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Abstract 

Artificial intelligence systems have become increasingly energy-intensive. Deep 
learning model training consumes substantial electrical power across the global 

computing infrastructure. The environmental impact of such computational 
demands raises serious sustainability concerns within the machine learning 
community. Federated learning enables decentralized model training across 

distributed edge devices. Local computations occur on individual nodes without 
centralizing raw data. Privacy preservation and reduced communication overhead 

represent primary advantages of federated architectures. However, aggregate 
energy consumption across millions of participating edge devices remains poorly 
characterized. The Green-FL protocol introduces energy-awareness into federated 

learning optimization objectives. Dynamic resource allocation mechanisms classify 
devices based on real-time power source availability. Active nodes connected to 

renewable energy receive priority for training tasks. Battery-powered devices enter 
standby states until sustainable power becomes available. Training schedules adapt 
to fluctuations in clean energy availability across device networks. Experimental 

evaluation demonstrates substantial energy consumption reduction without 
significant accuracy degradation. Convergence time increases moderately due to 

intermittent node availability during low-renewal periods. Carbon emission 
projections indicate meaningful environmental benefits at the deployment scale. 
The accuracy-per-watt optimization metric provides a quantifiable framework for 

sustainable machine learning development. Edge computing environments benefit 
particularly from such energy-conscious training protocols. 
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I. Introduction 

The rapid advancement of artificial intelligence has introduced significant environmental concerns. Deep 

learning models now require substantial computational resources for training. Natural language 

processing models, in particular, demand extensive energy during development. Research has 

demonstrated that training a single large transformer model can emit carbon dioxide equivalent to the 

lifetime emissions of multiple automobiles [1]. The energy consumption associated with neural 

architecture search proves even more alarming. Such iterative optimization processes multiply the carbon 

footprint by orders of magnitude. These findings have prompted the research community to examine the 

sustainability of current machine learning practices [1]. 

The environmental cost extends beyond model training alone. Hyperparameter tuning, model selection, 

and experimental iteration all contribute to aggregate energy demands. Graphics processing units operate 

at high power states for extended durations during these processes. Data centers housing such hardware 

consume electricity at industrial scales. The carbon intensity of this electricity varies based on regional 
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power generation sources. Locations reliant on fossil fuels produce substantially higher emissions per 

computation. This geographical variability introduces additional complexity into sustainability 

assessments [1]. 

Federated learning has emerged as an alternative paradigm for distributed model training. This approach 

enables machine learning on decentralized data without requiring centralized aggregation. Local devices 

perform training computations on their own datasets. Only model updates, rather than raw data, are 

transmitted to coordination servers. This architecture preserves data privacy while reducing 

communication overhead [2]. Applications span multiple domains, including healthcare, finance, and 

mobile services. Sensitive information remains on source devices throughout the training process. The 

framework supports collaboration among multiple parties without exposing proprietary data [2]. 

However, federated learning introduces distinct energy considerations. Edge devices participating in 

training cycles consume additional power for local computations. Smartphones, tablets, and IoT sensors 

possess limited battery capacity. Continuous model training accelerates battery depletion on such devices. 

The aggregate energy impact across millions of participating nodes remains poorly understood. Current 

federated learning protocols prioritize model convergence and communication efficiency. Energy 

consumption at the device level receives minimal attention in existing optimization objectives [2]. 

This gap motivates the development of energy-aware federated learning frameworks. The Green-FL 

protocol proposed herein addresses sustainability within decentralized training contexts. The framework 

incorporates real-time power source information into scheduling decisions. Devices connected to 

renewable energy or grid power receive priority for training tasks. Battery-powered nodes enter standby 

states until sustainable power becomes available. This dynamic allocation balances model development 

requirements with environmental responsibility. 

The protocol reimagines the optimization objective for federated systems. Traditional approaches 

minimize prediction loss as the sole criterion. Green-FL introduces energy efficiency as an explicit 

constraint within this formulation. Training schedules adapt to fluctuations in renewable energy 

availability across the device network. The approach demonstrates that sustainability and model 

performance need not conflict. Computational workloads can align with clean energy supply patterns 

without sacrificing accuracy. This research contributes a practical framework for environmentally 

conscious artificial intelligence development in resource-constrained edge environments. 

 

II. Background and Related Work 

 

A. Energy Consumption in Distributed Learning 

The Federated Averaging algorithm established foundational principles for decentralized model training. 

This approach enables deep network optimization across distributed datasets without centralized data 

collection. Local devices perform multiple epochs of stochastic gradient descent before transmitting 

updates. The central server aggregates these updates through weighted averaging based on local dataset 

sizes. This methodology significantly reduces communication rounds compared to naive distributed 

approaches [3]. The original formulation demonstrated effectiveness on image classification and language 

modeling tasks. Mobile device keyboards served as a primary application domain for this technique. 

Character-level and word-level prediction models achieved competitive performance through federated 

training [3]. 

Communication efficiency constitutes a primary design consideration in federated systems. Network 

bandwidth constraints limit the frequency of model synchronization events. Increasing local computation 

between communication rounds reduces aggregate data transmission requirements. The trade-off between 

computation and communication shapes practical deployment decisions. Devices with limited 

connectivity benefit from extended local training periods. However, extended local training on 

heterogeneous data introduces optimization challenges [3]. Model divergence can occur when local 

datasets exhibit non-identical distributions. The Federated Averaging algorithm addresses this through 

periodic global aggregation. Convergence guarantees depend on the degree of data heterogeneity across 

participating nodes [3]. 
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Statistical heterogeneity presents fundamental challenges for distributed learning systems. Real-world 

federated deployments encounter highly non-uniform data distributions. Each device generates data 

reflecting unique user behavior patterns. This non-independent and identically distributed nature violates 

assumptions underlying standard optimization theory [4]. Model performance can degrade substantially 

under severe distribution skew. Personalization techniques have emerged to address device-specific 

adaptation requirements. Multi-task learning formulations treat each device as a related but distinct 

learning problem. These approaches balance global model utility with local customization needs [4]. 

Systems heterogeneity introduces additional complexity beyond statistical considerations. Participating 

devices exhibit substantial variation in computational capabilities. Processing power, memory capacity, 

and storage availability differ across device populations. Network connectivity quality varies based on 

geographic and temporal factors [4]. Battery constraints limit sustained participation in training activities. 

Devices may become unavailable during training rounds due to power limitations. This intermittent 

availability complicates synchronization and convergence analysis. Stragglers with slow processing 

speeds can delay entire training rounds in synchronous protocols [4]. 

Privacy preservation motivates much federated learning research and deployment. Raw data remains on 

source devices throughout the training process. Only gradient updates or model parameters traverse 

network boundaries. This architecture reduces the exposure of sensitive information to central authorities. 

However, gradient information can potentially reveal details about the underlying training data. 

Differential privacy mechanisms add noise to transmitted updates for enhanced protection. Secure 

aggregation protocols prevent the server from inspecting individual device contributions [4]. The 

intersection of privacy requirements with energy constraints remains underexplored. Energy-efficient 

protocols must maintain privacy guarantees while reducing computational overhead. This balance shapes 

the design space for sustainable federated learning frameworks. 

 

Table 1. Comparison of Federated Learning Challenges and Characteristics [3, 4].  

 

Aspect Description Impact on Energy 

Communication 

Efficiency 

Reduced data transmission through local 

computation 

Lower network energy 

overhead 

Statistical 

Heterogeneity 
Non-IID data distributions across devices 

Variable computational 

requirements 

Systems 

Heterogeneity 

Diverse device capabilities and 

connectivity 

Uneven power consumption 

patterns 

Privacy Preservation 
Gradient updates instead of raw data 

transmission 
Additional encryption overhead 

Synchronization Periodic global model aggregation 
Idle waiting periods increase 

energy waste 

Straggler Effect Slow devices delay training rounds Extended active power states 

 

B. Sustainable Computing Paradigms 

Carbon-aware computing represents an emerging approach to environmentally responsible computation. 

This paradigm schedules workloads based on the carbon intensity of available electricity. Grid carbon 

intensity fluctuates throughout the day based on generation resources. Renewable strength availability 

varies with climate situations and time. Solar technology peaks during midday hours at the same time as 

wind speeds follow extraordinary cycles. Flexible computing tasks can shift to periods of lower carbon 

intensity. Data centers possess substantial flexibility in scheduling batch processing workloads [5]. 

Temporal load shifting exploits variations in carbon intensity over time. Non-urgent computations defer 

to hours when cleaner energy dominates the grid. Real-time carbon intensity signals inform scheduling 

decisions at the workload level. Geographic load shifting provides an additional dimension of 

optimization. Different regions exhibit distinct carbon intensity profiles based on local generation mix. 
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Workloads can migrate to locations with abundant renewable energy availability [5]. This spatial 

flexibility requires a distributed infrastructure spanning multiple grid regions. Cloud computing platforms 

increasingly support such carbon-aware placement decisions. The combination of temporal and spatial 

shifting maximizes emissions reduction potential [5]. 

Demand response integration connects computing infrastructure with grid management systems. Data 

centers can modulate power consumption based on grid operator signals. Peak demand periods often 

coincide with higher carbon intensity generation. Reducing computational load during these periods 

benefits both grid stability and emissions. Predictive models forecast carbon intensity to enable proactive 

scheduling decisions. Machine learning techniques improve the accuracy of these forecasts over time [5]. 

The integration of carbon awareness into computing infrastructure represents a fundamental shift. 

Traditional optimization focused exclusively on performance and cost metrics. Environmental impact 

now enters the objective function as an explicit consideration [5]. 

Quantifying carbon emissions from machine learning remains methodologically challenging. Multiple 

factors influence the environmental footprint of model training. Hardware selection affects energy 

consumption per computation performed. Training duration determines total energy requirements for 

model development. Geographic location determines the carbon intensity of consumed electricity [6]. 

Different regions exhibit order-of-magnitude variations in grid emissions factors. Models trained in coal-

dependent regions produce substantially higher emissions than those trained with renewable power [6]. 

Standardized measurement frameworks enable meaningful comparison across studies. Reporting energy 

consumption alongside model performance metrics promotes transparency. The machine learning 

research community has begun adopting such reporting practices. Carbon calculators estimate emissions 

based on hardware specifications and training duration [6]. These tools raise awareness of the 

environmental costs associated with experimentation. Researchers can make informed decisions about 

computational resource allocation. The trade-off between model improvement and environmental impact 

becomes explicit [6]. 

However, existing carbon measurement approaches focus primarily on centralized training scenarios. 

Distributed and federated learning contexts introduce additional complexity. Edge device energy 

consumption occurs across heterogeneous hardware platforms. Power source information at the device 

level remains largely unavailable. Standard carbon intensity data applies to grid-connected infrastructure. 

Battery-powered mobile devices present distinct measurement challenges. Bridging this gap requires 

novel approaches to energy tracking in federated systems. The Green-FL protocol addresses this 

limitation through device-level power state monitoring. 

 

Table 2.  Carbon-Aware Computing Strategies and Mechanisms [5, 6].  

 

Strategy Mechanism Application Domain 

Temporal Load Shifting 
Defer computation to low-carbon intensity 

periods 

Batch processing 

workloads 

Geographic Load Shifting 
Migrate workloads to regions with 

renewable energy 

Cloud computing 

platforms 

Demand Response 

Integration 

Modulate power based on grid operator 

signals 
Data center operations 

Carbon Intensity 

Forecasting 
Predict renewable availability for scheduling 

Proactive workload 

placement 

Hardware Selection 

Optimization 
Choose energy-efficient processing units 

Model training 

infrastructure 

Emissions Reporting 

Standards 
Track and report carbon footprint metrics Research transparency 

 

III. Proposed Green-FL Protocol 
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A. Mathematical Formulation 

Standard Federated Learning aims to minimize a global loss function F(w), which is a weighted average 

of local loss functions Fk(w) across K devices. The standard objective is defined as: 

min_w F(w)  = \sum_{k = 1}^{K} \frac{n_k}{n} F_k(w) 

 

Where nk is the number of samples on device k, and n is the total sample count. 

Green-FL modifies this objective by introducing an Energy Constraint. We define the energy cost Ek(t) 

for device k at training round t as the sum of computational energy (Ecomp) and communication energy 

(Ecomm): 

 

E_k^t =  E_{comp}(k, t)  +  E_{comm}(k, t) 

 

The Green-FL optimization problem seeks to minimize the global loss subject to a sustainability 

constraint S: 

min_w F(w) 

s. t.\sum_{k \in S_t} \mathbb{I}(Source_k =  Green) \cdot E_k^t \leq \mathcal{B}_{carbon} 

 

Where St is the subset of selected clients, I is an indicator function checking if the power source is 

renewable ("Green"), and Bcarbon is the allowable carbon budget for the training round. 

B. Dynamic Resource Allocation Architecture 

The Green-FL protocol establishes a hierarchical coordination framework for energy-aware federated 

learning. Edge devices transmit power state metadata to central aggregation servers at regular intervals. 

This metadata includes the current power source type and available energy reserves. The aggregation 

server maintains a real-time registry of device availability. Scheduling decisions leverage this registry to 

optimize both model convergence and energy sustainability. 

Resource constraints fundamentally shape the design of edge computing systems. Devices at the network 

periphery possess limited computational capacity. Memory restrictions bound the complexity of local 

model architectures. Communique bandwidth varies primarily based on community situations and tool 

connectivity [7]. Adaptive algorithms need to account for this heterogeneity in aid availability. Control 

mechanisms dynamically adjust training parameters based on observed constraints. The frequency of 

local updates balances computation costs against communication overhead [7]. 

The Green-FL allocation algorithm classifies participating devices into three operational tiers. Active 

training nodes maintain a connection to renewable energy sources or stable grid power. These devices 

receive priority assignment for computationally intensive training tasks. Standby nodes operate on battery 

power with sufficient charge reserves. Such devices remain available for lightweight coordination tasks 

but defer intensive computation. Dormant nodes fall below the minimum charge thresholds required for 

safe participation. The protocol excludes dormant devices from training rounds to preserve device 

longevity [7]. 

Device tier assignments update dynamically as power conditions change. A smartphone transitioning 

from battery to charger moves from standby to active status. Solar-powered IoT sensors shift tiers based 

on ambient light conditions. This fluid classification enables responsive adaptation to fluctuating energy 

availability. The hierarchical structure ensures training proceeds with available sustainable resources [7]. 

C. Energy-Aware Training Scheduling 

Training round initiation depends on sufficient active node availability. The protocol establishes 

minimum thresholds for green-powered device participation. Rounds commence only when renewable 

energy capacity meets computational requirements. This constraint prioritizes environmental 

sustainability over training speed. Model development proceeds at the pace permitted by clean energy 

availability. 

Resource allocation optimization addresses the joint problem of computation and communication. 

Wireless network conditions influence the efficiency of model update transmission. Channel quality 

varies across devices based on location and interference [8]. Optimal resource allocation considers both 
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transmission power and local computation effort. Convergence analysis guides the selection of training 

parameters under resource constraints [8]. 

The Green-FL scheduler dynamically adjusts batch sizes based on aggregate renewable capacity. Periods 

of abundant clean energy support larger batch computations across the device network. Limited 

renewable availability triggers reduced batch sizes to match sustainable capacity. Local epoch counts 

similarly adapt to energy conditions. Extended local training occurs when green-powered nodes can 

sustain prolonged computation [8]. 

This energy-aware scheduling ensures computational intensity correlates with sustainable power 

availability. Arbitrary scheduling parameters give way to environmentally responsive adaptation. The 

protocol decouples training progress from fixed temporal schedules. Model convergence emerges from 

the cumulative contribution of sustainably powered computation. Peak renewable generation periods 

drive accelerated training activity. Low-carbon electricity windows receive preferential utilization for 

intensive model updates [8]. 

 

Table 3. Dynamic Resource Allocation States in Green-FL Protocol [7, 8].  

 

Device 

Tier 
Power Source Training Role 

Scheduling 

Priority 

Active Renewable or grid power Full training participation High 

Standby Battery with sufficient charge Lightweight coordination tasks Medium 

Dormant Below minimum charge threshold Excluded from training rounds None 

 

IV. Experimental Methodology and Results 

 

A. Experimental Setup 

The experimental evaluation employed a simulated distributed environment comprising edge computing 

nodes. Raspberry Pi devices served as the representative hardware platform for IoT applications. 

Heterogeneous power configurations reflected realistic deployment scenarios. Some nodes maintained 

continuous grid power connections. Others operated on battery power with varying charge levels. A 

subset received simulated renewable energy inputs following solar generation patterns. 

The CIFAR-10 image classification dataset provided the training workload for evaluation. Data 

partitioning across nodes introduced realistic distribution characteristics. Non-identical data distributions 

across devices represent a fundamental challenge in federated settings. Standard federated learning 

algorithms assume independent and identically distributed local datasets [9]. Real-world deployments 

violate this assumption due to user-specific data generation patterns. Performance degradation occurs 

when local data distributions diverge significantly from the global distribution [9]. 

Data partitioning strategies in the experiments reflected practical heterogeneity conditions. Each 

simulated device received a subset of classes rather than uniform sampling. This approach created 

realistic non-IID conditions across the device population. The severity of distribution skew varied across 

experimental configurations. Baseline comparisons utilized standard Federated Averaging without energy 

awareness. The Green-FL protocol operated under identical data distribution conditions [9]. 

B. Energy Consumption Analysis 

Energy measurement instrumentation tracked consumption at the device level throughout training. Power 

draw varied based on computational activity and device state. Active training periods exhibited elevated 

energy consumption compared to idle states. The Green-FL protocol reduced aggregate energy 

consumption substantially compared to baseline approaches. This reduction emerged from intelligent 

scheduling rather than reduced total computation. 

The temporal distribution of training activity shifted under energy-aware scheduling. Computation 

concentrated during periods of renewable energy availability. Battery-powered devices contributed 
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minimally to intensive training rounds. Grid-connected nodes absorbed the majority of the computational 

workload. This redistribution maintained model quality while improving sustainability metrics. 

C. Performance and Convergence Analysis 

Model accuracy evaluation compared Green-FL against standard federated averaging baselines. Final 

model performance remained comparable across both approaches. The accuracy differential fell within 

acceptable tolerance bounds for practical applications. Energy-aware constraints did not substantially 

compromise predictive capability. 

Convergence time increased under the Green-FL protocol due to scheduling constraints. Reduced node 

availability during low-renewable periods extended training duration. The trade-off between convergence 

speed and energy sustainability favors environmental responsibility. Many practical applications tolerate 

extended training times for a reduced carbon footprint. 

D. Infrastructure Heterogeneity Considerations 

Large-scale computing infrastructure exhibits substantial performance heterogeneity. Nominally identical 

hardware demonstrates measurable variation in actual performance characteristics. Manufacturing 

differences and operational conditions contribute to this variation [10]. Warehouse-scale computing 

systems contain thousands of servers with differing capabilities. Workload placement decisions can 

exploit this heterogeneity for efficiency gains [10]. 

The Green-FL protocol leverages heterogeneity as an optimization opportunity. Device-level differences 

in power efficiency inform scheduling decisions. More efficient nodes receive preferential assignment 

during constrained periods. Carbon emission modeling incorporated regional electricity generation 

characteristics. Emissions calculations reflected the carbon intensity of consumed electricity. Projected 

savings at deployment scale demonstrated a meaningful environmental impact. The combination of 

energy reduction and carbon-aware scheduling multiplied sustainability benefits [10]. 

 

Table 4. Green-FL Simulation Environment Specifications [9, 10].  

 

Component Configuration Purpose 

Hardware Platform Raspberry Pi nodes Edge device representation 

Dataset CIFAR-10 partitioned Image classification workload 

Data Distribution Non-IID across devices 
Realistic heterogeneity 

simulation 

Power Configurations Grid, battery, and renewable Heterogeneous energy sources 

Baseline Comparison Standard Federated Averaging Performance benchmarking 

Metrics Evaluated 
Energy consumption, accuracy, and 

convergence time 
Multi-objective assessment 

 

Conclusion 

The Green-FL protocol demonstrates the feasibility of integrating sustainability constraints into 

decentralized machine learning frameworks. Environmental responsibility need not compromise model 

performance in federated settings. Dynamic power-aware scheduling achieves substantial energy savings 

through algorithmic innovation rather than hardware modifications alone. Edge devices participating in 

training activities benefit from intelligent workload distribution based on power source characteristics. 

Renewable energy utilization receives prioritization through real-time device classification mechanisms. 

The three-tier allocation architecture effectively balances training requirements against sustainability 

objectives. Model convergence proceeds at the pace permitted by clean energy availability across the 

device network. Temporal flexibility inherent in many machine learning applications enables such 

environmentally conscious scheduling. The accuracy-per-watt metric offers practitioners a concrete 

framework for evaluating true computational costs. Future directions include integration with smart grid 

demand-response infrastructure for enhanced coordination. Carbon intensity forecasting could enable 
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proactive scheduling decisions based on predicted renewable availability. Extension to larger and more 

computationally intensive model architectures warrants further attention. Geographic load shifting across 

distributed infrastructure presents additional optimization opportunities. The principles established 

through the Green-FL framework provide a foundation for responsible artificial intelligence deployment. 

Sustainable system mastering practices are becoming increasingly critical as computing proliferates 

across billions of connected devices globally. 

 

References 

[1] Emma Strubell et al., "Energy and Policy Considerations for Deep Learning in NLP," Proceedings of 

the 57th Annual Meeting of the Association for Computational Linguistics, 2019. [Online]. Available: 

https://aclanthology.org/P19-1355.pdf 

[2] QIANG YANG et al., "Federated machine learning: Concept and applications," arXiv, 2019.[Online]. 

Available: https://arxiv.org/pdf/1902.04885 

[3] H. Brendan McMahan et al., "Communication-Efficient Learning of Deep Networks from 

Decentralized Data," Proceedings of the 20th International Conference on Artificial Intelligence and 

Statistics, 2017. [Online]. Available: https://proceedings.mlr.press/v54/mcmahan17a/mcmahan17a.pdf 

[4] Tian Li et al., "Federated Learning: Challenges, Methods, and Future Directions," arXiv, 2019. 

[Online]. Available: https://arxiv.org/pdf/1908.07873 

[5] Ana Radovanovic et al., "Carbon-Aware Computing for Datacenters," IEEE TRANSACTIONS ON 

POWER SYSTEMS, 2023. [Online]. Available: 

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9770383 

[6] Alexandre Lacoste et al., "Quantifying the Carbon Emissions of Machine Learning," arXiv, 2019. 

[Online]. Available: https://arxiv.org/pdf/1910.09700 

[7] Shiqiang Wang et al., "Adaptive Federated Learning in Resource Constrained Edge Computing 

Systems," arXiv, 2019. [Online]. Available: https://arxiv.org/pdf/1804.05271 

[8] Canh T. Dinh et al., "Federated Learning over Wireless Networks: Convergence Analysis and 

Resource Allocation," arXiv, 2021. [Online]. Available: https://arxiv.org/pdf/1910.13067 

[9] Yue Zhao et al., "Federated Learning with Non-IID Data," arXiv, 2022. [Online]. Available: 

https://arxiv.org/pdf/1806.00582 

[10] Jason Mars et al., "Heterogeneity in ‘Homogeneous' Warehouse-Scale Computers: A Performance 

Opportunity," 2011. [Online]. Available: https://www.researchgate.net/profile/Lingjia-

Tang/publication/232634394 

https://aclanthology.org/P19-1355.pdf
https://aclanthology.org/P19-1355.pdf
https://aclanthology.org/P19-1355.pdf
https://arxiv.org/pdf/1902.04885
https://arxiv.org/pdf/1902.04885
https://proceedings.mlr.press/v54/mcmahan17a/mcmahan17a.pdf
https://proceedings.mlr.press/v54/mcmahan17a/mcmahan17a.pdf
https://arxiv.org/pdf/1908.07873
https://arxiv.org/pdf/1908.07873
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9770383
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9770383
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9770383
https://arxiv.org/pdf/1910.09700
https://arxiv.org/pdf/1910.09700
https://arxiv.org/pdf/1804.05271
https://arxiv.org/pdf/1804.05271
https://arxiv.org/pdf/1910.13067
https://arxiv.org/pdf/1910.13067
https://arxiv.org/pdf/1806.00582
https://arxiv.org/pdf/1806.00582
https://arxiv.org/pdf/1806.00582
https://www.researchgate.net/profile/Lingjia-Tang/publication/232634394_Heterogeneity_in_Homogeneous_Warehouse-Scale_Computers_A_Performance_Opportunity/links/55ef06bc08ae0af8ee1b05cc/Heterogeneity-in-Homogeneous-Warehouse-Scale-Computers-A-Performance-Opportunity.pdf
https://www.researchgate.net/profile/Lingjia-Tang/publication/232634394_Heterogeneity_in_Homogeneous_Warehouse-Scale_Computers_A_Performance_Opportunity/links/55ef06bc08ae0af8ee1b05cc/Heterogeneity-in-Homogeneous-Warehouse-Scale-Computers-A-Performance-Opportunity.pdf
https://www.researchgate.net/profile/Lingjia-Tang/publication/232634394_Heterogeneity_in_Homogeneous_Warehouse-Scale_Computers_A_Performance_Opportunity/links/55ef06bc08ae0af8ee1b05cc/Heterogeneity-in-Homogeneous-Warehouse-Scale-Computers-A-Performance-Opportunity.pdf

