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Abstract 
Today, businesses depend on numerous models that are built and deployed using 
machine learning algorithms in their operations across various departments; 

however, managing these models in a scalable manner introduces a host of issues 
related to consistency, governance, and efficiency in operations. By failing to 

implement a unified strategy in these environments, a business incurs diminished 
benefits from their machine learning applications due to a lack of clear models 
regarding responsibility or overlooked model decay in their operations. This review 

highlights integrated model operations solutions that help in managing a large 
number of models in a systematic manner using strategies that include integrated 

models in a unified framework that promotes a system or structure that favors 
scalability in their architecture model. 
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Introduction 

With machine learning being integrated throughout departments and products, dozens or even hundreds of 

models are currently in production at most organizations. What started as one experimental model can 

easily expand to be a rich ecosystem with multiple business purposes such as risk assessment and 

anomaly detection up to recommendation engines and demand forecasting. Both models serve particular 

requirements, but they form a complex interdependence, data flow, and operations requirement. The 

growth of machine learning systems in the business world has created a lot of complexity which goes way 

beyond the model algorithms, and into data dependencies, configuration management, system 

requirements and monitoring systems which altogether create what researchers refer to as the hidden 

technical debt of machine learning [1]. Such technical debt compounds silently as organizations grow 

their machine learning activities to produce maintenance overheads that eventually become more 

expensive than the original model development. This is compounded when the models communicate with 

each other, exchange data pipelines, and rely on external systems to create a complicated dependency 

graph that is growing harder to uphold without systematic methods of governance and lifecycle 

management. 

This is because the absence of model management results in redundancy, confusion and operational risk 

particularly when models get old, drift, or when they need updating. Teams end up being duplicates of 

efforts in creating similar capabilities, models decay without notice, and key questions on ownership and 

compliance are left unanswered. To figure out the reasons behind data science project failures, it is 

necessary to look at the disconnect between experimental creation and operational production where most 

difficulties are not due to the constrained nature of algorithms but instead due to organizational and 

operational aspects [2]. Failure of projects is common because of a lack of proper infrastructure to deploy 

models, lack of proper cooperation between data science and engineering institutions, absence of distinct 

business goals that relate to model output, and the lack of monitoring mechanisms that can identify when 
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models are no longer effective. The literature review has indicated that the key failure points include low 

quality of data that compromises the reliability of models, failure to match model objectives with the real 

business requirements, failure to scale experimental models to production demands, and failure to be 

interpretable to make stakeholders trust and embrace the model recommendations. Furthermore, most 

organizations do not adequately plan to sustain models once deployed and assume machine learning is a 

short development project but not an operating liability that needs specific resources and focus. 

This paper describes the value of MLOps frameworks to manage large inventories of models, addressing 

lifecycle management, governance, and scalability, and strategies that can be useful when enterprise 

teams face such complexity. Organizations can help to make their haphazard collection of models into a 

logical, manageable system that generates sustained business value and has low operational overhead and 

technical debt by applying structured model registry, automated monitoring, standardized model 

deployment pipelines and extensive documentation practices. The MLOps paradigm builds upon the ideas 

of DevOps to machine learning environments, with an emphasis on automation, reproducibility, 

collaboration, and constant improvement in the entire model lifecycle, starting with initial 

experimentation and extending through production deployment and eventual retirement. 

 

Establishing Centralized Model Governance 

Multi-model management is mostly based on good governance structures which are capable of giving one 

a visibility of the whole model portfolio. The model registry is an authoritative source of truth about all 

models, listing their uses, owners, dependences, and state. In so much more than version control, this 

registry records abundant metadata of training data-sets, performance profiles of models, approval, and 

business reasons. The application of the MLOps paradigm fills the gaping hole between the experimental 

model creation and the deployment of the model in production with systematic approaches to managing 

model lifecycle [3]. In a company that uses a centralized-model registry, full catalogs are generated, 

which record the design choices undertaken by each model, the set up of hyperparameters, the origin of 

training data, validation outcomes, and deployment history, establishing a transparent environment in 

previously isolated teams. In the future, this centralization will become critical as any enterprise starts to 

scale out its machine learning functions because in its absence, duplicated work, or inconsistent practice, 

and the loss of institutional knowledge have frequently happened whenever team members left. Model 

registries are not just a technical repository of artifacts; they can be seen as a channel of communication 

between data scientists, machine engineering, and software developers, on one hand, and the business 

stakeholders, on the other hand, about what models they have, their performance, and the kind of business 

problem that they address, downstream effects being less friction across cross-functional cooperation and 

time to value acceleration of machine learning projects. 

Governance architectures define standard procedures on model development, validation and deployment. 

These include making sure that all the models undergo the right reviews prior to being sent into 

production, a check of technical viability, issues of fairness, and adherence to business goals. Such 

documentation requirement will bring in uniformity such that new team members will find it easier to 

comprehend the available models and audit decisions made by stakeholders. The MLOps taxonomy 

recognizes a number of key elements which must be incorporated in governance structures, such as 

continuous integration and continuous deployment pipelines, modified to machine learning workflows, 

automated testing processes, which can check code quality and model performance and monitoring 

systems, which identify degradations in production environments  [3]. The institutionalization of best 

practices in standardized processes makes sure that best practices are institutionalized throughout the 

organization so that models pass through a rigorous validation process regardless of who develops them 

and who business unit will sponsor them. These structures establish straightforward standards of model 

acceptance that establish the standard of acceptable performance, metrics of fairness among different 

demographic categories, explainability requirements to assist the stakeholders to comprehend the model 

rationale, and documentation conventions that include design choices and recognized constraints. A 

governing framework needs to be sufficiently detailed and at the same time practical without being 
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bureaucratic and slowing innovation but still with enough rigor to stop the flawed models emerging into 

the production and resulting in business or reputational risks. 

The approval workflows and the access controls prevent unnecessary changes that would permit agile 

development. The permission is efficiently granted to different stakeholders-data scientists, engineers, 

compliance officers and business owners-as dictated by their roles. This framework brings the appropriate 

balance of speed of innovation, and control that offers models a mechanism of progressing through the 

stages of development without going through the significant checkpoints. The knowledge that machine 

learning implementation issues are exclusively technical issues demonstrates that it is part of a greater 

scope that encompasses organizational elements, information quality issues, and integration issues [4]. 

This study found that successful machine learning implementations need to be coordinated with various 

organizational functions, and the functions and decision-making authority must be well defined 

throughout the life cycle of models. These duties are formalized in the form of role-based access controls 

that provide data scientists the authority to do experiments with model architectures and training 

processes but limit the authority to do production deployment to engineers identified as having the 

responsibility of guaranteeing operational readiness. To facilitate the work of auditors and guarantee the 

compliance with the regulation, compliance officers get read access throughout the model portfolio 

without hampering development processes. This governance acknowledges that failures in machine 

learning projects are not due to the flaws associated with the algorithms, but rather to the lack of 

alignment between technical teams and business stakeholders, lack of proper infrastructure to deploy the 

production and lack of proper processes to maintain and monitor after initial deployments. 

 

Table 1: Organizational Challenges in Machine Learning Deployment vs. Governance Solutions [3, 

4] 

 

Challenge 

Category 
Specific Issue Frequency/Impact 

Governance 

Solution 
Expected Outcome 

Team Coordination 
Duplicated efforts 

across teams 

High - leads to 

wasted resources 

Centralized model 

registry with 

visibility 

Elimination of 

redundant 

development 

Knowledge 

Management 

Loss of institutional 

knowledge during 

transitions 

High impedance - 

impedes maintenance 

Comprehensive 

documentation 

standards 

Preserved expertise, 

easier handoffs 

Deployment 

Readiness 

Technical obstacles 

and integration 

complexity 

Critical - blocks 

production 

Standardized 

deployment 

processes 

Streamlined path to 

production 

Stakeholder 

Alignment 

Misalignment 

between technical 

and business teams 

High - causes project 

failure 

Clear responsibility 

delineation, shared 

registry 

Improved 

collaboration, 

aligned objectives 

Compliance & 

Auditing 

Unclear ownership 

and regulatory 

adherence 

Critical - creates 

legal risk 

Role-based access, 

audit trails 

Regulatory 

compliance, clear 

accountability 

Model Quality 

Assurance 

Flawed models 

reaching production 

Critical - damages 

business outcomes 

Approval 

checkpoints, 

fairness metrics 

Prevented 

production issues, 

maintained trust 

 

Architecting for Scalability and Consistency 

The multi-model management architecture in MLOps must have the form that enhances reusability and 

reduces the burden to maintenance. The common infrastructure implies stores, data pipelines and 

inference services-induce redundant development and ensured consistency. Teams do not need to reinvent 
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the art of data handling, model serving, and monitoring but inherit known patterns as they progressively 

work on top of common underlying components. By integrating MLOps practices into the continuous 

integration and continuous deployment process, organizations entirely transform how they build and 

maintain large-scale machine learning systems 5. Studies demonstrate that accuracy of models and their 

operational reliability is greatly enhanced by automating the model training, validation and deployment 

stages since it guarantees uniformity in the operations throughout the entire life cycle of development. 

The shared infrastructure between these parts eliminates the problem of fragmentation by different teams 

developing individual solutions hence forming technical silos. This avoids knowledge transfer and 

maintenance when the priorities of the organizations change. The feature stores specifically solve a very 

pressing problem in machine learning processes: they offer a single repository in which feature definitions 

can be standardized, versioned and reused by many models. Thus, they make the training and serving 

environments consistent and prevent the training-serving skew that often can ruin model performance 

when in production. The architectural approach emphasizes that machine learning infrastructure is a 

platform, rather than a collection of discrete mechanisms; therefore, platform teams need not invest in 

complex platforms with regards to monitoring, security, and performance optimization that are valuable 

to all models, but instead, every project must independently satisfy those core needs. 

Model packaging and containerization allows the deployment of any model. The model predicting 

customer churn or manufacturing defects uses the same deployment conventions and log format as well as 

the same API. This simplifies operations significantly: platform teams develop tools that cut across the 

entire model portfolio, instead of specializing to each use case. Continuous Integration, Continuous 

Deployment model of MLOps develops an automated work process to support quality of models by fully 

testing models prior to deployment. It will minimize the possibility of taking to production a poorly 

performing or unsound model 5. Since the deployment is containerized, the environment of development, 

staging, and production systems is the same, and the very familiar failure mode of models performing 

well in an experimental environment but failing unexpectedly in a production workload and data 

distribution situation is avoided. Models can be easily inter-operated with downstream business 

applications using standard APIs and interfaces; consuming systems can use the same protocols to interact 

with models regardless of the underlying algorithms, frameworks, or other implementation characteristics, 

making them less coupled and allowing models to be updated without any supporting systems having to 

be changed. 

Shared utility libraries and template projects accelerate development through the ability to enforce best 

practice. The approved templates on which Data scientists can create new models contain the pre-existing 

monitoring hooks, logging conventions as well as documentation structures. Delivered libraries of 

common utility implementations (tested and debugged) are used to save development time and errors, as 

well as to find and use feature engineering, model evaluation, and bias detection. The hidden costs of the 

machine learning system in technical debt are linked to situations when the organizations fail to address 

the issues related to data dependencies, the complexity of the model, and fairness consideration in a 

systematic way. The research also addresses the technical debt one can encounter in machine learning, 

such as a problem in code quality, not to mention a problem in data quality, lack of documentation, lack 

of testing, and lack of continuous monitoring of model fairness between dissimilar demographic groups. 

The mitigation of these risks is provided through template-based development which hardens fairness 

tests, bias detection mechanisms and demands extensive documentation into standard project structure up 

front. This ensures that such important considerations are managed in a consistent and dependable 

manner, involving various staffs and initiatives. These templates encode organizational experience and 

regulatory specifications into usable models that lessen the cognitive load on individual information 

scientists with consistency in the manner models are created, confirmed and implemented throughout the 

enterprise. 

 

Table 2: Shared Infrastructure Components and Their Benefits in MLOps Architecture [5, 6] 
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Infrastructure 

Component 
Primary Purpose Key Capability Problem Solved 

Organizational 

Benefit 

Feature Stores 
Centralized feature 

repository 

Standardized, 

versioned feature 

definitions 

Training-serving 

skew 

Synchronized 

environments, reusable 

features across models 

Data Pipelines 

Automated data 

processing 

workflows 

Consistent data 

transformation and 

validation 

Data fragmentation, 

quality issues 

Reduced redundant 

development, 

improved data 

reliability 

Inference 

Services 

Unified model 

serving platform 

Standardized 

deployment and 

API exposure 

Environmental 

inconsistency 

Simplified operations, 

uniform model access 

Continuous 

Integration 

Pipelines 

Automated model 

validation 

Comprehensive 

testing before 

deployment 

Underperforming 

models reaching 

production 

Enhanced model 

accuracy, reduced 

deployment risk 

Template 

Projects 

Standardized 

development 

starting points 

Pre-configured 

monitoring, 

logging, and 

documentation 

Inconsistent 

practices, technical 

debt 

Accelerated 

development, enforced 

best practices 

Shared Utility 

Libraries 

Reusable code 

implementations 

Tested feature 

engineering, 

evaluation, and 

bias detection 

Code duplication, 

implementation 

errors 

Reduced development 

time, consistent quality 

Container-Based 

Deployment 

Environment 

standardization 

Consistent runtime 

across 

development and 

production 

Environment-

specific failures 

Eliminated 

deployment 

inconsistencies 

 

Implementing Continuous Monitoring and Maintenance 

Production models need constant attention to identify degradation and trigger necessary interventions. 

Automated monitoring systems track performance metrics, data quality indications, and operational health 

across all the deployed models. These systems identify concerning trends-like rising prediction error, 

shifting input distributions, or increasing latency-well before they significantly affect business outcomes. 

In a large-scale machine learning system, an implementation of cognitive computing architecture requires 

sophisticated monitoring frameworks, capable of handling computational complexity and volumes of data 

from production deployments of systems [7]. Research has shown that a scalable architecture for machine 

learning needs to embed monitoring at different levels, ranging from model performance metrics to 

patterns of system-wide resource utilization, ensuring that the degradation of any component is surfaced 

well before it cascades to dependent systems. These monitoring systems must have very low performance 

overhead while collecting comprehensive telemetry data across distributed infrastructure and capturing 

model predictions, ground truth labels, feature distributions, inference latencies, resource consumption 

patterns, and system health indicators. The cognitive computing approach emphasizes intelligent 

monitoring systems for identifying anomalies, correlating symptoms across multiple models, and 

prioritizing alerts based on business impact rather than mere notification for every metric deviation. 

Monitoring infrastructure needs to scale with machine learning systems that scale to handle very large 

datasets and complex models, using distributed data collection, efficient storage mechanisms, and real-

time analytics, enabling platform teams to maintain visibility across extensive model portfolios and not be 

overwhelmed by sheer data volume. 
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Drift detection mechanisms raise flags when model assumptions cease to hold as a result of shifting data 

patterns or evolving business conditions. Various statistical tests pit recent data against training set 

distributions and trigger alerts when the divergence crosses tolerable limits. Performance tracking, which 

involves pitting actual outcomes against predictions, lets teams know when models lose their predictive 

powers, even in cases when data distributions seem to be stable. Understanding the full life cycle of 

machine learning models shows us that monitoring and maintenance are important stages that have a 

significant impact on the long-term success of the models and the delivery of business value [8]. The 

model life cycle involves problem definition, data collection and preparation, model development and 

training, deployment into production, continuous monitoring, maintenance, and model retirement in cases 

where the underlying capabilities become obsolete or are overtaken by superior approaches. Research 

pinpoints that efficient drift detection relies on the determination of baseline performance metrics within 

the validation phase and their constant comparison with production performance using statistical methods 

corresponding to the type of model and application domain in question. The challenge significantly 

increases in real-world deployments, where ground truth labels may arrive with considerable delay, 

requiring proxy metrics and leading indicators that could indicate potential issues before definitive 

performance measures become available. In this respect, an organization has to carefully balance 

sensitivity and specificity during drift detection, tuning alert thresholds to minimize false positives, which 

create alert fatigue, but make sure actual deterioration gets attention well before the impact becomes 

severe. 

Structured retraining workflows respond to detected problems with appropriate interventions. Some 

models need to be refreshed frequently with new data; others remain stable for long periods. Automated 

pipelines handle the routine retraining for high-cadence models, while alert systems notify teams when 

manual intervention is called for. Version control and rollback make it easy for teams to revert to 

problematic updates when retraining introduces unexpected issues. The lifecycle view makes it clear that 

model maintenance continues through their operational life, with different models having different 

stability characteristics that dictate appropriate maintenance strategies 8. High-frequency models that 

operate in fast-evolving domains rely on automated retraining pipelines that constantly refresh their 

models with fresh data, validate retrained versions against hold-out datasets, and deploy updates with 

minimal human intervention. By contrast, models deployed in stable domains can perform effectively for 

an extended period with only periodic retraining, initiated either by detected drift or scheduled reviews. 

Any retraining must be preceded by comprehensive validation processes to confirm improvements over 

previous versions before their deployment, preventing a situation where automated systems inadvertently 

degrade model quality. Version control systems keep complete audit trails of every model iteration, which 

let teams understand evolutionary trajectories and easily return to previous versions when updates 

introduce unexpected regressions. 

 

Table 3: Monitoring Framework Components and Detection Capabilities [7, 8] 

 

Monitoring 

Component 
Key Metrics Detection Focus Alert Trigger 

Model Performance 
Prediction accuracy, error 

rates 
Model degradation 

Performance threshold 

violations 

Feature Distribution 
Input statistics, 

distribution shifts 
Data drift 

Divergence from training 

baseline 

Inference Latency Response time 
Performance 

bottlenecks 

Latency threshold 

exceedance 

System Health 
Service availability, error 

rates 
Component failures Cross-system anomalies 
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Concept Drift 
Feature-outcome 

relationships 
Evolving patterns Baseline deviation 

 

Managing Dependencies and Model Interactions 

Models seldom exist in isolation; they consume outputs from upstream models, share data sources, and 

drive business processes together. Mapping these interdependencies helps teams anticipate the 

downstream consequences of changes before they deploy updates. Dependency graphs visualize which 

models are consuming shared features, relying on a common data pipeline, or each other's predictions. 

Empirical studies of technical debt in machine learning software have identified 23 distinct categories of 

admitted technical debt; the most significant sources of accumulated debt that hinder long-term 

maintainability involve dependency management and architectural complexity [9]. The study showed that 

machine learning systems have forms of technical debt not present in traditional software, such as 

entangled dependencies, in which changes to one component unexpectedly affect seemingly unrelated 

models; pipeline jungles, in which complex data processing workflows become hard to modify or debug; 

and dead experimental code paths that remain in production systems because teams fear removing them 

might break dependent components. Analysis of open-source machine learning codebases illustrates how 

developers acknowledge-either through code comments or documentation-that the systems they create 

contain fragile interdependencies, but they lack either time or resources to refactor the system toward 

more maintainable architectures. The research puts forth the idea that model dependencies need to be 

managed by considering machine learning systems as complex distributed applications and not loose 

collections of independent models that require end-to-end dependency tracking, impact analysis tools, and 

architectural patterns that minimize coupling between components while still enabling necessary 

collaboration and data sharing across models. 

Coordinated deployment strategies account for these interactions. When updating several related models, 

there are a number of decisions to be made: whether to deploy all models simultaneously, stage the 

releases carefully, or even maintain backwards compatibility during transitions. Testing frameworks 

validate not only individual model performance but also the system-level behavior of interacting models. 

The study of technical debt in machine learning systems shows convincingly that poor testing practices 

and an inability to consider system-level interactions contribute greatly to production failures and 

maintenance problems [9]. Researchers found that about 40% of machine learning technical debt involves 

testing challenges, including an inability to recreate production environments in test settings, inadequate 

coverage for edge cases and failure modes, and poor validation of how models will actually be deployed 

in conjunction with other components in a complex production system. Coordinated deployment 

strategies must address these testing challenges through: comprehensive integration test suites that 

exercise complete prediction pipelines; canary deployment patterns that expose small populations of users 

to changes before broader rollouts; and the ability to roll back quickly when a coordinated update 

introduces unexpected system-level issues. Testing machine learning systems is fundamentally different 

from testing traditional software because correctness cannot be validated definitively with unit tests. 

Models may pass individual validation checks with flying colors yet exhibit undesirable behavior when 

integrated with production data pipelines and dependent systems. 

Data lineage tracking follows information flow from source systems through transformations to final 

predictions. This is crucial for debugging unexpected behavior, ensuring the conformance of data usage 

policies, and interpreting how far downstream models are affected by upstream data quality issues. When 

problems occur, teams can identify root causes rather than investigate every individual model. Literature 

that investigated automatic data quality assessment argued that comprehensive data lineage tracking and 

quality monitoring were foundational requirements for any trustworthy machine learning system [10]. It 

was proved in this research work that the dimensions in which the quality of data manifests include 

completeness, consistency, accuracy, timeliness, and validity, each with different mechanisms for 

detection and remediation. It is also argued that poor data quality is among the leading factors associated 

with the failure of machine learning projects. Whatever algorithmic sophistication exists, once there is 
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biased, incomplete, or corrupted data on which a model is trained, the resulting predictions are always 

unreliable. An automatic data quality system should permanently monitor streams of incoming data by 

comparing current observations with expected distributions and historical patterns to detect anomalies that 

could reveal failures of upstream systems, data corruption, or a structural change in the processes that 

generate the data, thus invalidating model assumptions. 

 

Table 4: Technical Debt Categories in ML Systems and Their Impacts [9, 10] 

 

Technical Debt 

Category 
Manifestation Impact on System 

Percentage of 

Total Debt 
Mitigation Strategy 

Dependency 

Management 

Entangled 

dependencies 

between models 

Unexpected effects 

from component 

changes 

Major 

contributor 

Comprehensive 

dependency tracking, 

impact analysis tools 

Testing 

Challenges 

Inadequate 

integration testing 

Production failures, 

maintenance 

difficulties 

40% 

Integration test suites, 

canary deployments, and 

rollback capabilities 

Pipeline Jungles 

Complex data 

processing 

workflows 

Difficult 

modification and 

debugging 

Significant 

source 

Architectural patterns 

minimizing coupling 

Dead 

Experimental 

Code 

Unused code paths 

in production 

Fear of removal 

breaking 

dependencies 

Contributing 

factor 

Regular code audits, clear 

ownership 

System-Level 

Interactions 

Insufficient 

validation of model 

interactions 

Problematic 

behavior in 

production 

Part of testing 

debt 

Complete pipeline testing, 

staged rollouts 

 

Conclusion 

A multi-model management paradigm within the enterprise necessitates systematic practices that 

correspond to far more than the optimization of models, incorporating lifecycle management, governance, 

and architecture standardization. The scaling of the organization with machine learning necessitates the 

understanding that technical excellence, by itself and as the culmination of technological efforts, does not 

suffice without the subsequent focus on investments in the development of centralized registry-based 

visibility for the portfolio, shared infrastructural development to avoid ‘redundant development efforts,’ 

continuous monitoring to proactively address decreases, and understanding and preventing the failure 

cascade among interlinked systems. MLOps corresponds to the challenges by leveraging the effective and 

successful principles of DevOps, as applied to machine learning, to emphasize the identification and focus 

on automation, reproducibility, and collaboration throughout the lifecycle of models, and that too starting 

from the exploratory phase to productionizing and eventually to model retirement. Outlining effective 

governance with the proper definition and implementation of ‘role-based access control and approval 

workflows' necessitates ‘innovation velocity' while also maintaining the proper and necessary ‘balance 

between necessary oversight, regulatory compliance, and trust and buy-in with various stakeholders.’ 

Common architecture elements correspond to the ‘feature store, containerized platforms, and 

development templates' that shall propel and establish ‘speed to value and the establishment and 

promotion of all proper practices related to fairness evaluation, bias detection, and overarching 

documentation.’ This, correspondingly, is where the increase in the size and complexity of model 

portfolios corresponds to the challenges that necessitate the effective management practices to lay the 

essential grounds for the organization to establish the achievement and optimization of the utmost 

‘business value realization from machine learning investments, while also maintaining the optimization 
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and necessary focus on the management and control of operating cost and minimizing the buildup and 

creation of technical debt, besides remaining effective and nimble as per the paradigms and changing and 

evolving as per the changing and evolving unexplored and new and emerging ‘business conditions and 

changing and evolving new opportunities. 
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