Denial of Service (DoS) attacks, distributed denial
of service (DDo0S), and intrusion attempts. This article presents a comprehensive
framework for Al-enabled threat detection and screening mechanisms deployed at
the UPF layer. We propose hybrid machine learning algorithms that combine
supervised and unsupervised learning techniques, including Random Forest
classifiers, Long Short-Term Memory (LSTM) networks, Deep Autoencoders, and
ensemble methods to detect anomalous traffic patterns in real-time. Our approach
achieves detection accuracy exceeding 97% while maintaining sub-microsecond
latency through P4-programmable switch integration. This research addresses the
critical security gap in 5G core networks by providing adaptive, autonomous threat
detection capabilities that scale with network complexity. The uncontrolled growth
of the fifth-generation telecommunications networks has brought about
unprecedented complexity in architectures and larger attack surfaces that
fundamentally affect the security paradigms. The User Plane Function, which is the
main data routing element of the 5G core architecture, handles high volumes of
traffic at the same time, keeping latency levels extremely low and thus making it an
especially attractive target of advanced exploitation techniques. Conventional
signature-based detection systems have proven to be fatally insufficient in the face
of the intensity, pace, and dynamism of modern cyber threats against
telecommunications infrastructure. The artificial intelligence-based security systems
that conduct behavioral pattern recognition based on machine learning algorithms
and automated threat identification can become a fundamental feature to protect
critical network infrastructure. The multi-factor risk scoring architecture combines
geographic origin analysis, behavioral baseline comparisons, temporal pattern
recognition, and volumetric anomaly detection to create dynamic threat
examination to allow graduated automated response rules. Repeated learning
processes guarantee the detection capabilities to keep up with the growing threat
scenario by a gradual model refinement in response to the feedback in the
operation. The evidences of deployment show an impressive growth in the speed of
threat detection, an enormous reduction in the number of successful security
incidents, and the near complete removal of false positive alerts that once flooded
security operations centers. The economic value proposition includes benefits over
breach prevention, operational efficiency in automation, and improved functionality
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in supporting mission-critical services with high security requirements. With
telecommunications networks progressing to sixth-generation architectures with
billions of devices being interconnected to support life-need applications, intelligent
automated security features cease to be competitive differentiators and become a
basic operational capability to safeguard infrastructure, customers, and the basic
life-dependent services that are increasingly reliant on secure, reliable connectivity.

Keywords: 5G Security, User Plane Function, Intrusion Detection, Machine
Learning, Anomaly Detection, Deep Learning, Network Traffic Classification.

1. Introduction

1.1 Background and Motivation

The 5G ecosystem represents a paradigm shift in mobile network architecture, transitioning from
monolithic systems to service-based, software-defined architectures that fundamentally reshape
telecommunications infrastructure. This transformation, while enabling unprecedented flexibility and
performance capabilities, introduces new security vectors that challenge conventional protection
mechanisms. The User Plane Function serves as the gateway for all user traffic within the 5G core
network, forwarding data between Radio Access Networks and external networks with stringent
performance requirements. Unlike traditional access control points, the UPF must process traffic at line-
rate speeds, requiring inference latencies measured in nanoseconds rather than milliseconds to maintain
quality of service standards. The 3GPP 5G specifications define the UPF as a critical network slice
component handling packet inspection, filtering, and forwarding functions that touch every data
transaction flowing through the network. However, traditional rule-based security mechanisms prove
inadequate against the growing sophistication of cyber attacks that continuously evolve to circumvent
static defenses. Modern intrusion techniques exploit protocol-level vulnerabilities, application-layer
anomalies, and behavioral deviations that static signatures cannot capture, necessitating intelligent
adaptive security frameworks capable of learning and responding to emerging threat patterns.

1.2 The Security Challenge

5G networks face distinct threat categories that distinguish them from 4G LTE systems, introducing
complexity across multiple architectural layers. Data plane attacks consume network resources through
DoS and DDoS vectors, employing traffic flooding with spoofed packets and session hijacking techniques
that overwhelm processing capacity. Control plane attacks target core network functions, including the
Access and Mobility Management Function, Session Management Function, and Unified Data
Management, through false registration requests, signaling storms, and subscription manipulation
attempts designed to disrupt service provisioning. Slicing attacks exploit network isolation mechanisms
through cross-slice traffic leakage, enabling adversaries to breach logical boundaries and cause service
disruption across network partitions that should remain completely segregated. Side-channel attacks
leverage timing-based vulnerabilities against cryptographic operations and extract sensitive information
through careful analysis of network metrics and behavioral patterns. The UPF's central role in forwarding
traffic through GTP tunnels makes it the optimal collection point for comprehensive threat detection,
providing visibility into all user plane communications flowing between mobile devices and external data
networks.

1.3 Contributions

This article presents a comprehensive threat detection framework providing an integrated system
architecture that combines multiple machine learning algorithms for multi-level anomaly detection across
diverse threat vectors. The framework employs novel hybrid algorithms utilizing ensemble and deep
learning approaches that achieve detection accuracy exceeding 97% while maintaining minimal false
positive rates that would otherwise overwhelm security operations personnel. The implementation
methodology addresses real-time deployment requirements through P4-programmable switch integration,
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enabling line-rate inference at the UPF without introducing unacceptable latency that would degrade user
experience. Performance characterization provides quantified latency, throughput, and resource
consumption metrics demonstrating practical viability for production 5G deployments across diverse
operational environments. Adaptive learning mechanisms implement online model retraining capabilities
that address concept drift and emerging attack patterns, ensuring sustained effectiveness as threat
landscapes evolve and adversaries develop new exploitation techniques targeting 5G infrastructure
vulnerabilities.

2. Security Weaknesses of the Modern 5G Infrastructure.

The architectural change that the fifth-generation networks come with presents multifaceted security
issues that are brought about by the core foundation of the principles of design, which focus on flexibility,
programmability, and differentiation of services. The GSMA finds that 5G security threats are not just
limited to traditional telecommunications issues but also to cloud information infrastructure
vulnerabilities, software supply chain integrity, and complexities that come with the network function
virtualization, wherein many logical networks are running on a common physical infrastructure [1]. The
shift between the proprietary hardware realizations of the network functions to software-based
realizations implemented upon commercial off-the-shelf computing platforms provides attack surfaces
subject to exploitation by adversaries using the traditional information technology security vulnerabilities
of buffer overflow, privilege escalation, and remote code execution. Although providing the ability to
manage the control of the delivery of its services to a wide range of use cases, such as a higher mobile
broadband experience to ultra-reliable and low-latency communications, network slicing architectures
introduce isolation problems, wherein poor operations between tenants may enable lateral traffic to
traverse slices with different security labels.

User Plane Function is vulnerable to exposure of vulnerability, particularly because it is placed in a
position where it is required to handle all the subscriber data traffic and large interface requirements to
access and connect to radio access networks, external data networks, and other core network functions.
The study of machine learning in the context of network security monitoring demonstrates that modern
cybercriminals use even more advanced methods, such as polymorphic malware, encrypted attack traffic,
and low-and-slow exfiltration policies that are actively developed to bypass the surveillance mechanisms
[2]. These challenges have been overcome through the integration of artificial intelligence features into
security monitoring systems, whereby behavioral baselines are determined by conducting large-scale
training on the normal operation of the network, and statistical anomalies that do not follow any usual
patterns are detected even in cases where the attack signature is unknown. The GSMA points out that risk
management needs a holistic approach by continuously evaluating technological dependencies,
conducting defense-in-depth, and security-by-design principles across the network lifecycle, starting with
the deployment stage and continuing with the operational phase [1]. Studies also show that machine
learning models that are trained on wide datasets that cover different attack strategies exhibit better
generalization ability as they are able to detect new variants of threats through feature generation and
pattern identification on high-dimensional traffic features [2].

2.1 Network Intrusion Detection Systems

Traditional Network Intrusion Detection Systems employ signature-based or anomaly-based detection
approaches that represent fundamentally different philosophical orientations toward threat identification.
Signature-based methods maintain databases of known attack patterns, providing low false positive rates
through precise matching against documented exploit characteristics but struggling against novel attacks
that deviate from catalogued signatures. Anomaly-based NIDS establish baselines of normal traffic
behavior through statistical profiling and flag deviations from expected patterns, enabling zero-day attack
detection capabilities at the cost of higher false positive rates that generate excessive alerts requiring
manual investigation. Recent research demonstrates that machine learning approaches can synthesize the
advantages of both paradigms, combining the precision of signature matching with the adaptability of
anomaly detection through intelligent classification algorithms. The KDD Cup dataset, widely used for
intrusion detection evaluation across academic and commercial contexts, contains labeled network
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connections with features capturing protocol-level and session-level characteristics that enable supervised
learning model development. Modern systems leverage extended feature spaces capturing DNS queries,
BGP announcements, and application-layer metrics that provide richer contextual information for
distinguishing malicious from legitimate traffic patterns in contemporary network environments.

2.2 Machine Learning in Network Security

Supervised learning approaches, including Random Forest, Support Vector Machines, and Gradient
Boosting classifiers, have achieved detection rates exceeding conventional thresholds on benchmark
datasets through sophisticated pattern recognition capabilities. Random Forest classifiers demonstrate
particular effectiveness for network intrusion detection due to their robustness to feature scaling, requiring
no normalization while handling mixed feature types that commonly appear in network telemetry data.
These ensemble methods provide feature importance estimation through explicit ranking of discriminative
features via Gini impurity calculations, enabling security analysts to understand which traffic
characteristics most strongly indicate malicious intent. The ensemble strength derives from the
aggregation of multiple decision trees, reducing overfitting risks that plague single-model approaches
when confronted with limited or biased training datasets. Interpretability represents a critical advantage,
as rule extraction enables security analysts comprehension of classification decisions, supporting
regulatory compliance requirements and operational troubleshooting when false classifications occur.
Unsupervised approaches, including k-means clustering and isolation forests, enable detection without
labeled training data, proving particularly valuable in deployment scenarios where attack ground truth
remains unavailable due to the difficulty of obtaining comprehensively annotated real-world network
traffic spanning diverse threat categories.

2.3 Deep Learning Architectures for Anomaly Detection

Long Short-Term Memory neural networks capture temporal dependencies in sequential data through
specialized gating mechanisms, making them suitable for traffic analysis where packet sequences exhibit
patterns indicating malicious behavior across time windows. The bidirectional LSTM variant processes
sequences in both forward and backward directions, enabling context-aware feature extraction that
considers both preceding and subsequent packets when evaluating individual transactions within
communication flows. Deep Autoencoders and Variational Autoencoders learn compressed
representations of normal traffic distributions through unsupervised dimensionality reduction, encoding
high-dimensional feature spaces into compact latent representations. During inference operations,
reconstruction error indicates deviation from normal behavior patterns, with larger errors signaling
potentially malicious traffic that the model cannot accurately reconstruct based on learned normal
distributions. The beta-VAE variant introduces a weighting factor controlling the balance between
reconstruction accuracy and latent space regularization, improving anomaly sensitivity by encouraging
more structured latent representations that better separate normal from anomalous examples.
Convolutional Neural Networks and their one-dimensional variants process traffic packets as sequential
signals, extracting hierarchical spatial features through successive convolution and pooling operations.
Hybrid CNN-LSTM architectures combine spatial feature extraction capabilities with temporal modeling
strengths, achieving state-of-the-art performance on streaming network data by leveraging
complementary representational capacities of different neural network architectures.

2.4 5G-Specific Research

Recent works specifically addressing 5G security propose integration of Network Data Analytics
Function capabilities, leveraging 5G standardized analytics functions embedded within the core network
architecture for threat detection operations. Software-Defined Networking approaches enable
programmable forwarding through the separation of control and data planes, facilitating dynamic policy
application that can rapidly respond to detected threats by modifying forwarding rules across distributed
network infrastructure. Network Function Virtualization enables containerized detection functions co-
located with UPF instances, allowing security capabilities to scale elastically alongside network capacity
while maintaining tight coupling between monitoring and enforcement points. P4-based in-switch
machine learning embeds trained models directly in programmable switches, achieving ultra-low latency
inference by performing classification operations within forwarding hardware rather than requiring packet
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redirection to external analysis platforms that introduce unacceptable delays incompatible with 5G
performance requirements.

Table 1: Security Vulnerabilities in SG Infrastructure [3, 4]

Network Slice

Vulnerability Attack Surface | Primary Risk Factors Explmtatl.on Impact Severity
Category Complexity
UPF Protocol Ma 1fqrmed packet . . Critical service
GTP-U Interface injection, resource Medium to High . .
Weaknesses . disruption
exhaustion attacks
. Default credentials, Unauthorized
Configuration Management . . . . :
internet-accessible Low to Medium [ administrative
Exposure Interfaces . .
administration access
Tenant boundary

Cross-slice data

. Logical Separation| violations, lateral High .
Isolation . compromise
movement potential
. oy H isor .
Virtualization Software ypervisor - . Infrastructure-wide
. vulnerabilities, container High .
Layer Dependencies . compromise
escape scenarios
. Hardware an . Persisten
Supply Chain ardware and Compromised firmware, . ersistent
. Software L . . Very High backdoor
Integrity malicious code insertion .
Components establishment

3. Artificial Intelligence Multi-Factor Risk Score Framework.

The application of artificial intelligence to monitor network security is based on supervised learning
algorithms, in which the classification boundaries that can be used between normal and malicious traffic
patterns are obtained based on exposure to training datasets that contain labeled training instances of both
normal operations and reported cases of attacks. Empirical studies on machine learning-based processes
have shown that ensemble systems comprising multiple classification algorithms, such as decision trees,
support vector machines, and neural networks, are better than single models since the various algorithmic
methods complement one another [2]. The risk scoring architecture works based on feature engineering
tasks that derive useful properties of network telemetry information, such as time trends, protocol-related
features, session properties, and statistical distributions, that, when combined, allow risk assessment
across more than two dimensions. These features that are extracted are subjected to normalization and
transformation processes that guarantee compatibility of algorithms and maximum learning convergence
in the stages of training.

Multi-factor scoring framework incorporates a geographic risk assessment approach, which involves
correlation of the locations of traffic origins to the threat intelligence database managed by means of joint
information exchange between telecommunications companies and cybersecurity agencies. Aspects of
behavioral analysis can be used to create user-defined baselines by observing patterns of communication
over time to identify instances of account compromise in which legitimate credentialing is being used by
unauthorized parties with behavioral patterns that do not conform to norms. Temporal analysis algorithms
detect suspicious timing behavior such as activity during odd hours, bursting behavior that does not
reflect human behavior, and synchronized behavior in multiple accounts, indicating coordinated attack
infrastructure. The research on machine learning has shown that methods of feature importance analysis,
such as permutation importance and SHAP values, allow identifying what characteristics play the greatest
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role in the classification process, which makes it possible to interpret the model and allows security
analysts to interpret how it has been detected [2]. The computation of the risk score uses a weighted
summation of the scores of each factor, and the weight optimization is achieved by training the risk score
on ground-truth labeled datasets to achieve the highest detection rates with the lowest number of false
positive events that would saturate the security operations staff with alerts.

The continuous learning design enforces the online learning processes in which the models update their
parameters gradually as new labeled samples are received and do not have to be retrained entirely, which
allows them to adapt to the changing threat scope and shifting network usage patterns. It has been shown
that transfer learning methods enable models that were originally trained on one system environment to
be fine-tuned to another operational environment, eliminating the large data collection and labeling costs
it often takes to train high-performance classifiers in the first place [2]. The system has feedback loops, in
which security analyst decisions on alert relevance are reformulated and used to tune model parameters in
a human-in-the-loop learning that builds domain expertise to enhance automated detection capabilities
with time. Model performance monitoring uses statistical process control techniques to monitor important
statistics such as precision and recall, as well as area under the receiver operating characteristic curve,
where retraining procedures are invoked when concept drift is detected, when the value of key statistics,
such as precision, recall, and area under the receiver operating characteristic curve are found to have
degraded beyond acceptable levels.

3.1 System Architecture

The proposed framework comprises three interconnected layers that collectively enable comprehensive
threat detection and response capabilities across the 5G User Plane Function. The first layer focuses on
traffic collection and feature extraction, where the UPF intercepts all user plane traffic through GTP
tunnels using packet capture facilities to extract features without disrupting forwarding operations that
must maintain line-rate performance. Feature extraction occurs in-line through packet manipulation
libraries in software implementations and specialized hardware components in production deployments.
Feature categories encompass flow-level characteristics, including source and destination [P addresses,
port numbers, protocol types, and IP options that identify communication endpoints and transport
mechanisms. Temporal features capture packet inter-arrival times, flow duration, packet count, and byte
count that reveal timing patterns indicative of automated attack tools versus human-generated traffic.
Packet-level features examine packet size distribution, TCP flags, TTL values, and DSCP markings that
provide protocol-specific insights into communication characteristics. Behavioral features calculate the
entropy of destination ports, rate of unique connections, and repeated retry attempts that distinguish
scanning and reconnaissance activities from legitimate application behaviors. Slice-level features
incorporate Single Network Slice Selection Assistance Information and network slice assignment data
unique to 5G architectures, enabling detection of cross-slice attacks that exploit logical isolation
boundaries.

The second layer implements multi-model threat detection where multiple machine learning models
operate in parallel, each optimized for specific threat categories to leverage complementary detection
capabilities. The Random Forest Classifier performs real-time classification into benign and malicious
categories using engineered features, providing robust baseline detection with interpretable decision logic.
The LSTM Sequence Analyzer conducts temporal pattern detection, flagging unusual traffic sequences
that manifest across time windows, identifying attack patterns that emerge through packet ordering rather
than individual transaction characteristics. The Deep Autoencoder performs unsupervised anomaly
detection through reconstruction error thresholding, identifying novel threats that deviate from learned
normal traffic distributions without requiring explicit attack signatures. Ensemble Voting aggregates
model outputs through a weighted combination based on historical accuracy per threat category,
emphasizing models that have demonstrated superior performance for specific attack types while
maintaining detection diversity. The third layer handles response and enforcement, where detected threats
trigger graduated responses calibrated to confidence levels and potential impact. Low confidence
anomalies scoring between fifty and seventy percent trigger logging and monitoring with increased
feature collection, enabling further analysis without disrupting potentially legitimate traffic. Medium
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confidence detections scoring between seventy and eighty-five percent initiate rate limiting and traffic
prioritization changes that constrain suspicious flows while maintaining limited connectivity. High
confidence threats exceeding eighty-five percent result in traffic dropping or redirection to honeypots for
further analysis, immediately protecting network resources while capturing attack artifacts for intelligence

development.

o Flow Identifiers
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Fig. 1: 5G Network Feature Space Design [5, 6]

Table 2: Multi-Factor Risk Scoring Components [5, 6]

Risk Factor . Weight False
Category Input Features Detection Methodology Contribution |Positive Rate
Geographic IP geolocation, ASN Threa‘F 1ntelhgenc§ .
L . . correlation, geospatial [Moderate to High| Low
Origin reputation, country risk scores| .
pattern analysis
. Call patterns, session Baseline comparison,
Behavioral . ) . .
- characteristics, device statistical anomaly High Very Low
Deviation . .
fingerprints detection
Temporal Activity timing, burst Time-series analysis,
Pat tgms characteristics, synchronized circadian rhythm Low to Moderate| Moderate
events modeling
Volumetric Connection frequency, data Statistical process control, Low to
. volumes, and session . Moderate
Metrics Jurations threshold analysis Moderate
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User account age, previous
incidents, and reputation
scores

Historical
Context

Longitudinal analysis, risk

. . . Low to Moderate| Very Low
history integration

4. Machine Learning Algorithms for Threat Detection

4.1 Random Forest Classifier Algorithm
Algorithm 4.1.1: Random Forest Classification
Input:
e Training feature matrix X € R"(nx45)
e Training labels y € {0,1}"n (0=benign, 1=malicious)
e Number of trees T
e Maximum tree depth D
Output:
e Ensemble model RF with T decision trees
e Feature importance scores I € R"45
Procedure RandomForestTrain(X, y, T, D):
trees «— empty list
feature importances < [0] x 45
fort < 1to T do
// Bootstrap aggregation
samples_idx <— RandomSampleWithReplacement(n)
X boot «— X[samples_idx]
y_boot < y[samples idx]
/I Grow decision tree with feature subsampling
node «— BuildDecisionTree(
X boot, y boot,
RandomSubset(45 features, V45),
max_depth=D,
min_samples_split=5
)
trees.append(node)

/I Accumulate feature importance via Gini decrease
feature importances < feature importances + node.gini_importances

// Normalize feature importances
feature importances «— feature importances / sum(feature importances)
return RF(trees, feature importances)
Procedure RandomForestPredict(X test, RF):
predictions «— empty list
probabilities «— empty list
for each sample x _iin X test do
tree_votes «— []
tree_probs «— []
for each tree in RF.trees do
leaf «— TraverseTree(tree, X 1)
vote «— MajorityClass(leaf.training_samples)
prob «— CountClass(label=1, leaf.training_samples) / [leaf.training_samples|
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tree votes.append(vote)
tree_probs.append(prob)

// Ensemble decision through voting
prediction < 1 if mean(tree probs) > 0.5 else 0
probability < mean(tree probs)

predictions.append(prediction)
probabilities.append(probability)

Return predictions, probabilities
Performance Characteristics:
e Training complexity: O(T x n x log(n) x d)
e Inference complexity: O(T x D) per sample
e Memory: O(T % d x nodes_per _tree)
e Typical performance: 95-96% accuracy on KDD Cup '99
e 5G deployment: 2-3 ps latency per packet on modern CPUs
Rationale for 5G Deployment: Random Forest classifiers achieve high accuracy without feature
normalization (critical for handling heterogeneous 5G metrics), provide interpretable feature importance
rankings, and enable efficient hardware implementation through decision tree parallelization.
4.2 LSTM-Based Temporal Anomaly Detection
Algorithm 4.2.1: LSTM Network for Sequential Threat Detection
Input:
e Training sequences S_train € R™(n_train x T _seq X 45)
where T _seq = sequence length (e.g., 30 packets)
e Training labels y train € {0,1}"n_train
e Network configuration: hidden units=128, layers=2, dropout=0.3
Output:
e Trained LSTM model 6* minimizing classification loss
e Temporal feature representations
Procedure LSTMTrain(S_train, y_train, epochs=50, batch_size=32):
0 <« InitializeWeights() // LSTM parameters
for epoch «— 1 to epochs do
// Stochastic gradient descent with mini-batches
for batch in MiniBatches(S_train, y_train, batch_size) do
X batch, y_batch < batch
/I Forward pass through LSTM
ho <— [0]*128 // Initial hidden state
Co «— [0]"128 // Initial cell state

fort — 1toT seqdo
// LSTM cell computation
i t« sigmoid(W iix t+W hi-h {t-1} +b i) //Input gate
f t« sigmoid(W _if'x t+ W hf-h {t-1} +b ) //Forget gate
g t«tanh(W _ig-x t+W hg-h {t-1} +b g) // Candidate cell
0 t<« sigmoid(W io'x t+W ho-h {t-1} +b o) // Output gate

ct—ftOQc {t1}+itO gt /1 Cell state update
h t—o t(O tanh(c t) // Hidden state

// Fully connected classification head
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logits < W _out-h {T seq} +b out
¥ « softmax(logits)

// Compute loss and backpropagation through time (BPTT)
L < -[y _batch-log(§) + (1-y_batch)-log(1-9)]
0«—0-0V 0L(0) / Gradient descent step

return 6*
Procedure LSTMPredict(S_test, 6%):
predictions « []
probabilities «— []
for sequence s iin S_test do
ho < [0]"128
Co < [0]"128
fort< 1toT seqdo
[itft gt ot]«— LSTMCell(s i[t], h {t-1},c {t-1},6%)
ct—ftOQc {t-1}+1itO g t
h t<« o t(© tanh(c t)

// Final classification

logits «— W _out-h {T seq} +b _out
prob « sigmoid(logits[0])

pred < 1 if prob > 0.5 else 0

predictions.append(pred)
probabilities.append(prob)

return predictions, probabilities
Architecture:

e Layer 1: LSTM(128 units, return_sequences=true, dropout=0.3)

e Layer 2: LSTM(128 units, return_sequences=false, dropout=0.3)

e Layer 3: Dense(64 units, relu)

e Qutput: Dense(1, sigmoid)
Performance Characteristics:

e Training complexity: O(epochs X batches x T seq x hidden?)

e Inference complexity: O(T _seq x hidden?) per sequence

e Typical performance: 94-96% accuracy

e 5G deployment: 50-100 ps per sequence on GPU accelerators
Temporal Feature Extraction: LSTM networks capture sequential dependencies where attack patterns
manifest as unusual packet ordering, burstiness, or protocol violations across time windows. Particularly
effective for detecting:

e Slow scans: Distributed port scans with inter-packet delays

e Replay attacks: Repeated session hijacking attempts

e Command injection: Suspicious protocol sequences in application-layer traffic
4.3 Deep Autoencoder for Unsupervised Anomaly Detection
Algorithm 4.3.1: Deep Autoencoder with Reconstruction Error Thresholding
Input:

e Unlabeled training data X normal € R"(n_normal x 45)

(containing only benign traffic)
o Test data X test € R"(n_test x 45)
e Architecture: 45—256—128—32—128—256—45
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e Reconstruction threshold t
Output:
e Anomaly scores for each test sample
e Binary anomaly labels (0=normal, 1=anomalous)
Procedure AutoencoderTrain(X normal, epochs=100, batch_size=32):
// Encoder network
encoder_layers = [
Dense(256, relu, batch norm, dropout=0.2),
Dense(128, relu, batch norm, dropout=0.2),
Dense(32, relu) // Latent bottleneck
]
// Decoder network (mirror architecture)
decoder layers = [
Dense(128, relu, batch norm, dropout=0.2),
Dense(256, relu, batch norm, dropout=0.2),
Dense(45, sigmoid) // Reconstruct to [0,1]
]
autoencoder «<— Sequential(encoder layers + decoder layers)
optimizer «— Adam(I1r=0.001)
loss_fn «— MeanSquaredError()
for epoch «— 1 to epochs do
for batch in MiniBatches(X normal, batch_size) do
X batch « batch
// Forward pass
z «— encoder(X_batch) // Bottleneck encoding
X reconstructed < decoder(z)  // Reconstruction

// Reconstruction loss
L «— MSE(X_batch, X reconstructed)

// Backward pass and parameter update
0—0-aV 6L(0)

return autoencoder

Procedure AnomalyDetection(X _test, autoencoder, 1):
anomaly scores <« []

anomaly labels « []

for sample x_iin X test do

// Reconstruction error as anomaly measure

Z 1« encoder(x_i)

X_i « decoder(z i)

error i« ||x_i-X_i|]2? // L2 reconstruction error
anomaly scores.append(error i)

// Thresholding for binary classification
label i« 1iferror i>rtelse 0
anomaly labels.append(label 1)

return anomaly_scores, anomaly_labels

Threshold Calibration:
// Estimate t from validation set
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errors_val «— ReconstructionErrors(X_val, autoencoder)
T « percentile(errors_val, 95) // 95th percentile
Performance Characteristics:
e Training complexity: O(epochs X n x layers X neurons?)
e Inference complexity: O(depth_encoder + depth_decoder) per sample
e Bottleneck compression: 45—32 dimensions (71% reduction)
e Typical performance: 90-94% recall on anomalies (high sensitivity)
e 5G deployment: <5 ps per sample on CPU
Unsupervised Advantages: Autoencoders require only normal traffic during training, eliminating
dependency on labeled attack datasets. Particularly effective for:
e Novel attack detection: Zero-day attacks deviating from normal reconstruction patterns
e Concept drift adaptation: Retraining on recent normal traffic captures evolving benign patterns
e Multi-class anomalies: Single model detecting all attack types without explicit attack training
4.4 Hybrid Ensemble Algorithm with Adaptive Weighting
Algorithm 4.4.1: Weighted Ensemble Voting with Confidence Calibration

Input:
e Random Forest model RF with feature importance scores
e [STM model 8_Istm for temporal analysis
e Autoencoder model AE with reconstruction threshold
e Test sample x_i or sequence s_i

e Model accuracies on validation set: acc_rf, acc_lstm, acc_ae
Output:
e Ensemble anomaly score (0 to 1)
e Final binary classification
e Confidence level and reasoning
Procedure EnsemblePredict(x_iors i, RF, 0 Istm, AE):
// Individual model predictions
rf pred, rf prob < RF.predict(x i)
Istm pred, Istm_prob « 0 Istm.predict(s_i) / Sequence required
ae_score «— AE.reconstruction_error(x_i)
ae_prob « 1 - sigmoid(100x(ae_score - 1)) / Smooth threshold
// Model-specific confidences from training
w_rf« 0.35 // Random Forest weight (robust baseline)
w_lIstm < 0.30 // LSTM weight (temporal patterns)
w_ae <« 0.35 // Autoencoder weight (unsupervised novelty)
// Weighted ensemble aggregation
ensemble prob «— (w_rf'rf prob + w_lIstm-Istm prob +w_ae-ae_prob) /
(w_rf+w _Istm +w_ae)
// Soft voting with agreement threshold
agreement_score «— min(rf prob, Istm_prob, ac_prob)
confidence «— max(ensemble prob, agreement score)
/I Graduated classification
if ensemble prob > 0.85 then
classification «— 1 // Definite threat
action < "DROP"
severity < "HIGH"
else if ensemble prob > (0.70 then
classification «— 1 // Likely threat
action «— "RATE LIMIT"
severity < "MEDIUM"
else if ensemble_prob > 0.50 then
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classification «<— 0 // Probably benign
action « "LOG"
severity < "LOW"

else

classification «<— 0 // Definitely benign

action « "ALLOW"

severity < "NONE"

// Reasoning with feature attribution

top_features «— RF.GetTopKFeatures(k=5) // Top discriminative features
explanation «— GenerateExplanation(

{rf pred, Istm_pred, ae_score},

top_features,

ensemble prob

)

return {

classification: classification,
probability: ensemble prob,
confidence: confidence,
action: action,

severity: severity,
explanation: explanation,
model contributions: {

rf: rf_prob,

Istm: Istm_prob,

ae: ae_prob

}
}

Procedure AdaptiveWeightUpdate(validation_results):

// Online weight adjustment based on model-specific performance
confusion_matrices «— {

rf: ComputeConfusionMatrix(RF, val set),

Istm: ComputeConfusionMatrix(8_Istm, val_set),

ae: ComputeConfusionMatrix(AE, val set)

}

accuracies «— {

rf: (TP+TN)/(TP+TN-+FP+FN) for rf,
Istm: (TP+TN)/(TP+TN+FP+FN) for Istm,
ae: (TP+TN)/(TP+TN+FP+FEN) for ae

}

// Normalize weights proportional to accuracy
total acc «<— sum(accuracies.values())

w_rf «— accuracies[rf] / total acc

w_lIstm <« accuracies|lstm] / total acc

W_ae « accuracies[ae] / total acc

return {w_rf, w_Istm, w_ae}

Performance Characteristics:
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Ensemble Rationale: Combining diverse algorithms leverages complementary strengths—Random
Forest's robustness to feature scaling and interpretability, LSTM's temporal pattern recognition, and
Autoencoder's unsupervised anomaly detection. Weighted voting emphasizes high-performing models
while maintaining diversity.
4.5 Real-Time Feature Engineering Pipeline
Algorithm 4.5.1: Online Feature Computation from Packet Streams
Input:
e Continuous packet stream from UPF GTP tunnels
e Sliding window W (e.g., 30 packets per flow)
e Flow table for maintaining per-flow statistics
Output:
e 45-dimensional feature vectors at window boundaries
e Updated flow statistics
Data Structure FlowState:
src_ip, dst_ip, src_port, dst_port, protocol
pkt count « 0
byte count «— 0
pkt_sizes « []
pkt times « []
tep_flags « []
dst_ports_seen «— set()
dst_ips seen «— set()
retries «— 0
malformed count «— 0
Procedure ProcessPacketStream(packet stream):
flow table « {} // (5-tuple) — FlowState
features_queue « []
for packet in packet stream do
/I Extract 5-tuple flow key
flow_key « (src_ip, dst_ip, src_port, dst_port, protocol)
// Initialize flow state if new
if flow_key not in flow_table then
flow_table[flow key] < FlowState()

flow « flow_table[flow key]

// Update flow statistics

flow.pkt count < flow.pkt count + 1

flow.byte count < flow.byte count + len(packet.payload)
flow.pkt sizes.append(len(packet))

flow.pkt times.append(packet.timestamp)
flow.tcp_flags.append(packet.tcp_flags if TCP else 0)
flow.dst _ports_seen.add(packet.dst_port)
flow.dst_ips_seen.add(packet.dst ip)

// Detect anomalies in packet level
if IsPacketMalformed(packet) then

flow.malformed count «<— flow.malformed count + 1

if DetectRetry(packet) then
flow.retries «— flow.retries + 1
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// Check sliding window condition

if flow.pkt_count mod 30 == 0 then
feature_vector «— ComputeFeatures(flow)
features _queue.append(feature vector)

// Reset for next window or aggregate for sequences
ResetFlowWindow(flow)

return features queue
Procedure ComputeFeatures(flow) — feature vector[45]:
// Temporal metrics
duration «<— max(flow.pkt_times) - min(flow.pkt_times)
pps < flow.pkt count / (duration + €) // Packets per second
bps < flow.byte count / (duration + €) // Bytes per second
// Packet size statistics
sizes « flow.pkt sizes
mean_size «— mean(sizes)
std_size « stddev(sizes)
max_size < max(sizes)
min_size <— min(sizes)
// TCP flag ratios
tcp_count «— count(flag # 0 for flag in flow.tcp flags)
syn_ratio «<— count(flag & SYN for flag in flow.tcp flags) / tcp_count
fin_ratio «— count(flag & FIN for flag in flow.tcp _flags) / tcp_count
rst_ratio < count(flag & RST for flag in flow.tcp flags) / tcp_count
// Inter-arrival time statistics
iats «— [flow.pkt times[i+1] - flow.pkt times[i] for i in range(len(times)-1)]
iat mean «— mean(iats)
iat std « stddev(iats)
iat max «— max(iats)
// Behavioral features
unique_ports < len(flow.dst ports_seen)
unique_ips «— len(flow.dst ips_seen)
port_entropy «— Entropy(flow.dst ports seen)
// Construct feature vector
feature vector « [
flow.byte count, pps, bps,
mean_size, std_size, max_size, min_size,
syn_ratio, fin_ratio, rst_ratio,
iat_mean, iat_std, iat_ max,
unique_ports, unique_ips, port_entropy,
flow.retries, flow.malformed count,
... (additional 27 features)
]
return NormalizeFeatures(feature vector)
Performance Characteristics:
e Memory per flow: ~2KB (packet history + statistics)
e Computation per packet: O(1) amortized
e Feature extraction latency: <1 us per packet
e Flow table capacity: 10K-100K concurrent flows
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5. Automated Response and Mitigation Procedures.

The combination of threat detection based on artificial intelligence with an automated response
architecture will allow security systems to stop operating relying on a passive alerting architecture to
active defense frameworks that will automatically take mitigation measures based on risk assessment and
pre-established response policies. The state-of-the-art network solutions provided by Ericsson highlight
the fact that new telecommunications infrastructure is being built on the principles of software-defined
networking and programmable data planes supporting dynamic policies of traffic management being
compiled and updated in centralized control interfaces, without necessarily manually configuring each
network element [3]. The automated response framework uses gradual mitigation measures such that low-
risk anomalies cause an intensified monitoring and recording of the anomaly to enable a forensic
investigation, medium-risk discoveries cause a rate limiting or traffic scan process, and high-risk
identifications cause an immediate isolation or termination of a suspicious session to prevent the
possibility of propagating the damage. These response mechanisms work by communicating with
orchestration platforms in control of virtualized network functionality to impose security policies on
distributed infrastructure elements through standardized application programming interfaces.

Traffic control schemes use quality of service schemes and changes to access control lists to impose
selective blocking of known threats at the expense of allowing users authorized access to the network,
meeting the important goal that security mechanisms must not impose environmentally unacceptable
deficits on user experience and network performance. A study on network security structures presents that
policy-based management frameworks allow security staff to specify reaction plans that encode the risk
tolerance and operational needs of an organization with automated systems effectively implementing
these plans in all threat identifications without the latency and possible mistakes of human intervention
processes [4]. The system ensures that it keeps detailed audit trails that capture all automated actions,
such as elucidation of the detection rationale, the response implemented, and its subsequent outcomes, so
that post-incident analysis can be carried out to determine the effectiveness of the response and what can
be done to the policy to improve. According to the service provider solutions provided by Ericsson, a high
level of automation results in mean time to respond times of hours turning into seconds, which stops the
threat actors from building consistent footholds or stealing sensitive information within the long windows
in which the manual investigation and response processes normally take place [3].

Combining the functions of automated responsiveness and human supervision mechanisms and controls
will enable the critical decision-making process that may include the risk of service interruption or even
the effect of a client to undergo a due review, and the timelines of the risk mitigation, used in place of the
threat mitigation process, to be appropriate. The alert prioritization algorithms utilize the risk scores to
decide which ones are to be dealt with by the actual security analysts and which can be fully automated to
conserve the limited security personnel resources in their efforts to prioritize investigations that the
human judgment and expertise offer the highest level of value. It has been found that carefully
constructed automation systems alleviate alert fatigue through a process of false positives and low-
severity warnings, allowing staff working in security operations centers to use their cognitive capacity to
address sophisticated threat events that need detailed analysis and to develop unique responses [4]. The
automated response structure enforces rollback so that the security teams can undo the mitigation
measures in case further analysis reveals that the legitimate traffic has been mistaken, and there is a
mechanism in place to ensure that the automation framework does not create more disturbance than the
threats that the automation is meant to thwart. The constant review of response performance using metrics
of threat containment rates, false positive effects on authorized users, and time-to-mitigation features
allows the optimization of both detection procedures and automated response procedures, developing
dynamic security models that become better with the experience of their deployment.

5.1 Software Implementation

The software implementation leverages a comprehensive technology stack integrating industry-standard
frameworks and tools optimized for production machine learning deployments in telecommunications
environments. Machine learning frameworks provide model training and inference capabilities supporting
the diverse algorithm architectures employed throughout the threat detection pipeline, enabling efficient
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development, validation, and deployment of classification models. Feature extraction components utilize
packet manipulation libraries and network capture facilities to process raw network traffic streams,
extracting relevant characteristics from protocol headers and payload metadata without disrupting
forwarding operations. Streaming aggregation platforms enable real-time statistical computation across
distributed data sources, processing high-velocity network telemetry to generate the temporal and
behavioral features required for accurate threat assessment. Containerization technologies package
detection components as portable, isolated execution environments deployed through orchestration
platforms that manage scaling, health monitoring, and automated recovery across distributed
infrastructure. Monitoring systems provide comprehensive observability into model performance metrics
and network traffic patterns, utilizing specialized metric collection frameworks for tracking classification
accuracy and dedicated analysis stacks for investigating security events and system behaviors throughout
operational deployments.

Al-Enabled Threat Detection System

UPF + ATD Module (Co-
located VNF)

— GTP—Pp a1 — N6—Pp

Fig. 2: Al-Enabled Threat Detection System

5.2 Hardware Acceleration
P4-based UPF with Embedded ML:
P4 programmable switches enable in-switch ML inference through action tables matching features to
decision rules:

table threat classification {

key = {

hdr.ipv4.src_addr : exact;
hdr.ipv4.dst_addr : exact;
hdr.tcp.flags : exact;
meta.packet rate : range;
meta.unique_ports : range;

H

actions = {

allow_traffic;

rate_limit_traffic;

drop_traffic;

redirect to analysis;

}

size = 10000;

h

action threat_decision_tree() {

// Compiled Random Forest embedded as decision rules
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if (meta.pkt count > 1000 and meta.unique_ports < 10) {
drop_traffic();

} else if (meta.syn ratio > 0.8) {

rate_limit_traffic(100);

}else {

allow_traffic();

h

h

Table 3: Automated Response Protocol Specifications [7, 8]

Risk Level| Score Range Automated Actions Response Latency Service Impact

Bascline to Enhanced logging, passive | Minimal additional

Low Moderate o . . . None to negligible
. monitoring continuation processing
Elevation
Secondary verification . .
. Moderate to onaary’ Sub-second Potential minimal
Medium triggers, increased . ) .
Elevated implementation latency increase

inspection depth

Rate limiting enforcement, | Millisecond-scale | Selective connection

High [Elevated to Critical . - S o
' evated 1o LN ¢ o ffic isolation procedures activation restrictions

Immediate session
Critical |Extreme Deviation|termination, comprehensive
blocking

Near-instantaneous Complete access
execution prevention

Machine learning-guided | Variable based on | Optimized for threat-

Adaptive |Context-Dependent| . )
custom responses scenario service balance

6. Operational Impact and Metrics of Performance.

Artificial intelligence-based security systems need to be evaluated based on extensive tests along several
dimensions of performance, such as detection accuracy, operational performance, and economic
performance, among others, in order to fully describe the value proposition of the security systems,
compared to that of traditional security strategies. New studies on Al-based intrusion detection software
also show that machine learning models with both higher detection rates and lower false positive rates
than traditional signature-based systems are even being used with the added advantage of reducing the
false positive rate that has historically dogged the security operations center with high volumes of alerts to
investigate manually [5]. Particular relevance of the performance aspects of Al security systems in
telecommunications settings, where the size of infrastructure under observation leads to an enormous
amount of data requiring human computers to process, means that automated intelligent filtering is the
only viable solution to realistic security applications. Empirical comparisons between operational
deployments indicate that threat detection based on machine learning cuts mean time to detection by
detecting suspicious patterns at near real-time instead of taking the longer durations of time it takes to
investigate security events in a distributed system of network infrastructure manually.

The efficiency gains in operations are not limited to speed of threat detection, but also to significant
benefits in the productivity of security analysts in automating routine investigation tasks and intelligent
prioritization of alerts that identify the highest-risk events that need the most urgent attention. It has been
found that Al security systems allow security operations centers to operate security services with
significantly larger network infrastructures at the same or fewer staffing levels than previously attainable
through conventional methods, significantly changing the economics of telecommunications security by
offering much better scalability properties [5]. The false positive reduction option solves one of the most
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serious issues with security operations, in which analyst burnout due to the need to investigate a large
number of benign incidents, causing over sensitive detection rules, may increase the risk that a real threat
will be ignored or under-prioritized with the noise of customary alerts. Machine learning models trained
to emulate complex decision boundaries using a variety of data sets are highly specific, meaning they are
very sensitive to actual threats, but also offer high levels of sensitivity, unlike simple threshold-based
rules that result in a massive false alarm rate that undermines the confidence of the security system.

The economic effects include not only the direct cost savings due to the improvement of operational
efficiency but also the avoided costs due to the security incidents that may be prevented and lead to a
service interruption, a penalty imposed by the regulatory authority, compensation to the customers, and
the loss of reputation. The studies that analyze the ROI of the Al security measures implemented show
strong value propositions with payback time in months, and not in years, as the principal factor is the
value of breach prevention and the value of efficiency in operations [6]. The financial analysis should
cover the cost of implementation, such as first-time deployment of the system, integration with the current
system, training of staff, and the cost of running the system to maintain the model and carry out
continuous improvement measures. Modern-day telecommunications companies are encountering more
regulatory demands to implement certain security features and experience incident reporting, and Al-
based systems are offering them automated monitoring of compliance and the creation of documentation
to lighten the administrative load of proving compliance with regulatory frameworks. The high-level
security features can also be used in competitive positioning in which telecommunications providers with
enterprise clients and who facilitate the use of critical infrastructure applications can differentiate the level
of security assurance, and Al-based threat detection can become a market need and not an additional
feature [6].

6.1 Experimental Setup

The framework evaluation employed multiple datasets reflecting diverse 5G threat scenarios to
comprehensively assess detection capabilities across varied attack vectors and network conditions. The
KDD Cup dataset served as a baseline reference containing labeled network connections with features
capturing protocol-level and session-level metrics, including attack categories spanning denial of service,
probe reconnaissance, unauthorized access attempts, and remote-to-local exploitations alongside normal
traffic patterns, typically used for algorithm validation across supervised machine learning approaches in
network security contexts. The SG-NIDD dataset provided modern 5G-specific network traffic collected
from simulated 5G testbed environments, incorporating features unique to fifth-generation networks
including Single Network Slice Selection Assistance Information, Quality of Service identifiers, and GTP
header characteristics, with attack types encompassing malformed GTP packets, protocol violations, and
resource exhaustion scenarios distributed across a more balanced traffic composition compared to legacy
datasets. A custom 5G UPF testbed deployment on campus network infrastructure with Open RAN
implementation captured real gNodeB traffic from connected User Equipment devices across multiple
network slices, recording extended periods of normal operational behavior alongside induced attack
scenarios with ground truth annotations provided by network security personnel to ensure accurate
performance evaluation.

Test scenarios encompassed diverse attack methodologies representative of realistic threat landscapes
targeting 5G User Plane Functions in operational environments. The denial of service attack scenario
employed high-volume UDP flooding techniques generating substantial packet rates specifically targeting
UPF processing capacity to evaluate system resilience under resource exhaustion conditions. Port
scanning scenarios executed comprehensive reconnaissance activities across UPF subnet address spaces
to assess detection capabilities for network mapping and vulnerability discovery attempts. Protocol
violation scenarios introduced malformed GTP headers, invalid session identifiers, and spoofed
International Mobile Subscriber Identity values to test detection of specification non-compliance and
impersonation attacks exploiting protocol implementation weaknesses. Slow scanning scenarios
implemented distributed port reconnaissance with deliberately reduced packet transmission rates designed
to evade rate-based detection mechanisms, challenging the system's ability to identify coordinated attacks
operating below traditional alerting thresholds. Session hijacking scenarios executed replay attacks using
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previously captured session tokens to evaluate detection of unauthorized session reuse and credential theft
attempts, representing sophisticated attacks that maintain protocol-level validity while exhibiting
behavioral anomalies detectable through temporal and contextual analysis.

6.2 Results
Accuracy Metrics:
Algorithm Accuracy Precision Recall F1- Latency (us)
Score
Random Forest 96.2% 94.8% 95.6% 95.2% 2.3
LSTM (Seq) 95.1% 92.4% 94.2% 93.3% 75
Autoencoder 92.8% 91.6% 90.2% 90.9% 3.8
Hybrid Ensemble 97.4% 96.2% 97.1% 96.6% 85
Baseline (Rule- 89.3% 87.1% 88.9% 88.0% 1.2
based)

The hybrid ensemble achieves 8.1 percentage points improvement over rule-based approaches while
maintaining acceptable latency for UPF deployment.

Detection by Attack Type:

Attack Type Random Forest | LSTM | Autoencoder | Ensemble
DoS/DDoS 98.2% 96.1% 89.3% 98.7%
Port Scan 94.3% 97.2% 94.1% 97.8%
Protocol Violation 95.8% 91.4% 96.7% 97.1%
Slow Scan 91.2% 94.6% 88.9% 95.3%
Session Hijacking 93.7% 88.2% 91.4% 94.2%

False Positive Analysis:
False positive rates remain critical in operational networks. Our framework achieves:

e Overall FPR: 2.4% (2.4 false alerts per 100 benign flows)

e High-severity FPR: 0.8% (true positives > 85% confidence)

e False negatives: 1.6% (missed attacks, primarily slow scans)
6.3 Latency Analysis for 5G Deployment
Per-packet processing latency characteristics demonstrate the framework's suitability for real-time
deployment in latency-sensitive 5G environments where sub-millisecond response times represent critical
operational requirements. Random Forest inference operations complete within microsecond timeframes,
while Autoencoder inference processing maintains similarly low latency, and LSTM analysis amortized
across packet windows achieves comparable per-packet processing speeds. Ensemble aggregation
combining predictions from multiple models introduces minimal additional overhead, resulting in total
per-packet latency at the 95th percentile remaining within acceptable bounds and 99th percentile latency
maintaining performance characteristics compatible with stringent 5G service level agreements. For 5G
networks handling substantial packet volumes at the User Plane Function, the framework demonstrates
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efficient resource utilization with CPU consumption remaining moderate on modern multi-core processor
architectures, enabling high throughput processing capabilities on standard network link capacities, while
end-to-end delay overhead introduced by security processing remains well below the one-millisecond
latency requirements mandated by ultra-reliable low-latency communication services.

P4 hardware acceleration results demonstrate significant performance improvements when embedding
machine learning models directly into programmable switching infrastructure. Implementing Random
Forest classification logic within P4-programmable switches achieves inference latency enabling true
line-rate processing without introducing forwarding delays, maintaining throughput performance
equivalent to unmonitored traffic flows and avoiding the packet processing slowdowns typically
associated with deep packet inspection and security analysis operations. Memory overhead for storing
decision tree structures remains minimal within switch static random-access memory resources, requiring
only modest storage capacity that represents negligible consumption relative to available hardware
resources. Detection accuracy maintains high performance levels despite necessary precision reductions
when converting floating-point model parameters to fixed-point representations compatible with switch
hardware constraints, demonstrating that slight numerical precision losses during hardware
implementation do not significantly compromise threat detection capabilities while enabling substantial
latency improvements critical for meeting 5G performance requirements.

Table 4: Operational Performance Metrics [9, 10]

Perfi . o . I
errormance Metric Category |Traditional Systems| AI-Driven Systems mprovement
Dimension Factor
. Mean time to Hours-scale detection| Seconds to minutes |Order of magnitude
Threat Detection . . . . . .
identification windows timeframe reduction
Incident Successful breach Baseline security [Substantially reduced Significant
Frequency occurrences posture incidents percentage decrease
Alert False positive Overwhelming Minimal validated Near-complete
Management generation volume daily alerts elimination
Operational | Analyst productivity [Manual investigation|Automated triage and|  Multiple-fold
Efficiency metrics overhead enrichment improvement
. Total cost of High staffing Automated scaling | Positive return on
Economic Impact . . . .
ownership requirements efficiency investment

7. Adaptive Learning and Online Updates

7.1 Concept Drift Handling

Network traffic patterns evolve continuously over time due to multiple dynamic factors that necessitate
adaptive security frameworks capable of maintaining detection accuracy despite changing operational
conditions. Seasonal variations introduce cyclical changes in traffic composition as peak hours exhibit
substantially different characteristics compared to off-peak periods, with user behavior patterns,
application mix, and traffic volumes fluctuating based on time of day, day of week, and calendar events.
New services continually emerge as telecommunications providers deploy novel applications including
video conferencing platforms, augmented reality experiences, and emerging use cases that generate traffic
profiles not present in historical training data. Attack evolution represents an ongoing challenge as
adversaries continuously adapt their techniques to circumvent deployed defenses, developing new
exploitation methods specifically designed to evade detection by learning from unsuccessful attack
attempts. Network expansion introduces heterogeneity as operators integrate new user equipment types,
deploy additional network slices, and expand coverage areas, creating traffic diversity that deviates from
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patterns observed during initial model training periods and requiring continuous adaptation to maintain
security effectiveness across evolving infrastructure configurations.
Our framework implements continuous model retraining:

Algorithm 7.1.1: Online Model Adaptation

Procedure AdaptiveModelRetraining():

detection_window «— 1 hour

retraining_threshold « 5% performance drop

while True do

recent_detections «— GetDetectionsFromWindow(detection window)
// Estimate current performance

current_fpr « EstimateFPR(recent detections)

baseline fpr < HistoricalFPR

if (current_fpr - baseline fpr) > retraining_threshold then
// Collect labeled samples from SOC analysts
trusted labels « GetAnalystAnnotations(recent detections)

// Incrementally retrain models
new_rf « IncrementalRandomForest(RF, trusted labels)
new_ae < RetainAutoencoder(AE, benign_traffic samples)

// Validate on recent data
validation_score < CrossValidate(new_rf, new_ae, holdout_set)

if validation score > current score then
RF < new _rf
AE < new_ae
baseline fpr «— current fpr
Log("Model updated with " + len(trusted labels) + " new samples")

7.2 Federated Learning for Multi-Domain SG Networks

For networks spanning multiple operators or administrative domains, federated learning prevents
centralized data sharing while enabling collaborative threat detection:
Procedure FederatedLearning(local models, aggregation rounds=10):
global model « Initialize(local models[0])

for round in 1 to aggregation rounds do

// Each domain trains locally on its data

updated models « []

for operator in operators do

local data « operator.CollectTrafficForWindow()

local model < TrainModel(operator.local model, local data)
updated models.append(local model)

// Federated averaging (FedAvg)

global _model «— Average(updated models)

// Distribute updated global model to all operators
for operator in operators do

operator.local_model < global model

This approach enables:
e Privacy preservation: Operators retain traffic data locally
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e Collaborative threat intelligence: Shared threat patterns across domains
e Reduced false positives: Larger aggregate training set improves generalization

8. Security Considerations and Limitations

8.1 Adversarial Robustness

Machine learning models face adversarial attacks specifically designed to evade detection through
sophisticated manipulation techniques. Evasion attacks involve adversaries crafting packets that appear
benign while embedding malicious payloads, such as denial of service traffic disguised as legitimate
video streaming through feature mimicry that exploits model decision boundaries. Mitigation strategies
include ensemble voting providing robustness where simultaneously fooling three diverse models requires
substantially stronger constraints, complemented by payload inspection through deep packet inspection
for encrypted traffic metadata, behavior analysis using multi-window temporal analysis to detect
sustained evasion attempts, and deception techniques employing honeypots to detect advanced
reconnaissance activities before attacks materialize. Poisoning attacks involve injection of malicious
training samples corrupting model learned weights, becoming relevant if attackers gain access to training
infrastructure and can influence model development processes. Mitigation approaches encompass strict
data provenance validation ensuring training data integrity, continuous model monitoring for sudden
accuracy drops indicating potential compromise, and human-in-the-loop approval processes for
production model updates preventing automated deployment of corrupted models.

8.2 Model Interpretability

Regulatory compliance requirements including GDPR and 3GPP standards often mandate explainability
of blocking decisions to ensure transparency and accountability in automated enforcement actions. The
framework provides comprehensive interpretability through Random Forest feature importance
highlighting the top discriminative features for each detection decision, LSTM attention mechanisms
visualizing which packets most strongly influenced -classification outcomes, and Autoencoder
reconstruction error analysis identifying feature-wise deviations from normal traffic patterns. Detection
explanations present multi-model consensus including confidence scores, specific features triggering
alerts, temporal pattern anomalies, and recommended actions with justifications, enabling security
analysts to understand decision rationale and validate automated responses against operational context
and organizational policies.

8.3 Privacy Considerations

Traffic analysis inherently risks leaking sensitive information about users, requiring careful privacy
protection mechanisms throughout the detection pipeline. The framework addresses privacy concerns
through aggregated statistics where feature extraction uses only statistical summaries rather than payload
inspection that could expose user communications, data retention limits discarding raw packets after
defined periods while retaining only model-learned patterns, anonymization techniques hashing flow
identifiers with operator-specific salts before logging to prevent user identification, and strict access
controls implementing role-based permissions ensuring only authorized security personnel can access
detection explanations containing potentially sensitive traffic metadata.

Conclusion

The telecommunications sector confronts fundamental security challenges arising from fifth-generation
network architectural complexity, continuously evolving threat landscapes characterized by increasingly
sophisticated adversaries, and operational scale where billions of connected devices generate traffic
volumes surpassing human monitoring capabilities. This comprehensive Al-enabled threat detection
framework specifically designed for 5G User Plane Function security combines Random Forest, LSTM,
and Deep Autoencoder models achieving high detection accuracy while maintaining latency compatible
with stringent performance requirements through optimized feature engineering and hardware
acceleration. Key contributions encompass production-ready algorithms with detailed implementation
specifications, 5G-specific feature engineering capturing unique threat vectors, real-time deployment
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enabling line-rate processing, adaptive learning mechanisms addressing concept drift, and comprehensive
evaluation demonstrating effectiveness against diverse attack scenarios. Future research directions include
reinforcement learning for dynamic response optimization, graph neural networks for detecting
coordinated multi-layer attacks, quantum machine learning for post-quantum cryptographic integration,
and cross-operator threat intelligence sharing enabling federated learning while maintaining competitive
separation.
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