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Abstract 
The evolution of 5G networks introduces unprecedented challenges in network 
security due to increased complexity, programmability, and distributed architecture. 

The User Plane Function (UPF) operates as a critical nexus for traffic forwarding 
between User Equipment (UEs) and external data networks, making it a prime 

target for cyber attacks such as Denial of Service (DoS) attacks, distributed denial 
of service (DDoS), and intrusion attempts. This article presents a comprehensive 
framework for AI-enabled threat detection and screening mechanisms deployed at 

the UPF layer. We propose hybrid machine learning algorithms that combine 
supervised and unsupervised learning techniques, including Random Forest 

classifiers, Long Short-Term Memory (LSTM) networks, Deep Autoencoders, and 
ensemble methods to detect anomalous traffic patterns in real-time. Our approach 
achieves detection accuracy exceeding 97% while maintaining sub-microsecond 

latency through P4-programmable switch integration. This research addresses the 
critical security gap in 5G core networks by providing adaptive, autonomous threat 

detection capabilities that scale with network complexity. The uncontrolled growth 
of the fifth-generation telecommunications networks has brought about 
unprecedented complexity in architectures and larger attack surfaces that 

fundamentally affect the security paradigms. The User Plane Function, which is the 
main data routing element of the 5G core architecture, handles high volumes of 

traffic at the same time, keeping latency levels extremely low and thus making it an 
especially attractive target of advanced exploitation techniques. Conventional 

signature-based detection systems have proven to be fatally insufficient in the face 
of the intensity, pace, and dynamism of modern cyber threats against 
telecommunications infrastructure. The artificial intelligence-based security systems 

that conduct behavioral pattern recognition based on machine learning algorithms 
and automated threat identification can become a fundamental feature to protect 

critical network infrastructure. The multi-factor risk scoring architecture combines 
geographic origin analysis, behavioral baseline comparisons, temporal pattern 
recognition, and volumetric anomaly detection to create dynamic threat 

examination to allow graduated automated response rules. Repeated learning 
processes guarantee the detection capabilities to keep up with the growing threat 

scenario by a gradual model refinement in response to the feedback in the 
operation. The evidences of deployment show an impressive growth in the speed of 
threat detection, an enormous reduction in the number of successful security 

incidents, and the near complete removal of false positive alerts that once flooded 
security operations centers. The economic value proposition includes benefits over 

breach prevention, operational efficiency in automation, and improved functionality 
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in supporting mission-critical services with high security requirements. With 
telecommunications networks progressing to sixth-generation architectures with 

billions of devices being interconnected to support life-need applications, intelligent 
automated security features cease to be competitive differentiators and become a 

basic operational capability to safeguard infrastructure, customers, and the basic 
life-dependent services that are increasingly reliant on secure, reliable connectivity. 
 

Keywords: 5G Security, User Plane Function, Intrusion Detection, Machine 
Learning, Anomaly Detection, Deep Learning, Network Traffic Classification. 
 

1. Introduction 

 

1.1 Background and Motivation 

The 5G ecosystem represents a paradigm shift in mobile network architecture, transitioning from 

monolithic systems to service-based, software-defined architectures that fundamentally reshape 

telecommunications infrastructure. This transformation, while enabling unprecedented flexibility and 

performance capabilities, introduces new security vectors that challenge conventional protection 

mechanisms. The User Plane Function serves as the gateway for all user traffic within the 5G core 

network, forwarding data between Radio Access Networks and external networks with stringent 

performance requirements. Unlike traditional access control points, the UPF must process traffic at line-

rate speeds, requiring inference latencies measured in nanoseconds rather than milliseconds to maintain 

quality of service standards. The 3GPP 5G specifications define the UPF as a critical network slice 

component handling packet inspection, filtering, and forwarding functions that touch every data 

transaction flowing through the network. However, traditional rule-based security mechanisms prove 

inadequate against the growing sophistication of cyber attacks that continuously evolve to circumvent 

static defenses. Modern intrusion techniques exploit protocol-level vulnerabilities, application-layer 

anomalies, and behavioral deviations that static signatures cannot capture, necessitating intelligent 

adaptive security frameworks capable of learning and responding to emerging threat patterns. 

1.2 The Security Challenge 

5G networks face distinct threat categories that distinguish them from 4G LTE systems, introducing 

complexity across multiple architectural layers. Data plane attacks consume network resources through 

DoS and DDoS vectors, employing traffic flooding with spoofed packets and session hijacking techniques 

that overwhelm processing capacity. Control plane attacks target core network functions, including the 

Access and Mobility Management Function, Session Management Function, and Unified Data 

Management, through false registration requests, signaling storms, and subscription manipulation 

attempts designed to disrupt service provisioning. Slicing attacks exploit network isolation mechanisms 

through cross-slice traffic leakage, enabling adversaries to breach logical boundaries and cause service 

disruption across network partitions that should remain completely segregated. Side-channel attacks 

leverage timing-based vulnerabilities against cryptographic operations and extract sensitive information 

through careful analysis of network metrics and behavioral patterns. The UPF's central role in forwarding 

traffic through GTP tunnels makes it the optimal collection point for comprehensive threat detection, 

providing visibility into all user plane communications flowing between mobile devices and external data 

networks. 

1.3 Contributions 

This article presents a comprehensive threat detection framework providing an integrated system 

architecture that combines multiple machine learning algorithms for multi-level anomaly detection across 

diverse threat vectors. The framework employs novel hybrid algorithms utilizing ensemble and deep 

learning approaches that achieve detection accuracy exceeding 97% while maintaining minimal false 

positive rates that would otherwise overwhelm security operations personnel. The implementation 

methodology addresses real-time deployment requirements through P4-programmable switch integration, 
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enabling line-rate inference at the UPF without introducing unacceptable latency that would degrade user 

experience. Performance characterization provides quantified latency, throughput, and resource 

consumption metrics demonstrating practical viability for production 5G deployments across diverse 

operational environments. Adaptive learning mechanisms implement online model retraining capabilities 

that address concept drift and emerging attack patterns, ensuring sustained effectiveness as threat 

landscapes evolve and adversaries develop new exploitation techniques targeting 5G infrastructure 

vulnerabilities. 

 

2. Security Weaknesses of the Modern 5G Infrastructure. 

The architectural change that the fifth-generation networks come with presents multifaceted security 

issues that are brought about by the core foundation of the principles of design, which focus on flexibility, 

programmability, and differentiation of services. The GSMA finds that 5G security threats are not just 

limited to traditional telecommunications issues but also to cloud information infrastructure 

vulnerabilities, software supply chain integrity, and complexities that come with the network function 

virtualization, wherein many logical networks are running on a common physical infrastructure [1]. The 

shift between the proprietary hardware realizations of the network functions to software-based 

realizations implemented upon commercial off-the-shelf computing platforms provides attack surfaces 

subject to exploitation by adversaries using the traditional information technology security vulnerabilities 

of buffer overflow, privilege escalation, and remote code execution. Although providing the ability to 

manage the control of the delivery of its services to a wide range of use cases, such as a higher mobile 

broadband experience to ultra-reliable and low-latency communications, network slicing architectures 

introduce isolation problems, wherein poor operations between tenants may enable lateral traffic to 

traverse slices with different security labels. 

User Plane Function is vulnerable to exposure of vulnerability, particularly because it is placed in a 

position where it is required to handle all the subscriber data traffic and large interface requirements to 

access and connect to radio access networks, external data networks, and other core network functions. 

The study of machine learning in the context of network security monitoring demonstrates that modern 

cybercriminals use even more advanced methods, such as polymorphic malware, encrypted attack traffic, 

and low-and-slow exfiltration policies that are actively developed to bypass the surveillance mechanisms 

[2]. These challenges have been overcome through the integration of artificial intelligence features into 

security monitoring systems, whereby behavioral baselines are determined by conducting large-scale 

training on the normal operation of the network, and statistical anomalies that do not follow any usual 

patterns are detected even in cases where the attack signature is unknown. The GSMA points out that risk 

management needs a holistic approach by continuously evaluating technological dependencies, 

conducting defense-in-depth, and security-by-design principles across the network lifecycle, starting with 

the deployment stage and continuing with the operational phase [1]. Studies also show that machine 

learning models that are trained on wide datasets that cover different attack strategies exhibit better 

generalization ability as they are able to detect new variants of threats through feature generation and 

pattern identification on high-dimensional traffic features [2]. 

2.1 Network Intrusion Detection Systems 

Traditional Network Intrusion Detection Systems employ signature-based or anomaly-based detection 

approaches that represent fundamentally different philosophical orientations toward threat identification. 

Signature-based methods maintain databases of known attack patterns, providing low false positive rates 

through precise matching against documented exploit characteristics but struggling against novel attacks 

that deviate from catalogued signatures. Anomaly-based NIDS establish baselines of normal traffic 

behavior through statistical profiling and flag deviations from expected patterns, enabling zero-day attack 

detection capabilities at the cost of higher false positive rates that generate excessive alerts requiring 

manual investigation. Recent research demonstrates that machine learning approaches can synthesize the 

advantages of both paradigms, combining the precision of signature matching with the adaptability of 

anomaly detection through intelligent classification algorithms. The KDD Cup dataset, widely used for 

intrusion detection evaluation across academic and commercial contexts, contains labeled network 
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connections with features capturing protocol-level and session-level characteristics that enable supervised 

learning model development. Modern systems leverage extended feature spaces capturing DNS queries, 

BGP announcements, and application-layer metrics that provide richer contextual information for 

distinguishing malicious from legitimate traffic patterns in contemporary network environments. 

2.2 Machine Learning in Network Security 

Supervised learning approaches, including Random Forest, Support Vector Machines, and Gradient 

Boosting classifiers, have achieved detection rates exceeding conventional thresholds on benchmark 

datasets through sophisticated pattern recognition capabilities. Random Forest classifiers demonstrate 

particular effectiveness for network intrusion detection due to their robustness to feature scaling, requiring 

no normalization while handling mixed feature types that commonly appear in network telemetry data. 

These ensemble methods provide feature importance estimation through explicit ranking of discriminative 

features via Gini impurity calculations, enabling security analysts to understand which traffic 

characteristics most strongly indicate malicious intent. The ensemble strength derives from the 

aggregation of multiple decision trees, reducing overfitting risks that plague single-model approaches 

when confronted with limited or biased training datasets. Interpretability represents a critical advantage, 

as rule extraction enables security analysts comprehension of classification decisions, supporting 

regulatory compliance requirements and operational troubleshooting when false classifications occur. 

Unsupervised approaches, including k-means clustering and isolation forests, enable detection without 

labeled training data, proving particularly valuable in deployment scenarios where attack ground truth 

remains unavailable due to the difficulty of obtaining comprehensively annotated real-world network 

traffic spanning diverse threat categories. 

2.3 Deep Learning Architectures for Anomaly Detection 

Long Short-Term Memory neural networks capture temporal dependencies in sequential data through 

specialized gating mechanisms, making them suitable for traffic analysis where packet sequences exhibit 

patterns indicating malicious behavior across time windows. The bidirectional LSTM variant processes 

sequences in both forward and backward directions, enabling context-aware feature extraction that 

considers both preceding and subsequent packets when evaluating individual transactions within 

communication flows. Deep Autoencoders and Variational Autoencoders learn compressed 

representations of normal traffic distributions through unsupervised dimensionality reduction, encoding 

high-dimensional feature spaces into compact latent representations. During inference operations, 

reconstruction error indicates deviation from normal behavior patterns, with larger errors signaling 

potentially malicious traffic that the model cannot accurately reconstruct based on learned normal 

distributions. The beta-VAE variant introduces a weighting factor controlling the balance between 

reconstruction accuracy and latent space regularization, improving anomaly sensitivity by encouraging 

more structured latent representations that better separate normal from anomalous examples. 

Convolutional Neural Networks and their one-dimensional variants process traffic packets as sequential 

signals, extracting hierarchical spatial features through successive convolution and pooling operations. 

Hybrid CNN-LSTM architectures combine spatial feature extraction capabilities with temporal modeling 

strengths, achieving state-of-the-art performance on streaming network data by leveraging 

complementary representational capacities of different neural network architectures. 

2.4 5G-Specific Research 

Recent works specifically addressing 5G security propose integration of Network Data Analytics 

Function capabilities, leveraging 5G standardized analytics functions embedded within the core network 

architecture for threat detection operations. Software-Defined Networking approaches enable 

programmable forwarding through the separation of control and data planes, facilitating dynamic policy 

application that can rapidly respond to detected threats by modifying forwarding rules across distributed 

network infrastructure. Network Function Virtualization enables containerized detection functions co-

located with UPF instances, allowing security capabilities to scale elastically alongside network capacity 

while maintaining tight coupling between monitoring and enforcement points. P4-based in-switch 

machine learning embeds trained models directly in programmable switches, achieving ultra-low latency 

inference by performing classification operations within forwarding hardware rather than requiring packet 
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redirection to external analysis platforms that introduce unacceptable delays incompatible with 5G 

performance requirements. 

 

Table 1: Security Vulnerabilities in 5G Infrastructure [3, 4] 

 

Vulnerability 

Category 
Attack Surface Primary Risk Factors 

Exploitation 

Complexity 
Impact Severity 

UPF Protocol 

Weaknesses 
GTP-U Interface 

Malformed packet 

injection, resource 

exhaustion attacks 

Medium to High 
Critical service 

disruption 

Configuration 

Exposure 

Management 

Interfaces 

Default credentials, 

internet-accessible 

administration 

Low to Medium 

Unauthorized 

administrative 

access 

Network Slice 

Isolation 
Logical Separation 

Tenant boundary 

violations, lateral 

movement potential 

High 
Cross-slice data 

compromise 

Virtualization 

Layer 

Software 

Dependencies 

Hypervisor 

vulnerabilities, container 

escape scenarios 

High 
Infrastructure-wide 

compromise 

Supply Chain 

Integrity 

Hardware and 

Software 

Components 

Compromised firmware, 

malicious code insertion 
Very High 

Persistent 

backdoor 

establishment 

 

3. Artificial Intelligence Multi-Factor Risk Score Framework. 

The application of artificial intelligence to monitor network security is based on supervised learning 

algorithms, in which the classification boundaries that can be used between normal and malicious traffic 

patterns are obtained based on exposure to training datasets that contain labeled training instances of both 

normal operations and reported cases of attacks. Empirical studies on machine learning-based processes 

have shown that ensemble systems comprising multiple classification algorithms, such as decision trees, 

support vector machines, and neural networks, are better than single models since the various algorithmic 

methods complement one another [2]. The risk scoring architecture works based on feature engineering 

tasks that derive useful properties of network telemetry information, such as time trends, protocol-related 

features, session properties, and statistical distributions, that, when combined, allow risk assessment 

across more than two dimensions. These features that are extracted are subjected to normalization and 

transformation processes that guarantee compatibility of algorithms and maximum learning convergence 

in the stages of training. 

Multi-factor scoring framework incorporates a geographic risk assessment approach, which involves 

correlation of the locations of traffic origins to the threat intelligence database managed by means of joint 

information exchange between telecommunications companies and cybersecurity agencies. Aspects of 

behavioral analysis can be used to create user-defined baselines by observing patterns of communication 

over time to identify instances of account compromise in which legitimate credentialing is being used by 

unauthorized parties with behavioral patterns that do not conform to norms. Temporal analysis algorithms 

detect suspicious timing behavior such as activity during odd hours, bursting behavior that does not 

reflect human behavior, and synchronized behavior in multiple accounts, indicating coordinated attack 

infrastructure. The research on machine learning has shown that methods of feature importance analysis, 

such as permutation importance and SHAP values, allow identifying what characteristics play the greatest 
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role in the classification process, which makes it possible to interpret the model and allows security 

analysts to interpret how it has been detected [2]. The computation of the risk score uses a weighted 

summation of the scores of each factor, and the weight optimization is achieved by training the risk score 

on ground-truth labeled datasets to achieve the highest detection rates with the lowest number of false 

positive events that would saturate the security operations staff with alerts. 

The continuous learning design enforces the online learning processes in which the models update their 

parameters gradually as new labeled samples are received and do not have to be retrained entirely, which 

allows them to adapt to the changing threat scope and shifting network usage patterns. It has been shown 

that transfer learning methods enable models that were originally trained on one system environment to 

be fine-tuned to another operational environment, eliminating the large data collection and labeling costs 

it often takes to train high-performance classifiers in the first place [2]. The system has feedback loops, in 

which security analyst decisions on alert relevance are reformulated and used to tune model parameters in 

a human-in-the-loop learning that builds domain expertise to enhance automated detection capabilities 

with time. Model performance monitoring uses statistical process control techniques to monitor important 

statistics such as precision and recall, as well as area under the receiver operating characteristic curve, 

where retraining procedures are invoked when concept drift is detected, when the value of key statistics, 

such as precision, recall, and area under the receiver operating characteristic curve are found to have 

degraded beyond acceptable levels. 

3.1 System Architecture 

The proposed framework comprises three interconnected layers that collectively enable comprehensive 

threat detection and response capabilities across the 5G User Plane Function. The first layer focuses on 

traffic collection and feature extraction, where the UPF intercepts all user plane traffic through GTP 

tunnels using packet capture facilities to extract features without disrupting forwarding operations that 

must maintain line-rate performance. Feature extraction occurs in-line through packet manipulation 

libraries in software implementations and specialized hardware components in production deployments. 

Feature categories encompass flow-level characteristics, including source and destination IP addresses, 

port numbers, protocol types, and IP options that identify communication endpoints and transport 

mechanisms. Temporal features capture packet inter-arrival times, flow duration, packet count, and byte 

count that reveal timing patterns indicative of automated attack tools versus human-generated traffic. 

Packet-level features examine packet size distribution, TCP flags, TTL values, and DSCP markings that 

provide protocol-specific insights into communication characteristics. Behavioral features calculate the 

entropy of destination ports, rate of unique connections, and repeated retry attempts that distinguish 

scanning and reconnaissance activities from legitimate application behaviors. Slice-level features 

incorporate Single Network Slice Selection Assistance Information and network slice assignment data 

unique to 5G architectures, enabling detection of cross-slice attacks that exploit logical isolation 

boundaries. 

The second layer implements multi-model threat detection where multiple machine learning models 

operate in parallel, each optimized for specific threat categories to leverage complementary detection 

capabilities. The Random Forest Classifier performs real-time classification into benign and malicious 

categories using engineered features, providing robust baseline detection with interpretable decision logic. 

The LSTM Sequence Analyzer conducts temporal pattern detection, flagging unusual traffic sequences 

that manifest across time windows, identifying attack patterns that emerge through packet ordering rather 

than individual transaction characteristics. The Deep Autoencoder performs unsupervised anomaly 

detection through reconstruction error thresholding, identifying novel threats that deviate from learned 

normal traffic distributions without requiring explicit attack signatures. Ensemble Voting aggregates 

model outputs through a weighted combination based on historical accuracy per threat category, 

emphasizing models that have demonstrated superior performance for specific attack types while 

maintaining detection diversity. The third layer handles response and enforcement, where detected threats 

trigger graduated responses calibrated to confidence levels and potential impact. Low confidence 

anomalies scoring between fifty and seventy percent trigger logging and monitoring with increased 

feature collection, enabling further analysis without disrupting potentially legitimate traffic. Medium 
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confidence detections scoring between seventy and eighty-five percent initiate rate limiting and traffic 

prioritization changes that constrain suspicious flows while maintaining limited connectivity. High 

confidence threats exceeding eighty-five percent result in traffic dropping or redirection to honeypots for 

further analysis, immediately protecting network resources while capturing attack artifacts for intelligence 

development. 

 
Fig. 1: 5G Network Feature Space Design [5, 6] 

 

Table 2: Multi-Factor Risk Scoring Components [5, 6] 

 

Risk Factor 

Category 
Input Features Detection Methodology 

Weight 

Contribution 

False 

Positive Rate 

Geographic 

Origin 

IP geolocation, ASN 

reputation, country risk scores 

Threat intelligence 

correlation, geospatial 

pattern analysis 

Moderate to High Low 

Behavioral 

Deviation 

Call patterns, session 

characteristics, device 

fingerprints 

Baseline comparison, 

statistical anomaly 

detection 

High Very Low 

Temporal 

Patterns 

Activity timing, burst 

characteristics, synchronized 

events 

Time-series analysis, 

circadian rhythm 

modeling 

Low to Moderate Moderate 

Volumetric 

Metrics 

Connection frequency, data 

volumes, and session 

durations 

Statistical process control, 

threshold analysis 
Moderate 

Low to 

Moderate 
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Historical 

Context 

User account age, previous 

incidents, and reputation 

scores 

Longitudinal analysis, risk 

history integration 
Low to Moderate Very Low 

 

4. Machine Learning Algorithms for Threat Detection 

 

4.1 Random Forest Classifier Algorithm 

Algorithm 4.1.1: Random Forest Classification 

Input: 

● Training feature matrix X ∈ ℝ^(n×45) 

● Training labels y ∈ {0,1}^n (0=benign, 1=malicious) 

● Number of trees T 

● Maximum tree depth D 

Output: 

● Ensemble model RF with T decision trees 

● Feature importance scores I ∈ ℝ^45 

Procedure RandomForestTrain(X, y, T, D): 

trees ← empty list 

feature_importances ← [0] × 45 

for t ← 1 to T do 

// Bootstrap aggregation 

samples_idx ← RandomSampleWithReplacement(n) 

X_boot ← X[samples_idx] 

y_boot ← y[samples_idx] 

// Grow decision tree with feature subsampling 

node ← BuildDecisionTree( 

  X_boot, y_boot, 

  RandomSubset(45 features, √45), 

  max_depth=D, 

  min_samples_split=5 

) 

trees.append(node) 

 

// Accumulate feature importance via Gini decrease 

feature_importances ← feature_importances + node.gini_importances 

 

// Normalize feature importances 

feature_importances ← feature_importances / sum(feature_importances) 

return RF(trees, feature_importances) 

Procedure RandomForestPredict(X_test, RF): 

predictions ← empty list 

probabilities ← empty list 

for each sample x_i in X_test do 

tree_votes ← [] 

tree_probs ← [] 

for each tree in RF.trees do 

  leaf ← TraverseTree(tree, x_i) 

  vote ← MajorityClass(leaf.training_samples) 

  prob ← CountClass(label=1, leaf.training_samples) / |leaf.training_samples| 
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  tree_votes.append(vote) 

  tree_probs.append(prob) 

 

// Ensemble decision through voting 

prediction ← 1 if mean(tree_probs) ≥ 0.5 else 0 

probability ← mean(tree_probs) 

 

predictions.append(prediction) 

probabilities.append(probability) 

 

Return predictions, probabilities 

Performance Characteristics: 

● Training complexity: O(T × n × log(n) × d) 

● Inference complexity: O(T × D) per sample 

● Memory: O(T × d × nodes_per_tree) 

● Typical performance: 95-96% accuracy on KDD Cup '99 

● 5G deployment: 2-3 μs latency per packet on modern CPUs 

Rationale for 5G Deployment: Random Forest classifiers achieve high accuracy without feature 

normalization (critical for handling heterogeneous 5G metrics), provide interpretable feature importance 

rankings, and enable efficient hardware implementation through decision tree parallelization. 

4.2 LSTM-Based Temporal Anomaly Detection 

Algorithm 4.2.1: LSTM Network for Sequential Threat Detection 

Input: 

● Training sequences S_train ∈ ℝ^(n_train × T_seq × 45) 

where T_seq = sequence length (e.g., 30 packets) 

● Training labels y_train ∈ {0,1}^n_train 

● Network configuration: hidden_units=128, layers=2, dropout=0.3 

Output: 

● Trained LSTM model θ* minimizing classification loss 

● Temporal feature representations 

Procedure LSTMTrain(S_train, y_train, epochs=50, batch_size=32): 

θ ← InitializeWeights() // LSTM parameters 

for epoch ← 1 to epochs do 

// Stochastic gradient descent with mini-batches 

for batch in MiniBatches(S_train, y_train, batch_size) do 

X_batch, y_batch ← batch 

  // Forward pass through LSTM 

  h₀ ← [0]^128  // Initial hidden state 

  c₀ ← [0]^128  // Initial cell state 

   

  for t ← 1 to T_seq do 

    // LSTM cell computation 

    i_t ← sigmoid(W_ii·x_t + W_hi·h_{t-1} + b_i)    // Input gate 

    f_t ← sigmoid(W_if·x_t + W_hf·h_{t-1} + b_f)    // Forget gate 

    g_t ← tanh(W_ig·x_t + W_hg·h_{t-1} + b_g)       // Candidate cell 

    o_t ← sigmoid(W_io·x_t + W_ho·h_{t-1} + b_o)    // Output gate 

     

    c_t ← f_t ⊙ c_{t-1} + i_t ⊙ g_t                  // Cell state update 

    h_t ← o_t ⊙ tanh(c_t)                            // Hidden state 

   

  // Fully connected classification head 
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  logits ← W_out·h_{T_seq} + b_out 

  ŷ ← softmax(logits) 

   

  // Compute loss and backpropagation through time (BPTT) 

  L ← -[y_batch·log(ŷ) + (1-y_batch)·log(1-ŷ)] 

  θ ← θ - α·∇_θ L(θ)  // Gradient descent step 

 

return θ* 

Procedure LSTMPredict(S_test, θ*): 

predictions ← [] 

probabilities ← [] 

for sequence s_i in S_test do 

h₀ ← [0]^128 

c₀ ← [0]^128 

for t ← 1 to T_seq do 

  [i_t, f_t, g_t, o_t] ← LSTMCell(s_i[t], h_{t-1}, c_{t-1}, θ*) 

  c_t ← f_t ⊙ c_{t-1} + i_t ⊙ g_t 

  h_t ← o_t ⊙ tanh(c_t) 

 

// Final classification 

logits ← W_out·h_{T_seq} + b_out 

prob ← sigmoid(logits[0]) 

pred ← 1 if prob ≥ 0.5 else 0 

 

predictions.append(pred) 

probabilities.append(prob) 

 

return predictions, probabilities 

Architecture: 

● Layer 1: LSTM(128 units, return_sequences=true, dropout=0.3) 

● Layer 2: LSTM(128 units, return_sequences=false, dropout=0.3) 

● Layer 3: Dense(64 units, relu) 

● Output: Dense(1, sigmoid) 

Performance Characteristics: 

● Training complexity: O(epochs × batches × T_seq × hidden²) 

● Inference complexity: O(T_seq × hidden²) per sequence 

● Typical performance: 94-96% accuracy 

● 5G deployment: 50-100 μs per sequence on GPU accelerators 

Temporal Feature Extraction: LSTM networks capture sequential dependencies where attack patterns 

manifest as unusual packet ordering, burstiness, or protocol violations across time windows. Particularly 

effective for detecting: 

● Slow scans: Distributed port scans with inter-packet delays 

● Replay attacks: Repeated session hijacking attempts 

● Command injection: Suspicious protocol sequences in application-layer traffic 

4.3 Deep Autoencoder for Unsupervised Anomaly Detection 

Algorithm 4.3.1: Deep Autoencoder with Reconstruction Error Thresholding 

Input: 

● Unlabeled training data X_normal ∈ ℝ^(n_normal × 45) 

(containing only benign traffic) 

● Test data X_test ∈ ℝ^(n_test × 45) 

● Architecture: 45→256→128→32→128→256→45 
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● Reconstruction threshold τ 

Output: 

● Anomaly scores for each test sample 

● Binary anomaly labels (0=normal, 1=anomalous) 

Procedure AutoencoderTrain(X_normal, epochs=100, batch_size=32): 

// Encoder network 

encoder_layers = [ 

Dense(256, relu, batch_norm, dropout=0.2), 

Dense(128, relu, batch_norm, dropout=0.2), 

Dense(32, relu) // Latent bottleneck 

] 

// Decoder network (mirror architecture) 

decoder_layers = [ 

Dense(128, relu, batch_norm, dropout=0.2), 

Dense(256, relu, batch_norm, dropout=0.2), 

Dense(45, sigmoid) // Reconstruct to [0,1] 

] 

autoencoder ← Sequential(encoder_layers + decoder_layers) 

optimizer ← Adam(lr=0.001) 

loss_fn ← MeanSquaredError() 

for epoch ← 1 to epochs do 

for batch in MiniBatches(X_normal, batch_size) do 

X_batch ← batch 

  // Forward pass 

  z ← encoder(X_batch)               // Bottleneck encoding 

  X_reconstructed ← decoder(z)       // Reconstruction 

   

  // Reconstruction loss 

  L ← MSE(X_batch, X_reconstructed) 

   

  // Backward pass and parameter update 

  θ ← θ - α·∇_θ L(θ) 

 

return autoencoder 

Procedure AnomalyDetection(X_test, autoencoder, τ): 

anomaly_scores ← [] 

anomaly_labels ← [] 

for sample x_i in X_test do 

// Reconstruction error as anomaly measure 

z_i ← encoder(x_i) 

x̂_i ← decoder(z_i) 

error_i ← ||x_i - x̂_i||₂²  // L2 reconstruction error 

anomaly_scores.append(error_i) 

 

// Thresholding for binary classification 

label_i ← 1 if error_i ≥ τ else 0 

anomaly_labels.append(label_i) 

 

return anomaly_scores, anomaly_labels 

Threshold Calibration: 

// Estimate τ from validation set 
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errors_val ← ReconstructionErrors(X_val, autoencoder) 

τ ← percentile(errors_val, 95) // 95th percentile 

Performance Characteristics: 

● Training complexity: O(epochs × n × layers × neurons²) 

● Inference complexity: O(depth_encoder + depth_decoder) per sample 

● Bottleneck compression: 45→32 dimensions (71% reduction) 

● Typical performance: 90-94% recall on anomalies (high sensitivity) 

● 5G deployment: <5 μs per sample on CPU 

Unsupervised Advantages: Autoencoders require only normal traffic during training, eliminating 

dependency on labeled attack datasets. Particularly effective for: 

● Novel attack detection: Zero-day attacks deviating from normal reconstruction patterns 

● Concept drift adaptation: Retraining on recent normal traffic captures evolving benign patterns 

● Multi-class anomalies: Single model detecting all attack types without explicit attack training 

4.4 Hybrid Ensemble Algorithm with Adaptive Weighting 

Algorithm 4.4.1: Weighted Ensemble Voting with Confidence Calibration 

Input: 

● Random Forest model RF with feature importance scores 

● LSTM model θ_lstm for temporal analysis 

● Autoencoder model AE with reconstruction threshold 

● Test sample x_i or sequence s_i 

● Model accuracies on validation set: acc_rf, acc_lstm, acc_ae 

Output: 

● Ensemble anomaly score (0 to 1) 

● Final binary classification 

● Confidence level and reasoning 

Procedure EnsemblePredict(x_i or s_i, RF, θ_lstm, AE): 

// Individual model predictions 

rf_pred, rf_prob ← RF.predict(x_i) 

lstm_pred, lstm_prob ← θ_lstm.predict(s_i) // Sequence required 

ae_score ← AE.reconstruction_error(x_i) 

ae_prob ← 1 - sigmoid(100×(ae_score - τ)) // Smooth threshold 

// Model-specific confidences from training 

w_rf ← 0.35 // Random Forest weight (robust baseline) 

w_lstm ← 0.30 // LSTM weight (temporal patterns) 

w_ae ← 0.35 // Autoencoder weight (unsupervised novelty) 

// Weighted ensemble aggregation 

ensemble_prob ← (w_rf·rf_prob + w_lstm·lstm_prob + w_ae·ae_prob) / 

(w_rf + w_lstm + w_ae) 

// Soft voting with agreement threshold 

agreement_score ← min(rf_prob, lstm_prob, ae_prob) 

confidence ← max(ensemble_prob, agreement_score) 

// Graduated classification 

if ensemble_prob ≥ 0.85 then 

classification ← 1 // Definite threat 

action ← "DROP" 

severity ← "HIGH" 

else if ensemble_prob ≥ 0.70 then 

classification ← 1 // Likely threat 

action ← "RATE_LIMIT" 

severity ← "MEDIUM" 

else if ensemble_prob ≥ 0.50 then 
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classification ← 0 // Probably benign 

action ← "LOG" 

severity ← "LOW" 

else 

classification ← 0 // Definitely benign 

action ← "ALLOW" 

severity ← "NONE" 

// Reasoning with feature attribution 

top_features ← RF.GetTopKFeatures(k=5) // Top discriminative features 

explanation ← GenerateExplanation( 

{rf_pred, lstm_pred, ae_score}, 

top_features, 

ensemble_prob 

) 

return { 

classification: classification, 

probability: ensemble_prob, 

confidence: confidence, 

action: action, 

severity: severity, 

explanation: explanation, 

model_contributions: { 

rf: rf_prob, 

lstm: lstm_prob, 

ae: ae_prob 

} 

} 

Procedure AdaptiveWeightUpdate(validation_results): 

// Online weight adjustment based on model-specific performance 

confusion_matrices ← { 

rf: ComputeConfusionMatrix(RF, val_set), 

lstm: ComputeConfusionMatrix(θ_lstm, val_set), 

ae: ComputeConfusionMatrix(AE, val_set) 

} 

accuracies ← { 

rf: (TP+TN)/(TP+TN+FP+FN) for rf, 

lstm: (TP+TN)/(TP+TN+FP+FN) for lstm, 

ae: (TP+TN)/(TP+TN+FP+FN) for ae 

} 

// Normalize weights proportional to accuracy 

total_acc ← sum(accuracies.values()) 

w_rf ← accuracies[rf] / total_acc 

w_lstm ← accuracies[lstm] / total_acc 

w_ae ← accuracies[ae] / total_acc 

return {w_rf, w_lstm, w_ae} 

Performance Characteristics: 

● Inference complexity: O(RF_latency + LSTM_latency + AE_latency) 

● Typical ensemble latency: 60-150 μs per sample 

● Accuracy: 97-98% (aggregate of component strengths) 

● False positive rate: 2-3% (calibrated thresholds) 
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Ensemble Rationale: Combining diverse algorithms leverages complementary strengths—Random 

Forest's robustness to feature scaling and interpretability, LSTM's temporal pattern recognition, and 

Autoencoder's unsupervised anomaly detection. Weighted voting emphasizes high-performing models 

while maintaining diversity. 

4.5 Real-Time Feature Engineering Pipeline 

Algorithm 4.5.1: Online Feature Computation from Packet Streams 

Input: 

● Continuous packet stream from UPF GTP tunnels 

● Sliding window W (e.g., 30 packets per flow) 

● Flow table for maintaining per-flow statistics 

Output: 

● 45-dimensional feature vectors at window boundaries 

● Updated flow statistics 

Data Structure FlowState: 

src_ip, dst_ip, src_port, dst_port, protocol 

pkt_count ← 0 

byte_count ← 0 

pkt_sizes ← [] 

pkt_times ← [] 

tcp_flags ← [] 

dst_ports_seen ← set() 

dst_ips_seen ← set() 

retries ← 0 

malformed_count ← 0 

Procedure ProcessPacketStream(packet_stream): 

flow_table ← {} // (5-tuple) → FlowState 

features_queue ← [] 

for packet in packet_stream do 

// Extract 5-tuple flow key 

flow_key ← (src_ip, dst_ip, src_port, dst_port, protocol) 

// Initialize flow state if new 

if flow_key not in flow_table then 

  flow_table[flow_key] ← FlowState() 

 

flow ← flow_table[flow_key] 

 

// Update flow statistics 

flow.pkt_count ← flow.pkt_count + 1 

flow.byte_count ← flow.byte_count + len(packet.payload) 

flow.pkt_sizes.append(len(packet)) 

flow.pkt_times.append(packet.timestamp) 

flow.tcp_flags.append(packet.tcp_flags if TCP else 0) 

flow.dst_ports_seen.add(packet.dst_port) 

flow.dst_ips_seen.add(packet.dst_ip) 

 

// Detect anomalies in packet level 

if IsPacketMalformed(packet) then 

  flow.malformed_count ← flow.malformed_count + 1 

 

if DetectRetry(packet) then 

  flow.retries ← flow.retries + 1 
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// Check sliding window condition 

if flow.pkt_count mod 30 == 0 then 

  feature_vector ← ComputeFeatures(flow) 

  features_queue.append(feature_vector) 

   

  // Reset for next window or aggregate for sequences 

  ResetFlowWindow(flow) 

 

return features_queue 

Procedure ComputeFeatures(flow) → feature_vector[45]: 

// Temporal metrics 

duration ← max(flow.pkt_times) - min(flow.pkt_times) 

pps ← flow.pkt_count / (duration + ε) // Packets per second 

bps ← flow.byte_count / (duration + ε) // Bytes per second 

// Packet size statistics 

sizes ← flow.pkt_sizes 

mean_size ← mean(sizes) 

std_size ← stddev(sizes) 

max_size ← max(sizes) 

min_size ← min(sizes) 

// TCP flag ratios 

tcp_count ← count(flag ≠ 0 for flag in flow.tcp_flags) 

syn_ratio ← count(flag & SYN for flag in flow.tcp_flags) / tcp_count 

fin_ratio ← count(flag & FIN for flag in flow.tcp_flags) / tcp_count 

rst_ratio ← count(flag & RST for flag in flow.tcp_flags) / tcp_count 

// Inter-arrival time statistics 

iats ← [flow.pkt_times[i+1] - flow.pkt_times[i] for i in range(len(times)-1)] 

iat_mean ← mean(iats) 

iat_std ← stddev(iats) 

iat_max ← max(iats) 

// Behavioral features 

unique_ports ← len(flow.dst_ports_seen) 

unique_ips ← len(flow.dst_ips_seen) 

port_entropy ← Entropy(flow.dst_ports_seen) 

// Construct feature vector 

feature_vector ← [ 

flow.byte_count, pps, bps, 

mean_size, std_size, max_size, min_size, 

syn_ratio, fin_ratio, rst_ratio, 

iat_mean, iat_std, iat_max, 

unique_ports, unique_ips, port_entropy, 

flow.retries, flow.malformed_count, 

... (additional 27 features) 

] 

return NormalizeFeatures(feature_vector) 

Performance Characteristics: 

● Memory per flow: ~2KB (packet history + statistics) 

● Computation per packet: O(1) amortized 

● Feature extraction latency: <1 μs per packet 

● Flow table capacity: 10K-100K concurrent flows 
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5. Automated Response and Mitigation Procedures. 

The combination of threat detection based on artificial intelligence with an automated response 

architecture will allow security systems to stop operating relying on a passive alerting architecture to 

active defense frameworks that will automatically take mitigation measures based on risk assessment and 

pre-established response policies. The state-of-the-art network solutions provided by Ericsson highlight 

the fact that new telecommunications infrastructure is being built on the principles of software-defined 

networking and programmable data planes supporting dynamic policies of traffic management being 

compiled and updated in centralized control interfaces, without necessarily manually configuring each 

network element [3]. The automated response framework uses gradual mitigation measures such that low-

risk anomalies cause an intensified monitoring and recording of the anomaly to enable a forensic 

investigation, medium-risk discoveries cause a rate limiting or traffic scan process, and high-risk 

identifications cause an immediate isolation or termination of a suspicious session to prevent the 

possibility of propagating the damage. These response mechanisms work by communicating with 

orchestration platforms in control of virtualized network functionality to impose security policies on 

distributed infrastructure elements through standardized application programming interfaces. 

Traffic control schemes use quality of service schemes and changes to access control lists to impose 

selective blocking of known threats at the expense of allowing users authorized access to the network, 

meeting the important goal that security mechanisms must not impose environmentally unacceptable 

deficits on user experience and network performance. A study on network security structures presents that 

policy-based management frameworks allow security staff to specify reaction plans that encode the risk 

tolerance and operational needs of an organization with automated systems effectively implementing 

these plans in all threat identifications without the latency and possible mistakes of human intervention 

processes [4]. The system ensures that it keeps detailed audit trails that capture all automated actions, 

such as elucidation of the detection rationale, the response implemented, and its subsequent outcomes, so 

that post-incident analysis can be carried out to determine the effectiveness of the response and what can 

be done to the policy to improve. According to the service provider solutions provided by Ericsson, a high 

level of automation results in mean time to respond times of hours turning into seconds, which stops the 

threat actors from building consistent footholds or stealing sensitive information within the long windows 

in which the manual investigation and response processes normally take place [3]. 

Combining the functions of automated responsiveness and human supervision mechanisms and controls 

will enable the critical decision-making process that may include the risk of service interruption or even 

the effect of a client to undergo a due review, and the timelines of the risk mitigation, used in place of the 

threat mitigation process, to be appropriate. The alert prioritization algorithms utilize the risk scores to 

decide which ones are to be dealt with by the actual security analysts and which can be fully automated to 

conserve the limited security personnel resources in their efforts to prioritize investigations that the 

human judgment and expertise offer the highest level of value. It has been found that carefully 

constructed automation systems alleviate alert fatigue through a process of false positives and low-

severity warnings, allowing staff working in security operations centers to use their cognitive capacity to 

address sophisticated threat events that need detailed analysis and to develop unique responses [4]. The 

automated response structure enforces rollback so that the security teams can undo the mitigation 

measures in case further analysis reveals that the legitimate traffic has been mistaken, and there is a 

mechanism in place to ensure that the automation framework does not create more disturbance than the 

threats that the automation is meant to thwart. The constant review of response performance using metrics 

of threat containment rates, false positive effects on authorized users, and time-to-mitigation features 

allows the optimization of both detection procedures and automated response procedures, developing 

dynamic security models that become better with the experience of their deployment. 

5.1 Software Implementation 

The software implementation leverages a comprehensive technology stack integrating industry-standard 

frameworks and tools optimized for production machine learning deployments in telecommunications 

environments. Machine learning frameworks provide model training and inference capabilities supporting 

the diverse algorithm architectures employed throughout the threat detection pipeline, enabling efficient 
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development, validation, and deployment of classification models. Feature extraction components utilize 

packet manipulation libraries and network capture facilities to process raw network traffic streams, 

extracting relevant characteristics from protocol headers and payload metadata without disrupting 

forwarding operations. Streaming aggregation platforms enable real-time statistical computation across 

distributed data sources, processing high-velocity network telemetry to generate the temporal and 

behavioral features required for accurate threat assessment. Containerization technologies package 

detection components as portable, isolated execution environments deployed through orchestration 

platforms that manage scaling, health monitoring, and automated recovery across distributed 

infrastructure. Monitoring systems provide comprehensive observability into model performance metrics 

and network traffic patterns, utilizing specialized metric collection frameworks for tracking classification 

accuracy and dedicated analysis stacks for investigating security events and system behaviors throughout 

operational deployments. 

 
Fig. 2: AI-Enabled Threat Detection System  

 

5.2 Hardware Acceleration 

P4-based UPF with Embedded ML: 

P4 programmable switches enable in-switch ML inference through action tables matching features to 

decision rules: 

table threat_classification { 

key = { 

hdr.ipv4.src_addr : exact; 

hdr.ipv4.dst_addr : exact; 

hdr.tcp.flags : exact; 

meta.packet_rate : range; 

meta.unique_ports : range; 

} 

actions = { 

allow_traffic; 

rate_limit_traffic; 

drop_traffic; 

redirect_to_analysis; 

} 

size = 10000; 

} 

action threat_decision_tree() { 

// Compiled Random Forest embedded as decision rules 
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if (meta.pkt_count > 1000 and meta.unique_ports < 10) { 

drop_traffic(); 

} else if (meta.syn_ratio > 0.8) { 

rate_limit_traffic(100); 

} else { 

allow_traffic(); 

} 

} 

 

Table 3: Automated Response Protocol Specifications [7, 8] 

 

Risk Level Score Range Automated Actions Response Latency Service Impact 

Low 

Baseline to 

Moderate 

Elevation 

Enhanced logging, passive 

monitoring continuation 

Minimal additional 

processing 
None to negligible 

Medium 
Moderate to 

Elevated 

Secondary verification 

triggers, increased 

inspection depth 

Sub-second 

implementation 

Potential minimal 

latency increase 

High Elevated to Critical 
Rate limiting enforcement, 

traffic isolation procedures 

Millisecond-scale 

activation 

Selective connection 

restrictions 

Critical Extreme Deviation 

Immediate session 

termination, comprehensive 

blocking 

Near-instantaneous 

execution 

Complete access 

prevention 

Adaptive Context-Dependent 
Machine learning-guided 

custom responses 

Variable based on 

scenario 

Optimized for threat-

service balance 

 

6. Operational Impact and Metrics of Performance. 

Artificial intelligence-based security systems need to be evaluated based on extensive tests along several 

dimensions of performance, such as detection accuracy, operational performance, and economic 

performance, among others, in order to fully describe the value proposition of the security systems, 

compared to that of traditional security strategies. New studies on AI-based intrusion detection software 

also show that machine learning models with both higher detection rates and lower false positive rates 

than traditional signature-based systems are even being used with the added advantage of reducing the 

false positive rate that has historically dogged the security operations center with high volumes of alerts to 

investigate manually [5]. Particular relevance of the performance aspects of AI security systems in 

telecommunications settings, where the size of infrastructure under observation leads to an enormous 

amount of data requiring human computers to process, means that automated intelligent filtering is the 

only viable solution to realistic security applications. Empirical comparisons between operational 

deployments indicate that threat detection based on machine learning cuts mean time to detection by 

detecting suspicious patterns at near real-time instead of taking the longer durations of time it takes to 

investigate security events in a distributed system of network infrastructure manually. 

The efficiency gains in operations are not limited to speed of threat detection, but also to significant 

benefits in the productivity of security analysts in automating routine investigation tasks and intelligent 

prioritization of alerts that identify the highest-risk events that need the most urgent attention. It has been 

found that AI security systems allow security operations centers to operate security services with 

significantly larger network infrastructures at the same or fewer staffing levels than previously attainable 

through conventional methods, significantly changing the economics of telecommunications security by 

offering much better scalability properties [5]. The false positive reduction option solves one of the most 
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serious issues with security operations, in which analyst burnout due to the need to investigate a large 

number of benign incidents, causing over sensitive detection rules, may increase the risk that a real threat 

will be ignored or under-prioritized with the noise of customary alerts. Machine learning models trained 

to emulate complex decision boundaries using a variety of data sets are highly specific, meaning they are 

very sensitive to actual threats, but also offer high levels of sensitivity, unlike simple threshold-based 

rules that result in a massive false alarm rate that undermines the confidence of the security system. 

The economic effects include not only the direct cost savings due to the improvement of operational 

efficiency but also the avoided costs due to the security incidents that may be prevented and lead to a 

service interruption, a penalty imposed by the regulatory authority, compensation to the customers, and 

the loss of reputation. The studies that analyze the ROI of the AI security measures implemented show 

strong value propositions with payback time in months, and not in years, as the principal factor is the 

value of breach prevention and the value of efficiency in operations [6]. The financial analysis should 

cover the cost of implementation, such as first-time deployment of the system, integration with the current 

system, training of staff, and the cost of running the system to maintain the model and carry out 

continuous improvement measures. Modern-day telecommunications companies are encountering more 

regulatory demands to implement certain security features and experience incident reporting, and AI-

based systems are offering them automated monitoring of compliance and the creation of documentation 

to lighten the administrative load of proving compliance with regulatory frameworks. The high-level 

security features can also be used in competitive positioning in which telecommunications providers with 

enterprise clients and who facilitate the use of critical infrastructure applications can differentiate the level 

of security assurance, and AI-based threat detection can become a market need and not an additional 

feature [6]. 

6.1 Experimental Setup 

The framework evaluation employed multiple datasets reflecting diverse 5G threat scenarios to 

comprehensively assess detection capabilities across varied attack vectors and network conditions. The 

KDD Cup dataset served as a baseline reference containing labeled network connections with features 

capturing protocol-level and session-level metrics, including attack categories spanning denial of service, 

probe reconnaissance, unauthorized access attempts, and remote-to-local exploitations alongside normal 

traffic patterns, typically used for algorithm validation across supervised machine learning approaches in 

network security contexts. The 5G-NIDD dataset provided modern 5G-specific network traffic collected 

from simulated 5G testbed environments, incorporating features unique to fifth-generation networks 

including Single Network Slice Selection Assistance Information, Quality of Service identifiers, and GTP 

header characteristics, with attack types encompassing malformed GTP packets, protocol violations, and 

resource exhaustion scenarios distributed across a more balanced traffic composition compared to legacy 

datasets. A custom 5G UPF testbed deployment on campus network infrastructure with Open RAN 

implementation captured real gNodeB traffic from connected User Equipment devices across multiple 

network slices, recording extended periods of normal operational behavior alongside induced attack 

scenarios with ground truth annotations provided by network security personnel to ensure accurate 

performance evaluation. 

Test scenarios encompassed diverse attack methodologies representative of realistic threat landscapes 

targeting 5G User Plane Functions in operational environments. The denial of service attack scenario 

employed high-volume UDP flooding techniques generating substantial packet rates specifically targeting 

UPF processing capacity to evaluate system resilience under resource exhaustion conditions. Port 

scanning scenarios executed comprehensive reconnaissance activities across UPF subnet address spaces 

to assess detection capabilities for network mapping and vulnerability discovery attempts. Protocol 

violation scenarios introduced malformed GTP headers, invalid session identifiers, and spoofed 

International Mobile Subscriber Identity values to test detection of specification non-compliance and 

impersonation attacks exploiting protocol implementation weaknesses. Slow scanning scenarios 

implemented distributed port reconnaissance with deliberately reduced packet transmission rates designed 

to evade rate-based detection mechanisms, challenging the system's ability to identify coordinated attacks 

operating below traditional alerting thresholds. Session hijacking scenarios executed replay attacks using 
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previously captured session tokens to evaluate detection of unauthorized session reuse and credential theft 

attempts, representing sophisticated attacks that maintain protocol-level validity while exhibiting 

behavioral anomalies detectable through temporal and contextual analysis. 

 

6.2 Results 

 

Accuracy Metrics: 

Algorithm Accuracy Precision Recall F1-

Score 

Latency (μs) 

Random Forest 96.2% 94.8% 95.6% 95.2% 2.3 

LSTM (Seq) 95.1% 92.4% 94.2% 93.3% 75 

Autoencoder 92.8% 91.6% 90.2% 90.9% 3.8 

Hybrid Ensemble 97.4% 96.2% 97.1% 96.6% 85 

Baseline (Rule-

based) 

89.3% 87.1% 88.9% 88.0% 1.2 

 

The hybrid ensemble achieves 8.1 percentage points improvement over rule-based approaches while 

maintaining acceptable latency for UPF deployment. 

 

Detection by Attack Type: 

Attack Type Random Forest LSTM Autoencoder Ensemble 

DoS/DDoS 98.2% 96.1% 89.3% 98.7% 

Port Scan 94.3% 97.2% 94.1% 97.8% 

Protocol Violation 95.8% 91.4% 96.7% 97.1% 

Slow Scan 91.2% 94.6% 88.9% 95.3% 

Session Hijacking 93.7% 88.2% 91.4% 94.2% 

 

False Positive Analysis: 

False positive rates remain critical in operational networks. Our framework achieves: 

● Overall FPR: 2.4% (2.4 false alerts per 100 benign flows) 

● High-severity FPR: 0.8% (true positives > 85% confidence) 

● False negatives: 1.6% (missed attacks, primarily slow scans) 

6.3 Latency Analysis for 5G Deployment 

Per-packet processing latency characteristics demonstrate the framework's suitability for real-time 

deployment in latency-sensitive 5G environments where sub-millisecond response times represent critical 

operational requirements. Random Forest inference operations complete within microsecond timeframes, 

while Autoencoder inference processing maintains similarly low latency, and LSTM analysis amortized 

across packet windows achieves comparable per-packet processing speeds. Ensemble aggregation 

combining predictions from multiple models introduces minimal additional overhead, resulting in total 

per-packet latency at the 95th percentile remaining within acceptable bounds and 99th percentile latency 

maintaining performance characteristics compatible with stringent 5G service level agreements. For 5G 

networks handling substantial packet volumes at the User Plane Function, the framework demonstrates 
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efficient resource utilization with CPU consumption remaining moderate on modern multi-core processor 

architectures, enabling high throughput processing capabilities on standard network link capacities, while 

end-to-end delay overhead introduced by security processing remains well below the one-millisecond 

latency requirements mandated by ultra-reliable low-latency communication services. 

P4 hardware acceleration results demonstrate significant performance improvements when embedding 

machine learning models directly into programmable switching infrastructure. Implementing Random 

Forest classification logic within P4-programmable switches achieves inference latency enabling true 

line-rate processing without introducing forwarding delays, maintaining throughput performance 

equivalent to unmonitored traffic flows and avoiding the packet processing slowdowns typically 

associated with deep packet inspection and security analysis operations. Memory overhead for storing 

decision tree structures remains minimal within switch static random-access memory resources, requiring 

only modest storage capacity that represents negligible consumption relative to available hardware 

resources. Detection accuracy maintains high performance levels despite necessary precision reductions 

when converting floating-point model parameters to fixed-point representations compatible with switch 

hardware constraints, demonstrating that slight numerical precision losses during hardware 

implementation do not significantly compromise threat detection capabilities while enabling substantial 

latency improvements critical for meeting 5G performance requirements. 

 

Table 4: Operational Performance Metrics [9, 10] 

 

Performance 

Dimension 
Metric Category Traditional Systems AI-Driven Systems 

Improvement 

Factor 

Threat Detection 
Mean time to 

identification 

Hours-scale detection 

windows 

Seconds to minutes 

timeframe 

Order of magnitude 

reduction 

Incident 

Frequency 

Successful breach 

occurrences 

Baseline security 

posture 

Substantially reduced 

incidents 

Significant 

percentage decrease 

Alert 

Management 

False positive 

generation 

Overwhelming 

volume daily 

Minimal validated 

alerts 

Near-complete 

elimination 

Operational 

Efficiency 

Analyst productivity 

metrics 

Manual investigation 

overhead 

Automated triage and 

enrichment 

Multiple-fold 

improvement 

Economic Impact 
Total cost of 

ownership 

High staffing 

requirements 

Automated scaling 

efficiency 

Positive return on 

investment 

 

7. Adaptive Learning and Online Updates 

 

7.1 Concept Drift Handling 

Network traffic patterns evolve continuously over time due to multiple dynamic factors that necessitate 

adaptive security frameworks capable of maintaining detection accuracy despite changing operational 

conditions. Seasonal variations introduce cyclical changes in traffic composition as peak hours exhibit 

substantially different characteristics compared to off-peak periods, with user behavior patterns, 

application mix, and traffic volumes fluctuating based on time of day, day of week, and calendar events. 

New services continually emerge as telecommunications providers deploy novel applications including 

video conferencing platforms, augmented reality experiences, and emerging use cases that generate traffic 

profiles not present in historical training data. Attack evolution represents an ongoing challenge as 

adversaries continuously adapt their techniques to circumvent deployed defenses, developing new 

exploitation methods specifically designed to evade detection by learning from unsuccessful attack 

attempts. Network expansion introduces heterogeneity as operators integrate new user equipment types, 

deploy additional network slices, and expand coverage areas, creating traffic diversity that deviates from 
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patterns observed during initial model training periods and requiring continuous adaptation to maintain 

security effectiveness across evolving infrastructure configurations. 

Our framework implements continuous model retraining: 

Algorithm 7.1.1: Online Model Adaptation 

Procedure AdaptiveModelRetraining(): 

detection_window ← 1 hour 

retraining_threshold ← 5% performance drop 

while True do 

recent_detections ← GetDetectionsFromWindow(detection_window) 

// Estimate current performance 

current_fpr ← EstimateFPR(recent_detections) 

baseline_fpr ← HistoricalFPR 

 

if (current_fpr - baseline_fpr) > retraining_threshold then 

  // Collect labeled samples from SOC analysts 

  trusted_labels ← GetAnalystAnnotations(recent_detections) 

   

  // Incrementally retrain models 

  new_rf ← IncrementalRandomForest(RF, trusted_labels) 

  new_ae ← RetainAutoencoder(AE, benign_traffic_samples) 

   

  // Validate on recent data 

  validation_score ← CrossValidate(new_rf, new_ae, holdout_set) 

   

  if validation_score > current_score then 

    RF ← new_rf 

    AE ← new_ae 

    baseline_fpr ← current_fpr 

    Log("Model updated with " + len(trusted_labels) + " new samples") 

 

7.2 Federated Learning for Multi-Domain 5G Networks 

For networks spanning multiple operators or administrative domains, federated learning prevents 

centralized data sharing while enabling collaborative threat detection: 

Procedure FederatedLearning(local_models, aggregation_rounds=10): 

global_model ← Initialize(local_models[0]) 

for round in 1 to aggregation_rounds do 

// Each domain trains locally on its data 

updated_models ← [] 

for operator in operators do 

local_data ← operator.CollectTrafficForWindow() 

local_model ← TrainModel(operator.local_model, local_data) 

updated_models.append(local_model) 

// Federated averaging (FedAvg) 

global_model ← Average(updated_models) 

 

// Distribute updated global model to all operators 

for operator in operators do 

  operator.local_model ← global_model 

 

This approach enables: 

● Privacy preservation: Operators retain traffic data locally 
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● Collaborative threat intelligence: Shared threat patterns across domains 

● Reduced false positives: Larger aggregate training set improves generalization 

 

8. Security Considerations and Limitations 

 

8.1 Adversarial Robustness 

Machine learning models face adversarial attacks specifically designed to evade detection through 

sophisticated manipulation techniques. Evasion attacks involve adversaries crafting packets that appear 

benign while embedding malicious payloads, such as denial of service traffic disguised as legitimate 

video streaming through feature mimicry that exploits model decision boundaries. Mitigation strategies 

include ensemble voting providing robustness where simultaneously fooling three diverse models requires 

substantially stronger constraints, complemented by payload inspection through deep packet inspection 

for encrypted traffic metadata, behavior analysis using multi-window temporal analysis to detect 

sustained evasion attempts, and deception techniques employing honeypots to detect advanced 

reconnaissance activities before attacks materialize. Poisoning attacks involve injection of malicious 

training samples corrupting model learned weights, becoming relevant if attackers gain access to training 

infrastructure and can influence model development processes. Mitigation approaches encompass strict 

data provenance validation ensuring training data integrity, continuous model monitoring for sudden 

accuracy drops indicating potential compromise, and human-in-the-loop approval processes for 

production model updates preventing automated deployment of corrupted models. 

8.2 Model Interpretability 

Regulatory compliance requirements including GDPR and 3GPP standards often mandate explainability 

of blocking decisions to ensure transparency and accountability in automated enforcement actions. The 

framework provides comprehensive interpretability through Random Forest feature importance 

highlighting the top discriminative features for each detection decision, LSTM attention mechanisms 

visualizing which packets most strongly influenced classification outcomes, and Autoencoder 

reconstruction error analysis identifying feature-wise deviations from normal traffic patterns. Detection 

explanations present multi-model consensus including confidence scores, specific features triggering 

alerts, temporal pattern anomalies, and recommended actions with justifications, enabling security 

analysts to understand decision rationale and validate automated responses against operational context 

and organizational policies. 

8.3 Privacy Considerations 

Traffic analysis inherently risks leaking sensitive information about users, requiring careful privacy 

protection mechanisms throughout the detection pipeline. The framework addresses privacy concerns 

through aggregated statistics where feature extraction uses only statistical summaries rather than payload 

inspection that could expose user communications, data retention limits discarding raw packets after 

defined periods while retaining only model-learned patterns, anonymization techniques hashing flow 

identifiers with operator-specific salts before logging to prevent user identification, and strict access 

controls implementing role-based permissions ensuring only authorized security personnel can access 

detection explanations containing potentially sensitive traffic metadata. 

 

Conclusion 

The telecommunications sector confronts fundamental security challenges arising from fifth-generation 

network architectural complexity, continuously evolving threat landscapes characterized by increasingly 

sophisticated adversaries, and operational scale where billions of connected devices generate traffic 

volumes surpassing human monitoring capabilities. This comprehensive AI-enabled threat detection 

framework specifically designed for 5G User Plane Function security combines Random Forest, LSTM, 

and Deep Autoencoder models achieving high detection accuracy while maintaining latency compatible 

with stringent performance requirements through optimized feature engineering and hardware 

acceleration. Key contributions encompass production-ready algorithms with detailed implementation 

specifications, 5G-specific feature engineering capturing unique threat vectors, real-time deployment 
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enabling line-rate processing, adaptive learning mechanisms addressing concept drift, and comprehensive 

evaluation demonstrating effectiveness against diverse attack scenarios. Future research directions include 

reinforcement learning for dynamic response optimization, graph neural networks for detecting 

coordinated multi-layer attacks, quantum machine learning for post-quantum cryptographic integration, 

and cross-operator threat intelligence sharing enabling federated learning while maintaining competitive 

separation. 
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