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Abstract

Artificial intelligence systems have become increasingly energy-intensive. Deep
learning model training consumes substantial electrical power across the global
computing infrastructure. The environmental impact of such computational
demands raises serious sustainability concerns within the machine learning
community. Federated learning enables decentralized model training across
distributed edge devices. Local computations occur on individual nodes without
centralizing raw data. Privacy preservation and reduced communication overhead
represent primary advantages of federated architectures. However, aggregate
energy consumption across millions of participating edge devices remains poorly
characterized. The Green-FL protocol introduces energy-awareness into federated
learning optimization objectives. Dynamic resource allocation mechanisms classify
devices based on real-time power source availability. Active nodes connected to
renewable energy receive priority for training tasks. Battery-powered devices enter
standby states until sustainable power becomes available. Training schedules adapt
to fluctuations in clean energy availability across device networks. Experimental
evaluation demonstrates substantial energy consumption reduction without
significant accuracy degradation. Convergence time increases moderately due to
intermittent node availability during low-renewal periods. Carbon emission
projections indicate meaningful environmental benefits at the deployment scale.
The accuracy-per-watt optimization metric provides a quantifiable framework for
sustainable machine learning development. Edge computing environments benefit
particularly from such energy-conscious training protocols.

Keywords: Federated Learning, Sustainable Computing, Energy Efficiency, Edge
Computing, Carbon-Aware Scheduling, Internet Of Things.

I. Introduction

The rapid advancement of artificial intelligence has introduced significant environmental concerns. Deep
learning models now require substantial computational resources for training. Natural language
processing models, in particular, demand extensive energy during development. Research has
demonstrated that training a single large transformer model can emit carbon dioxide equivalent to the
lifetime emissions of multiple automobiles [1]. The energy consumption associated with neural
architecture search proves even more alarming. Such iterative optimization processes multiply the carbon
footprint by orders of magnitude. These findings have prompted the research community to examine the
sustainability of current machine learning practices [1].

The environmental cost extends beyond model training alone. Hyperparameter tuning, model selection,
and experimental iteration all contribute to aggregate energy demands. Graphics processing units operate
at high power states for extended durations during these processes. Data centers housing such hardware
consume electricity at industrial scales. The carbon intensity of this electricity varies based on regional
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power generation sources. Locations reliant on fossil fuels produce substantially higher emissions per
computation. This geographical variability introduces additional complexity into sustainability
assessments [1].

Federated learning has emerged as an alternative paradigm for distributed model training. This approach
enables machine learning on decentralized data without requiring centralized aggregation. Local devices
perform training computations on their own datasets. Only model updates, rather than raw data, are
transmitted to coordination servers. This architecture preserves data privacy while reducing
communication overhead [2]. Applications span multiple domains, including healthcare, finance, and
mobile services. Sensitive information remains on source devices throughout the training process. The
framework supports collaboration among multiple parties without exposing proprietary data [2].
However, federated learning introduces distinct energy considerations. Edge devices participating in
training cycles consume additional power for local computations. Smartphones, tablets, and IoT sensors
possess limited battery capacity. Continuous model training accelerates battery depletion on such devices.
The aggregate energy impact across millions of participating nodes remains poorly understood. Current
federated learning protocols prioritize model convergence and communication efficiency. Energy
consumption at the device level receives minimal attention in existing optimization objectives [2].

This gap motivates the development of energy-aware federated learning frameworks. The Green-FL
protocol proposed herein addresses sustainability within decentralized training contexts. The framework
incorporates real-time power source information into scheduling decisions. Devices connected to
renewable energy or grid power receive priority for training tasks. Battery-powered nodes enter standby
states until sustainable power becomes available. This dynamic allocation balances model development
requirements with environmental responsibility.

The protocol reimagines the optimization objective for federated systems. Traditional approaches
minimize prediction loss as the sole criterion. Green-FL introduces energy efficiency as an explicit
constraint within this formulation. Training schedules adapt to fluctuations in renewable energy
availability across the device network. The approach demonstrates that sustainability and model
performance need not conflict. Computational workloads can align with clean energy supply patterns
without sacrificing accuracy. This research contributes a practical framework for environmentally
conscious artificial intelligence development in resource-constrained edge environments.

I1. Background and Related Work

A. Energy Consumption in Distributed Learning

The Federated Averaging algorithm established foundational principles for decentralized model training.
This approach enables deep network optimization across distributed datasets without centralized data
collection. Local devices perform multiple epochs of stochastic gradient descent before transmitting
updates. The central server aggregates these updates through weighted averaging based on local dataset
sizes. This methodology significantly reduces communication rounds compared to naive distributed
approaches [3]. The original formulation demonstrated effectiveness on image classification and language
modeling tasks. Mobile device keyboards served as a primary application domain for this technique.
Character-level and word-level prediction models achieved competitive performance through federated
training [3].

Communication efficiency constitutes a primary design consideration in federated systems. Network
bandwidth constraints limit the frequency of model synchronization events. Increasing local computation
between communication rounds reduces aggregate data transmission requirements. The trade-off between
computation and communication shapes practical deployment decisions. Devices with limited
connectivity benefit from extended local training periods. However, extended local training on
heterogeneous data introduces optimization challenges [3]. Model divergence can occur when local
datasets exhibit non-identical distributions. The Federated Averaging algorithm addresses this through
periodic global aggregation. Convergence guarantees depend on the degree of data heterogeneity across
participating nodes [3].
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Statistical heterogeneity presents fundamental challenges for distributed learning systems. Real-world
federated deployments encounter highly non-uniform data distributions. Each device generates data
reflecting unique user behavior patterns. This non-independent and identically distributed nature violates
assumptions underlying standard optimization theory [4]. Model performance can degrade substantially
under severe distribution skew. Personalization techniques have emerged to address device-specific
adaptation requirements. Multi-task learning formulations treat each device as a related but distinct
learning problem. These approaches balance global model utility with local customization needs [4].
Systems heterogeneity introduces additional complexity beyond statistical considerations. Participating
devices exhibit substantial variation in computational capabilities. Processing power, memory capacity,
and storage availability differ across device populations. Network connectivity quality varies based on
geographic and temporal factors [4]. Battery constraints limit sustained participation in training activities.
Devices may become unavailable during training rounds due to power limitations. This intermittent
availability complicates synchronization and convergence analysis. Stragglers with slow processing
speeds can delay entire training rounds in synchronous protocols [4].

Privacy preservation motivates much federated learning research and deployment. Raw data remains on
source devices throughout the training process. Only gradient updates or model parameters traverse
network boundaries. This architecture reduces the exposure of sensitive information to central authorities.
However, gradient information can potentially reveal details about the underlying training data.
Differential privacy mechanisms add noise to transmitted updates for enhanced protection. Secure
aggregation protocols prevent the server from inspecting individual device contributions [4]. The
intersection of privacy requirements with energy constraints remains underexplored. Energy-efficient
protocols must maintain privacy guarantees while reducing computational overhead. This balance shapes
the design space for sustainable federated learning frameworks.

Table 1. Comparison of Federated Learning Challenges and Characteristics [3, 4].

Aspect Description Impact on Energy
Communication Reduced data transmission through local Lower network energy
Efficiency computation overhead
Statlstlcal' Non-IID data distributions across devices Variable gomputatlonal
Heterogeneity requirements
Systems Diverse device capabilities and Uneven power consumption
Heterogeneity connectivity patterns
Privacy Preservation Gradient updates 1r.1ste.:ad of raw data Additional encryption overhead
transmission
Synchronization Periodic global model aggregation Idle waiting periods increase
energy waste
Straggler Effect Slow devices delay training rounds Extended active power states

B. Sustainable Computing Paradigms

Carbon-aware computing represents an emerging approach to environmentally responsible computation.
This paradigm schedules workloads based on the carbon intensity of available electricity. Grid carbon
intensity fluctuates throughout the day based on generation resources. Renewable strength availability
varies with climate situations and time. Solar technology peaks during midday hours at the same time as
wind speeds follow extraordinary cycles. Flexible computing tasks can shift to periods of lower carbon
intensity. Data centers possess substantial flexibility in scheduling batch processing workloads [5].
Temporal load shifting exploits variations in carbon intensity over time. Non-urgent computations defer
to hours when cleaner energy dominates the grid. Real-time carbon intensity signals inform scheduling
decisions at the workload level. Geographic load shifting provides an additional dimension of
optimization. Different regions exhibit distinct carbon intensity profiles based on local generation mix.
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Workloads can migrate to locations with abundant renewable energy availability [5]. This spatial
flexibility requires a distributed infrastructure spanning multiple grid regions. Cloud computing platforms
increasingly support such carbon-aware placement decisions. The combination of temporal and spatial
shifting maximizes emissions reduction potential [5].

Demand response integration connects computing infrastructure with grid management systems. Data
centers can modulate power consumption based on grid operator signals. Peak demand periods often
coincide with higher carbon intensity generation. Reducing computational load during these periods
benefits both grid stability and emissions. Predictive models forecast carbon intensity to enable proactive
scheduling decisions. Machine learning techniques improve the accuracy of these forecasts over time [5].
The integration of carbon awareness into computing infrastructure represents a fundamental shift.
Traditional optimization focused exclusively on performance and cost metrics. Environmental impact
now enters the objective function as an explicit consideration [5].

Quantifying carbon emissions from machine learning remains methodologically challenging. Multiple
factors influence the environmental footprint of model training. Hardware selection affects energy
consumption per computation performed. Training duration determines total energy requirements for
model development. Geographic location determines the carbon intensity of consumed electricity [6].
Different regions exhibit order-of-magnitude variations in grid emissions factors. Models trained in coal-
dependent regions produce substantially higher emissions than those trained with renewable power [6].
Standardized measurement frameworks enable meaningful comparison across studies. Reporting energy
consumption alongside model performance metrics promotes transparency. The machine learning
research community has begun adopting such reporting practices. Carbon calculators estimate emissions
based on hardware specifications and training duration [6]. These tools raise awareness of the
environmental costs associated with experimentation. Researchers can make informed decisions about
computational resource allocation. The trade-off between model improvement and environmental impact
becomes explicit [6].

However, existing carbon measurement approaches focus primarily on centralized training scenarios.
Distributed and federated learning contexts introduce additional complexity. Edge device energy
consumption occurs across heterogeneous hardware platforms. Power source information at the device
level remains largely unavailable. Standard carbon intensity data applies to grid-connected infrastructure.
Battery-powered mobile devices present distinct measurement challenges. Bridging this gap requires
novel approaches to energy tracking in federated systems. The Green-FL protocol addresses this
limitation through device-level power state monitoring.

Table 2. Carbon-Aware Computing Strategies and Mechanisms [5, 6].

Strategy Mechanism Application Domain
Temporal Load Shifting Defer computation to low-carbon intensity Batch processing
periods workloads
Geographic Load Shifting Migrate workloads to regions with Cloud computing
renewable energy platforms
Demand Re;ponse Modulate power l?ased on grid operator Data center operations
Integration signals
Carbon Int@nsny Predict renewable availability for scheduling Proactive workload
Forecasting placement
Hardware Selection Choose energy-efficient processing units Model training
Optimization gy P & infrastructure
Emissions Reporting . .
Standards Track and report carbon footprint metrics | Research transparency

II1. Proposed Green-FL Protocol
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A. Mathematical Formulation
Standard Federated Learning aims to minimize a global loss function F(w), which is a weighted average
of local loss functions Fk(w) across K devices. The standard objective is defined as:

min_w F(w) = \sum_{k = 1}*{K} \frac{n_k}{n} F_k(w)

Where nk is the number of samples on device k, and n is the total sample count.

Green-FL modifies this objective by introducing an Energy Constraint. We define the energy cost Ek(t)
for device k at training round t as the sum of computational energy (Ecomp) and communication energy
(Ecomm):

E_k*t = E_{comp}(k t) + E_{comm}(k,t)

The Green-FL optimization problem seeks to minimize the global loss subject to a sustainability
constraint S:
min_w F(w)
s.t.\sum_{k \in S_t} \mathbb{I}(Source_k = Green) \cdot E_k"t \leq \mathcal{B}_{carbon}

Where St is the subset of selected clients, I is an indicator function checking if the power source is
renewable ("Green"), and Bcarbon is the allowable carbon budget for the training round.

B. Dynamic Resource Allocation Architecture

The Green-FL protocol establishes a hierarchical coordination framework for energy-aware federated
learning. Edge devices transmit power state metadata to central aggregation servers at regular intervals.
This metadata includes the current power source type and available energy reserves. The aggregation
server maintains a real-time registry of device availability. Scheduling decisions leverage this registry to
optimize both model convergence and energy sustainability.

Resource constraints fundamentally shape the design of edge computing systems. Devices at the network
periphery possess limited computational capacity. Memory restrictions bound the complexity of local
model architectures. Communique bandwidth varies primarily based on community situations and tool
connectivity [7]. Adaptive algorithms need to account for this heterogeneity in aid availability. Control
mechanisms dynamically adjust training parameters based on observed constraints. The frequency of
local updates balances computation costs against communication overhead [7].

The Green-FL allocation algorithm classifies participating devices into three operational tiers. Active
training nodes maintain a connection to renewable energy sources or stable grid power. These devices
receive priority assignment for computationally intensive training tasks. Standby nodes operate on battery
power with sufficient charge reserves. Such devices remain available for lightweight coordination tasks
but defer intensive computation. Dormant nodes fall below the minimum charge thresholds required for
safe participation. The protocol excludes dormant devices from training rounds to preserve device
longevity [7].

Device tier assignments update dynamically as power conditions change. A smartphone transitioning
from battery to charger moves from standby to active status. Solar-powered IoT sensors shift tiers based
on ambient light conditions. This fluid classification enables responsive adaptation to fluctuating energy
availability. The hierarchical structure ensures training proceeds with available sustainable resources [7].
C. Energy-Aware Training Scheduling

Training round initiation depends on sufficient active node availability. The protocol establishes
minimum thresholds for green-powered device participation. Rounds commence only when renewable
energy capacity meets computational requirements. This constraint prioritizes environmental
sustainability over training speed. Model development proceeds at the pace permitted by clean energy
availability.

Resource allocation optimization addresses the joint problem of computation and communication.
Wireless network conditions influence the efficiency of model update transmission. Channel quality
varies across devices based on location and interference [8]. Optimal resource allocation considers both
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transmission power and local computation effort. Convergence analysis guides the selection of training
parameters under resource constraints [8].

The Green-FL scheduler dynamically adjusts batch sizes based on aggregate renewable capacity. Periods
of abundant clean energy support larger batch computations across the device network. Limited
renewable availability triggers reduced batch sizes to match sustainable capacity. Local epoch counts
similarly adapt to energy conditions. Extended local training occurs when green-powered nodes can
sustain prolonged computation [8].

This energy-aware scheduling ensures computational intensity correlates with sustainable power
availability. Arbitrary scheduling parameters give way to environmentally responsive adaptation. The
protocol decouples training progress from fixed temporal schedules. Model convergence emerges from
the cumulative contribution of sustainably powered computation. Peak renewable generation periods
drive accelerated training activity. Low-carbon electricity windows receive preferential utilization for
intensive model updates [8].

Table 3. Dynamic Resource Allocation States in Green-FL Protocol [7, 8].

DTeiv;:e Power Source Training Role S;‘;‘;g:iltl;g
Active Renewable or grid power Full training participation High
Standby Battery with sufficient charge Lightweight coordination tasks Medium
Dormant | Below minimum charge threshold | Excluded from training rounds None

IV. Experimental Methodology and Results

A. Experimental Setup

The experimental evaluation employed a simulated distributed environment comprising edge computing
nodes. Raspberry Pi devices served as the representative hardware platform for IoT applications.
Heterogeneous power configurations reflected realistic deployment scenarios. Some nodes maintained
continuous grid power connections. Others operated on battery power with varying charge levels. A
subset received simulated renewable energy inputs following solar generation patterns.

The CIFAR-10 image classification dataset provided the training workload for evaluation. Data
partitioning across nodes introduced realistic distribution characteristics. Non-identical data distributions
across devices represent a fundamental challenge in federated settings. Standard federated learning
algorithms assume independent and identically distributed local datasets [9]. Real-world deployments
violate this assumption due to user-specific data generation patterns. Performance degradation occurs
when local data distributions diverge significantly from the global distribution [9].

Data partitioning strategies in the experiments reflected practical heterogeneity conditions. Each
simulated device received a subset of classes rather than uniform sampling. This approach created
realistic non-IID conditions across the device population. The severity of distribution skew varied across
experimental configurations. Baseline comparisons utilized standard Federated Averaging without energy
awareness. The Green-FL protocol operated under identical data distribution conditions [9].

B. Energy Consumption Analysis

Energy measurement instrumentation tracked consumption at the device level throughout training. Power
draw varied based on computational activity and device state. Active training periods exhibited elevated
energy consumption compared to idle states. The Green-FL protocol reduced aggregate energy
consumption substantially compared to baseline approaches. This reduction emerged from intelligent
scheduling rather than reduced total computation.

The temporal distribution of training activity shifted under energy-aware scheduling. Computation
concentrated during periods of renewable energy availability. Battery-powered devices contributed
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minimally to intensive training rounds. Grid-connected nodes absorbed the majority of the computational
workload. This redistribution maintained model quality while improving sustainability metrics.

C. Performance and Convergence Analysis

Model accuracy evaluation compared Green-FL against standard federated averaging baselines. Final
model performance remained comparable across both approaches. The accuracy differential fell within
acceptable tolerance bounds for practical applications. Energy-aware constraints did not substantially
compromise predictive capability.

Convergence time increased under the Green-FL protocol due to scheduling constraints. Reduced node
availability during low-renewable periods extended training duration. The trade-off between convergence
speed and energy sustainability favors environmental responsibility. Many practical applications tolerate
extended training times for a reduced carbon footprint.

D. Infrastructure Heterogeneity Considerations

Large-scale computing infrastructure exhibits substantial performance heterogeneity. Nominally identical
hardware demonstrates measurable variation in actual performance characteristics. Manufacturing
differences and operational conditions contribute to this variation [10]. Warehouse-scale computing
systems contain thousands of servers with differing capabilities. Workload placement decisions can
exploit this heterogeneity for efficiency gains [10].

The Green-FL protocol leverages heterogeneity as an optimization opportunity. Device-level differences
in power efficiency inform scheduling decisions. More efficient nodes receive preferential assignment
during constrained periods. Carbon emission modeling incorporated regional electricity generation
characteristics. Emissions calculations reflected the carbon intensity of consumed electricity. Projected
savings at deployment scale demonstrated a meaningful environmental impact. The combination of
energy reduction and carbon-aware scheduling multiplied sustainability benefits [10].

Table 4. Green-FL Simulation Environment Specifications [9, 10].

Component Configuration Purpose
Hardware Platform Raspberry Pi nodes Edge device representation
Dataset CIFAR-10 partitioned Image classification workload
Data Distribution Non-IID across devices Realisti.c hete?ogeneity
simulation
Power Configurations Grid, battery, and renewable Heterogeneous energy sources
Baseline Comparison Standard Federated Averaging Performance benchmarking

Energy consumption, accuracy, and

Metrics Evaluated .
convergence time

Multi-objective assessment

Conclusion

The Green-FL protocol demonstrates the feasibility of integrating sustainability constraints into
decentralized machine learning frameworks. Environmental responsibility need not compromise model
performance in federated settings. Dynamic power-aware scheduling achieves substantial energy savings
through algorithmic innovation rather than hardware modifications alone. Edge devices participating in
training activities benefit from intelligent workload distribution based on power source characteristics.
Renewable energy utilization receives prioritization through real-time device classification mechanisms.
The three-tier allocation architecture effectively balances training requirements against sustainability
objectives. Model convergence proceeds at the pace permitted by clean energy availability across the
device network. Temporal flexibility inherent in many machine learning applications enables such
environmentally conscious scheduling. The accuracy-per-watt metric offers practitioners a concrete
framework for evaluating true computational costs. Future directions include integration with smart grid
demand-response infrastructure for enhanced coordination. Carbon intensity forecasting could enable
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proactive scheduling decisions based on predicted renewable availability. Extension to larger and more
computationally intensive model architectures warrants further attention. Geographic load shifting across
distributed infrastructure presents additional optimization opportunities. The principles established
through the Green-FL framework provide a foundation for responsible artificial intelligence deployment.
Sustainable system mastering practices are becoming increasingly critical as computing proliferates
across billions of connected devices globally.
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