
JOURNAL OF INTERNATIONAL CRISIS AND RISK COMMUNICATION RESEARCH
ISSN: 2576-0017
2026, VOL 9, NO 1

372

From One Model To Many: Managing Dozens

Of ML Models In The Enterprise

Swati Kumari

Nucleus Teq, USA

Abstract
Today, businesses depend on numerous models that are built and deployed using
machine learning algorithms in their operations across various departments;

however, managing these models in a scalable manner introduces a host of issues
related to consistency, governance, and efficiency in operations. By failing to

implement a unified strategy in these environments, a business incurs diminished
benefits from their machine learning applications due to a lack of clear models
regarding responsibility or overlooked model decay in their operations. This review

highlights integrated model operations solutions that help in managing a large
number of models in a systematic manner using strategies that include integrated

models in a unified framework that promotes a system or structure that favors
scalability in their architecture model.

Keywords: MLOPs Frameworks, Model Governance, Scalable Architecture,
Continuous Monitoring, Dependency Management.

Introduction

With machine learning being integrated throughout departments and products, dozens or even hundreds of

models are currently in production at most organizations. What started as one experimental model can

easily expand to be a rich ecosystem with multiple business purposes such as risk assessment and

anomaly detection up to recommendation engines and demand forecasting. Both models serve particular

requirements, but they form a complex interdependence, data flow, and operations requirement. The

growth of machine learning systems in the business world has created a lot of complexity which goes way

beyond the model algorithms, and into data dependencies, configuration management, system

requirements and monitoring systems which altogether create what researchers refer to as the hidden

technical debt of machine learning [1]. Such technical debt compounds silently as organizations grow

their machine learning activities to produce maintenance overheads that eventually become more

expensive than the original model development. This is compounded when the models communicate with

each other, exchange data pipelines, and rely on external systems to create a complicated dependency

graph that is growing harder to uphold without systematic methods of governance and lifecycle

management.

This is because the absence of model management results in redundancy, confusion and operational risk

particularly when models get old, drift, or when they need updating. Teams end up being duplicates of

efforts in creating similar capabilities, models decay without notice, and key questions on ownership and

compliance are left unanswered. To figure out the reasons behind data science project failures, it is

necessary to look at the disconnect between experimental creation and operational production where most

difficulties are not due to the constrained nature of algorithms but instead due to organizational and

operational aspects [2]. Failure of projects is common because of a lack of proper infrastructure to deploy

models, lack of proper cooperation between data science and engineering institutions, absence of distinct

business goals that relate to model output, and the lack of monitoring mechanisms that can identify when

From One Model To Many: Managing Dozens Of ML Models In The Enterprise

373

models are no longer effective. The literature review has indicated that the key failure points include low

quality of data that compromises the reliability of models, failure to match model objectives with the real

business requirements, failure to scale experimental models to production demands, and failure to be

interpretable to make stakeholders trust and embrace the model recommendations. Furthermore, most

organizations do not adequately plan to sustain models once deployed and assume machine learning is a

short development project but not an operating liability that needs specific resources and focus.

This paper describes the value of MLOps frameworks to manage large inventories of models, addressing

lifecycle management, governance, and scalability, and strategies that can be useful when enterprise

teams face such complexity. Organizations can help to make their haphazard collection of models into a

logical, manageable system that generates sustained business value and has low operational overhead and

technical debt by applying structured model registry, automated monitoring, standardized model

deployment pipelines and extensive documentation practices. The MLOps paradigm builds upon the ideas

of DevOps to machine learning environments, with an emphasis on automation, reproducibility,

collaboration, and constant improvement in the entire model lifecycle, starting with initial

experimentation and extending through production deployment and eventual retirement.

Establishing Centralized Model Governance

Multi-model management is mostly based on good governance structures which are capable of giving one

a visibility of the whole model portfolio. The model registry is an authoritative source of truth about all

models, listing their uses, owners, dependences, and state. In so much more than version control, this

registry records abundant metadata of training data-sets, performance profiles of models, approval, and

business reasons. The application of the MLOps paradigm fills the gaping hole between the experimental

model creation and the deployment of the model in production with systematic approaches to managing

model lifecycle [3]. In a company that uses a centralized-model registry, full catalogs are generated,

which record the design choices undertaken by each model, the set up of hyperparameters, the origin of

training data, validation outcomes, and deployment history, establishing a transparent environment in

previously isolated teams. In the future, this centralization will become critical as any enterprise starts to

scale out its machine learning functions because in its absence, duplicated work, or inconsistent practice,

and the loss of institutional knowledge have frequently happened whenever team members left. Model

registries are not just a technical repository of artifacts; they can be seen as a channel of communication

between data scientists, machine engineering, and software developers, on one hand, and the business

stakeholders, on the other hand, about what models they have, their performance, and the kind of business

problem that they address, downstream effects being less friction across cross-functional cooperation and

time to value acceleration of machine learning projects.

Governance architectures define standard procedures on model development, validation and deployment.

These include making sure that all the models undergo the right reviews prior to being sent into

production, a check of technical viability, issues of fairness, and adherence to business goals. Such

documentation requirement will bring in uniformity such that new team members will find it easier to

comprehend the available models and audit decisions made by stakeholders. The MLOps taxonomy

recognizes a number of key elements which must be incorporated in governance structures, such as

continuous integration and continuous deployment pipelines, modified to machine learning workflows,

automated testing processes, which can check code quality and model performance and monitoring

systems, which identify degradations in production environments  [3]. The institutionalization of best

practices in standardized processes makes sure that best practices are institutionalized throughout the

organization so that models pass through a rigorous validation process regardless of who develops them

and who business unit will sponsor them. These structures establish straightforward standards of model

acceptance that establish the standard of acceptable performance, metrics of fairness among different

demographic categories, explainability requirements to assist the stakeholders to comprehend the model

rationale, and documentation conventions that include design choices and recognized constraints. A

governing framework needs to be sufficiently detailed and at the same time practical without being

Swati Kumari

374

bureaucratic and slowing innovation but still with enough rigor to stop the flawed models emerging into

the production and resulting in business or reputational risks.

The approval workflows and the access controls prevent unnecessary changes that would permit agile

development. The permission is efficiently granted to different stakeholders-data scientists, engineers,

compliance officers and business owners-as dictated by their roles. This framework brings the appropriate

balance of speed of innovation, and control that offers models a mechanism of progressing through the

stages of development without going through the significant checkpoints. The knowledge that machine

learning implementation issues are exclusively technical issues demonstrates that it is part of a greater

scope that encompasses organizational elements, information quality issues, and integration issues [4].

This study found that successful machine learning implementations need to be coordinated with various

organizational functions, and the functions and decision-making authority must be well defined

throughout the life cycle of models. These duties are formalized in the form of role-based access controls

that provide data scientists the authority to do experiments with model architectures and training

processes but limit the authority to do production deployment to engineers identified as having the

responsibility of guaranteeing operational readiness. To facilitate the work of auditors and guarantee the

compliance with the regulation, compliance officers get read access throughout the model portfolio

without hampering development processes. This governance acknowledges that failures in machine

learning projects are not due to the flaws associated with the algorithms, but rather to the lack of

alignment between technical teams and business stakeholders, lack of proper infrastructure to deploy the

production and lack of proper processes to maintain and monitor after initial deployments.

Table 1: Organizational Challenges in Machine Learning Deployment vs. Governance Solutions [3,

4]

Challenge

Category
Specific Issue Frequency/Impact

Governance

Solution
Expected Outcome

Team Coordination
Duplicated efforts

across teams

High - leads to

wasted resources

Centralized model

registry with

visibility

Elimination of

redundant

development

Knowledge

Management

Loss of institutional

knowledge during

transitions

High impedance -

impedes maintenance

Comprehensive

documentation

standards

Preserved expertise,

easier handoffs

Deployment

Readiness

Technical obstacles

and integration

complexity

Critical - blocks

production

Standardized

deployment

processes

Streamlined path to

production

Stakeholder

Alignment

Misalignment

between technical

and business teams

High - causes project

failure

Clear responsibility

delineation, shared

registry

Improved

collaboration,

aligned objectives

Compliance &

Auditing

Unclear ownership

and regulatory

adherence

Critical - creates

legal risk

Role-based access,

audit trails

Regulatory

compliance, clear

accountability

Model Quality

Assurance

Flawed models

reaching production

Critical - damages

business outcomes

Approval

checkpoints,

fairness metrics

Prevented

production issues,

maintained trust

Architecting for Scalability and Consistency

The multi-model management architecture in MLOps must have the form that enhances reusability and

reduces the burden to maintenance. The common infrastructure implies stores, data pipelines and

inference services-induce redundant development and ensured consistency. Teams do not need to reinvent

From One Model To Many: Managing Dozens Of ML Models In The Enterprise

375

the art of data handling, model serving, and monitoring but inherit known patterns as they progressively

work on top of common underlying components. By integrating MLOps practices into the continuous

integration and continuous deployment process, organizations entirely transform how they build and

maintain large-scale machine learning systems 5. Studies demonstrate that accuracy of models and their

operational reliability is greatly enhanced by automating the model training, validation and deployment

stages since it guarantees uniformity in the operations throughout the entire life cycle of development.

The shared infrastructure between these parts eliminates the problem of fragmentation by different teams

developing individual solutions hence forming technical silos. This avoids knowledge transfer and

maintenance when the priorities of the organizations change. The feature stores specifically solve a very

pressing problem in machine learning processes: they offer a single repository in which feature definitions

can be standardized, versioned and reused by many models. Thus, they make the training and serving

environments consistent and prevent the training-serving skew that often can ruin model performance

when in production. The architectural approach emphasizes that machine learning infrastructure is a

platform, rather than a collection of discrete mechanisms; therefore, platform teams need not invest in

complex platforms with regards to monitoring, security, and performance optimization that are valuable

to all models, but instead, every project must independently satisfy those core needs.

Model packaging and containerization allows the deployment of any model. The model predicting

customer churn or manufacturing defects uses the same deployment conventions and log format as well as

the same API. This simplifies operations significantly: platform teams develop tools that cut across the

entire model portfolio, instead of specializing to each use case. Continuous Integration, Continuous

Deployment model of MLOps develops an automated work process to support quality of models by fully

testing models prior to deployment. It will minimize the possibility of taking to production a poorly

performing or unsound model 5. Since the deployment is containerized, the environment of development,

staging, and production systems is the same, and the very familiar failure mode of models performing

well in an experimental environment but failing unexpectedly in a production workload and data

distribution situation is avoided. Models can be easily inter-operated with downstream business

applications using standard APIs and interfaces; consuming systems can use the same protocols to interact

with models regardless of the underlying algorithms, frameworks, or other implementation characteristics,

making them less coupled and allowing models to be updated without any supporting systems having to

be changed.

Shared utility libraries and template projects accelerate development through the ability to enforce best

practice. The approved templates on which Data scientists can create new models contain the pre-existing

monitoring hooks, logging conventions as well as documentation structures. Delivered libraries of

common utility implementations (tested and debugged) are used to save development time and errors, as

well as to find and use feature engineering, model evaluation, and bias detection. The hidden costs of the

machine learning system in technical debt are linked to situations when the organizations fail to address

the issues related to data dependencies, the complexity of the model, and fairness consideration in a

systematic way. The research also addresses the technical debt one can encounter in machine learning,

such as a problem in code quality, not to mention a problem in data quality, lack of documentation, lack

of testing, and lack of continuous monitoring of model fairness between dissimilar demographic groups.

The mitigation of these risks is provided through template-based development which hardens fairness

tests, bias detection mechanisms and demands extensive documentation into standard project structure up

front. This ensures that such important considerations are managed in a consistent and dependable

manner, involving various staffs and initiatives. These templates encode organizational experience and

regulatory specifications into usable models that lessen the cognitive load on individual information

scientists with consistency in the manner models are created, confirmed and implemented throughout the

enterprise.

Table 2: Shared Infrastructure Components and Their Benefits in MLOps Architecture [5, 6]

Swati Kumari

376

Infrastructure

Component
Primary Purpose Key Capability Problem Solved

Organizational

Benefit

Feature Stores
Centralized feature

repository

Standardized,

versioned feature

definitions

Training-serving

skew

Synchronized

environments, reusable

features across models

Data Pipelines

Automated data

processing

workflows

Consistent data

transformation and

validation

Data fragmentation,

quality issues

Reduced redundant

development,

improved data

reliability

Inference

Services

Unified model

serving platform

Standardized

deployment and

API exposure

Environmental

inconsistency

Simplified operations,

uniform model access

Continuous

Integration

Pipelines

Automated model

validation

Comprehensive

testing before

deployment

Underperforming

models reaching

production

Enhanced model

accuracy, reduced

deployment risk

Template

Projects

Standardized

development

starting points

Pre-configured

monitoring,

logging, and

documentation

Inconsistent

practices, technical

debt

Accelerated

development, enforced

best practices

Shared Utility

Libraries

Reusable code

implementations

Tested feature

engineering,

evaluation, and

bias detection

Code duplication,

implementation

errors

Reduced development

time, consistent quality

Container-Based

Deployment

Environment

standardization

Consistent runtime

across

development and

production

Environment-

specific failures

Eliminated

deployment

inconsistencies

Implementing Continuous Monitoring and Maintenance

Production models need constant attention to identify degradation and trigger necessary interventions.

Automated monitoring systems track performance metrics, data quality indications, and operational health

across all the deployed models. These systems identify concerning trends-like rising prediction error,

shifting input distributions, or increasing latency-well before they significantly affect business outcomes.

In a large-scale machine learning system, an implementation of cognitive computing architecture requires

sophisticated monitoring frameworks, capable of handling computational complexity and volumes of data

from production deployments of systems [7]. Research has shown that a scalable architecture for machine

learning needs to embed monitoring at different levels, ranging from model performance metrics to

patterns of system-wide resource utilization, ensuring that the degradation of any component is surfaced

well before it cascades to dependent systems. These monitoring systems must have very low performance

overhead while collecting comprehensive telemetry data across distributed infrastructure and capturing

model predictions, ground truth labels, feature distributions, inference latencies, resource consumption

patterns, and system health indicators. The cognitive computing approach emphasizes intelligent

monitoring systems for identifying anomalies, correlating symptoms across multiple models, and

prioritizing alerts based on business impact rather than mere notification for every metric deviation.

Monitoring infrastructure needs to scale with machine learning systems that scale to handle very large

datasets and complex models, using distributed data collection, efficient storage mechanisms, and real-

time analytics, enabling platform teams to maintain visibility across extensive model portfolios and not be

overwhelmed by sheer data volume.

From One Model To Many: Managing Dozens Of ML Models In The Enterprise

377

Drift detection mechanisms raise flags when model assumptions cease to hold as a result of shifting data

patterns or evolving business conditions. Various statistical tests pit recent data against training set

distributions and trigger alerts when the divergence crosses tolerable limits. Performance tracking, which

involves pitting actual outcomes against predictions, lets teams know when models lose their predictive

powers, even in cases when data distributions seem to be stable. Understanding the full life cycle of

machine learning models shows us that monitoring and maintenance are important stages that have a

significant impact on the long-term success of the models and the delivery of business value [8]. The

model life cycle involves problem definition, data collection and preparation, model development and

training, deployment into production, continuous monitoring, maintenance, and model retirement in cases

where the underlying capabilities become obsolete or are overtaken by superior approaches. Research

pinpoints that efficient drift detection relies on the determination of baseline performance metrics within

the validation phase and their constant comparison with production performance using statistical methods

corresponding to the type of model and application domain in question. The challenge significantly

increases in real-world deployments, where ground truth labels may arrive with considerable delay,

requiring proxy metrics and leading indicators that could indicate potential issues before definitive

performance measures become available. In this respect, an organization has to carefully balance

sensitivity and specificity during drift detection, tuning alert thresholds to minimize false positives, which

create alert fatigue, but make sure actual deterioration gets attention well before the impact becomes

severe.

Structured retraining workflows respond to detected problems with appropriate interventions. Some

models need to be refreshed frequently with new data; others remain stable for long periods. Automated

pipelines handle the routine retraining for high-cadence models, while alert systems notify teams when

manual intervention is called for. Version control and rollback make it easy for teams to revert to

problematic updates when retraining introduces unexpected issues. The lifecycle view makes it clear that

model maintenance continues through their operational life, with different models having different

stability characteristics that dictate appropriate maintenance strategies 8. High-frequency models that

operate in fast-evolving domains rely on automated retraining pipelines that constantly refresh their

models with fresh data, validate retrained versions against hold-out datasets, and deploy updates with

minimal human intervention. By contrast, models deployed in stable domains can perform effectively for

an extended period with only periodic retraining, initiated either by detected drift or scheduled reviews.

Any retraining must be preceded by comprehensive validation processes to confirm improvements over

previous versions before their deployment, preventing a situation where automated systems inadvertently

degrade model quality. Version control systems keep complete audit trails of every model iteration, which

let teams understand evolutionary trajectories and easily return to previous versions when updates

introduce unexpected regressions.

Table 3: Monitoring Framework Components and Detection Capabilities [7, 8]

Monitoring

Component
Key Metrics Detection Focus Alert Trigger

Model Performance
Prediction accuracy, error

rates
Model degradation

Performance threshold

violations

Feature Distribution
Input statistics,

distribution shifts
Data drift

Divergence from training

baseline

Inference Latency Response time
Performance

bottlenecks

Latency threshold

exceedance

System Health
Service availability, error

rates
Component failures Cross-system anomalies

Swati Kumari

378

Concept Drift
Feature-outcome

relationships
Evolving patterns Baseline deviation

Managing Dependencies and Model Interactions

Models seldom exist in isolation; they consume outputs from upstream models, share data sources, and

drive business processes together. Mapping these interdependencies helps teams anticipate the

downstream consequences of changes before they deploy updates. Dependency graphs visualize which

models are consuming shared features, relying on a common data pipeline, or each other's predictions.

Empirical studies of technical debt in machine learning software have identified 23 distinct categories of

admitted technical debt; the most significant sources of accumulated debt that hinder long-term

maintainability involve dependency management and architectural complexity [9]. The study showed that

machine learning systems have forms of technical debt not present in traditional software, such as

entangled dependencies, in which changes to one component unexpectedly affect seemingly unrelated

models; pipeline jungles, in which complex data processing workflows become hard to modify or debug;

and dead experimental code paths that remain in production systems because teams fear removing them

might break dependent components. Analysis of open-source machine learning codebases illustrates how

developers acknowledge-either through code comments or documentation-that the systems they create

contain fragile interdependencies, but they lack either time or resources to refactor the system toward

more maintainable architectures. The research puts forth the idea that model dependencies need to be

managed by considering machine learning systems as complex distributed applications and not loose

collections of independent models that require end-to-end dependency tracking, impact analysis tools, and

architectural patterns that minimize coupling between components while still enabling necessary

collaboration and data sharing across models.

Coordinated deployment strategies account for these interactions. When updating several related models,

there are a number of decisions to be made: whether to deploy all models simultaneously, stage the

releases carefully, or even maintain backwards compatibility during transitions. Testing frameworks

validate not only individual model performance but also the system-level behavior of interacting models.

The study of technical debt in machine learning systems shows convincingly that poor testing practices

and an inability to consider system-level interactions contribute greatly to production failures and

maintenance problems [9]. Researchers found that about 40% of machine learning technical debt involves

testing challenges, including an inability to recreate production environments in test settings, inadequate

coverage for edge cases and failure modes, and poor validation of how models will actually be deployed

in conjunction with other components in a complex production system. Coordinated deployment

strategies must address these testing challenges through: comprehensive integration test suites that

exercise complete prediction pipelines; canary deployment patterns that expose small populations of users

to changes before broader rollouts; and the ability to roll back quickly when a coordinated update

introduces unexpected system-level issues. Testing machine learning systems is fundamentally different

from testing traditional software because correctness cannot be validated definitively with unit tests.

Models may pass individual validation checks with flying colors yet exhibit undesirable behavior when

integrated with production data pipelines and dependent systems.

Data lineage tracking follows information flow from source systems through transformations to final

predictions. This is crucial for debugging unexpected behavior, ensuring the conformance of data usage

policies, and interpreting how far downstream models are affected by upstream data quality issues. When

problems occur, teams can identify root causes rather than investigate every individual model. Literature

that investigated automatic data quality assessment argued that comprehensive data lineage tracking and

quality monitoring were foundational requirements for any trustworthy machine learning system [10]. It

was proved in this research work that the dimensions in which the quality of data manifests include

completeness, consistency, accuracy, timeliness, and validity, each with different mechanisms for

detection and remediation. It is also argued that poor data quality is among the leading factors associated

with the failure of machine learning projects. Whatever algorithmic sophistication exists, once there is

From One Model To Many: Managing Dozens Of ML Models In The Enterprise

379

biased, incomplete, or corrupted data on which a model is trained, the resulting predictions are always

unreliable. An automatic data quality system should permanently monitor streams of incoming data by

comparing current observations with expected distributions and historical patterns to detect anomalies that

could reveal failures of upstream systems, data corruption, or a structural change in the processes that

generate the data, thus invalidating model assumptions.

Table 4: Technical Debt Categories in ML Systems and Their Impacts [9, 10]

Technical Debt

Category
Manifestation Impact on System

Percentage of

Total Debt
Mitigation Strategy

Dependency

Management

Entangled

dependencies

between models

Unexpected effects

from component

changes

Major

contributor

Comprehensive

dependency tracking,

impact analysis tools

Testing

Challenges

Inadequate

integration testing

Production failures,

maintenance

difficulties

40%

Integration test suites,

canary deployments, and

rollback capabilities

Pipeline Jungles

Complex data

processing

workflows

Difficult

modification and

debugging

Significant

source

Architectural patterns

minimizing coupling

Dead

Experimental

Code

Unused code paths

in production

Fear of removal

breaking

dependencies

Contributing

factor

Regular code audits, clear

ownership

System-Level

Interactions

Insufficient

validation of model

interactions

Problematic

behavior in

production

Part of testing

debt

Complete pipeline testing,

staged rollouts

Conclusion

A multi-model management paradigm within the enterprise necessitates systematic practices that

correspond to far more than the optimization of models, incorporating lifecycle management, governance,

and architecture standardization. The scaling of the organization with machine learning necessitates the

understanding that technical excellence, by itself and as the culmination of technological efforts, does not

suffice without the subsequent focus on investments in the development of centralized registry-based

visibility for the portfolio, shared infrastructural development to avoid ‘redundant development efforts,’

continuous monitoring to proactively address decreases, and understanding and preventing the failure

cascade among interlinked systems. MLOps corresponds to the challenges by leveraging the effective and

successful principles of DevOps, as applied to machine learning, to emphasize the identification and focus

on automation, reproducibility, and collaboration throughout the lifecycle of models, and that too starting

from the exploratory phase to productionizing and eventually to model retirement. Outlining effective

governance with the proper definition and implementation of ‘role-based access control and approval

workflows' necessitates ‘innovation velocity' while also maintaining the proper and necessary ‘balance

between necessary oversight, regulatory compliance, and trust and buy-in with various stakeholders.’

Common architecture elements correspond to the ‘feature store, containerized platforms, and

development templates' that shall propel and establish ‘speed to value and the establishment and

promotion of all proper practices related to fairness evaluation, bias detection, and overarching

documentation.’ This, correspondingly, is where the increase in the size and complexity of model

portfolios corresponds to the challenges that necessitate the effective management practices to lay the

essential grounds for the organization to establish the achievement and optimization of the utmost

‘business value realization from machine learning investments, while also maintaining the optimization

Swati Kumari

380

and necessary focus on the management and control of operating cost and minimizing the buildup and

creation of technical debt, besides remaining effective and nimble as per the paradigms and changing and

evolving as per the changing and evolving unexplored and new and emerging ‘business conditions and

changing and evolving new opportunities.

References

[1] Dev Kumar Chaudhary et al., "A Review on Hidden Debts in Machine Learning Systems,"

ResearchGate, August 2018. [Online]. Available: https://www.re

searchgate.net/publication/334238242_A_Review_on_Hidden_Debts_in_Machine_Learning_Systems

[2] Balaram Panda., "Why Data Science Projects Fail," ResearchGate, August 2023. [Online]. Available:

https://www.researchgate.net/publication/373017005_Why_Data_Science_Projects_Fail

[3] Matteo Testi et al., "MLOps: A Taxonomy and a Methodology," ResearchGate, June 2022. [Online].

Available:

https://www.researchgate.net/publication/361669590_MLOps_A_Taxonomy_and_a_Methodology

[4] Enrico Barbierato & Alice Gatti., "The Challenges of Machine Learning: A Critical Review,"

ResearchGate, January 2024. [Online]. Available:

https://www.researchgate.net/publication/377541001_The_Challenges_of_Machine_Learning_A_Critical

_Review

[5] Suresh Kumar Gaware et al., "MLOps for Enhancing the Accuracy of Machine Learning Models

using DevOps Continuous Integration and Continuous Deployment," ResearchGate, June 2023. [Online].

Available:

https://www.researchgate.net/publication/371218868_MLOps_for_Enhancing_the_Accuracy_of_Machin

e_Learning_Models_using_DevOps_Continuous_Integration_and_Continuous_Deployment

[6] Chong Huang et al., "Hidden Technical Debts for Fair Machine Learning in Financial Services,"

ResearchGate, March 2021. [Online]. Available:

https://www.researchgate.net/publication/350254067_Hidden_Technical_Debts_for_Fair_Machine_Learn

ing_in_Financial_Services

[7] Samir Mittal, "Cognitive Computing Architectures for Machine Deep Learning at Scale,"

ResearchGate, June 2017. [Online]. Available:

https://www.researchgate.net/publication/318496497_Cognitive_Computing_Architectures_for_Machine

_Deep_Learning_at_Scale

[8] Emmanuel OK et al., "Lifecycle of Machine Learning Models," ResearchGate, April 2022. [Online].

Available:

https://www.researchgate.net/publication/389713001_Lifecycle_of_Machine_Learning_Models

[9] David Obrien et al., "23 shades of admitted technical debt: an empirical study on machine learning

software," ResearchGate, November 2022. [Online]. Available:

https://www.researchgate.net/publication/365269195_23_shades_of_self-

admitted_technical_debt_an_empirical_study_on_machine_learning_software

[10] Deepak Chandran & Vikram Gupta., "A Short Review of the Literature on Automatic Data Quality,"

ResearchGate, January 2022. [Online]. Available:

https://www.researchgate.net/publication/360942355_A_Short_Review_of_the_Literature_on_Automatic

_Data_Quality

https://www.researchgate.net/publication/334238242_A_Review_on_Hidden_Debts_in_Machine_Learning_Systems
https://www.re/
https://www.researchgate.net/publication/334238242_A_Review_on_Hidden_Debts_in_Machine_Learning_Systems
https://www.researchgate.net/publication/334238242_A_Review_on_Hidden_Debts_in_Machine_Learning_Systems
https://www.researchgate.net/publication/373017005_Why_Data_Science_Projects_Fail
https://www.researchgate.net/publication/373017005_Why_Data_Science_Projects_Fail
https://www.researchgate.net/publication/373017005_Why_Data_Science_Projects_Fail
https://www.researchgate.net/publication/361669590_MLOps_A_Taxonomy_and_a_Methodology
https://www.researchgate.net/publication/361669590_MLOps_A_Taxonomy_and_a_Methodology
https://www.researchgate.net/publication/361669590_MLOps_A_Taxonomy_and_a_Methodology
https://www.researchgate.net/publication/377541001_The_Challenges_of_Machine_Learning_A_Critical_Review
https://www.researchgate.net/publication/377541001_The_Challenges_of_Machine_Learning_A_Critical_Review
https://www.researchgate.net/publication/377541001_The_Challenges_of_Machine_Learning_A_Critical_Review
https://www.researchgate.net/publication/377541001_The_Challenges_of_Machine_Learning_A_Critical_Review
https://www.researchgate.net/publication/371218868_MLOps_for_Enhancing_the_Accuracy_of_Machine_Learning_Models_using_DevOps_Continuous_Integration_and_Continuous_Deployment
https://www.researchgate.net/publication/371218868_MLOps_for_Enhancing_the_Accuracy_of_Machine_Learning_Models_using_DevOps_Continuous_Integration_and_Continuous_Deployment
https://www.researchgate.net/publication/371218868_MLOps_for_Enhancing_the_Accuracy_of_Machine_Learning_Models_using_DevOps_Continuous_Integration_and_Continuous_Deployment
https://www.researchgate.net/publication/371218868_MLOps_for_Enhancing_the_Accuracy_of_Machine_Learning_Models_using_DevOps_Continuous_Integration_and_Continuous_Deployment
https://www.researchgate.net/publication/350254067_Hidden_Technical_Debts_for_Fair_Machine_Learning_in_Financial_Services
https://www.researchgate.net/publication/350254067_Hidden_Technical_Debts_for_Fair_Machine_Learning_in_Financial_Services
https://www.researchgate.net/publication/350254067_Hidden_Technical_Debts_for_Fair_Machine_Learning_in_Financial_Services
https://www.researchgate.net/publication/350254067_Hidden_Technical_Debts_for_Fair_Machine_Learning_in_Financial_Services
https://www.researchgate.net/publication/318496497_Cognitive_Computing_Architectures_for_Machine_Deep_Learning_at_Scale
https://www.researchgate.net/publication/318496497_Cognitive_Computing_Architectures_for_Machine_Deep_Learning_at_Scale
https://www.researchgate.net/publication/318496497_Cognitive_Computing_Architectures_for_Machine_Deep_Learning_at_Scale
https://www.researchgate.net/publication/318496497_Cognitive_Computing_Architectures_for_Machine_Deep_Learning_at_Scale
https://www.researchgate.net/publication/389713001_Lifecycle_of_Machine_Learning_Models
https://www.researchgate.net/publication/389713001_Lifecycle_of_Machine_Learning_Models
https://www.researchgate.net/publication/389713001_Lifecycle_of_Machine_Learning_Models
https://www.researchgate.net/publication/365269195_23_shades_of_self-admitted_technical_debt_an_empirical_study_on_machine_learning_software
https://www.researchgate.net/publication/365269195_23_shades_of_self-admitted_technical_debt_an_empirical_study_on_machine_learning_software
https://www.researchgate.net/publication/365269195_23_shades_of_self-admitted_technical_debt_an_empirical_study_on_machine_learning_software
https://www.researchgate.net/publication/365269195_23_shades_of_self-admitted_technical_debt_an_empirical_study_on_machine_learning_software
https://www.researchgate.net/publication/360942355_A_Short_Review_of_the_Literature_on_Automatic_Data_Quality
https://www.researchgate.net/publication/360942355_A_Short_Review_of_the_Literature_on_Automatic_Data_Quality
https://www.researchgate.net/publication/360942355_A_Short_Review_of_the_Literature_on_Automatic_Data_Quality
https://www.researchgate.net/publication/360942355_A_Short_Review_of_the_Literature_on_Automatic_Data_Quality

