
JOURNAL OF INTERNATIONAL CRISIS AND RISK COMMUNICATION RESEARCH
ISSN: 2576-0017
2026, VOL 9, NO 1

350

Scaling And Devops In Cloud Architectures: Automation,
Monitoring, And Resource Management In Modern Cloud
Systems

Pooja Rajiv Ranjan

Independent Researcher, USA

Abstract

Cloud computing's journey from its early commercial days in the 2000s to becoming
a backbone of enterprise technology has demanded increasingly sophisticated
operational methods to satisfy the strict uptime guarantees written into modern

service contracts. The biggest cloud platform companies pull in more than 350
billion US dollars every year while keeping their systems running at 99.99%

availability or better—that means downtime gets measured in minutes per year, not
hours. This piece digs into how DevOps techniques get put into practice across
cloud systems, zeroing in on automated building and deployment pipelines, round-

the-clock monitoring backed by alarm systems and operational guides, and flexible
resource management through autoscaling. Control planes handling system setup

work separately from data planes that crunch and move information, which stops
failures from spreading through the distributed infrastructure like dominoes.
Today's deployment pipelines string together validation checkpoints—automated

tests, security scans, careful rollout plans—that cut deployment risks while keeping
the pace of improvements quick. Alert platforms pull together warnings from

hundreds of monitoring systems, using smart routing rules and escalation
procedures to slash response times when problems hit. Autoscaling tech tweaks

how many computational resources get used based on what's happening right now
with traffic, cutting infrastructure bills through horizontal scaling that adds more
servers and vertical scaling that beefs up individual machines. When all these

operational practices are combined, cloud companies will be able to fulfill hard
promises of availability and maintain the process of services in a smooth flow to

users all over the world.

Keywords: Cloud Computing, DevOps Automation, Autoscaling Mechanisms, Fault

Isolation Boundaries, Incident Management Systems.

1. Introduction

The cloud computing sphere has evolved significantly since the era of commercial offering introduction

during the early 2000s, shifting toward the status of experimental technology up until the late 2010s,

when it became an indispensable part of the infrastructure that can no longer be ignored by modern

businesses. This is a market dominated by Amazon Web Services, Google Cloud Platform, Microsoft

Azure, and Oracle Cloud Infrastructure, which each attract more than $350 billion US dollars in a year by

selling Infrastructure as a Service, Software as a Service, and Platform as a Service to firms in any

industry under the sun. These platforms maintain the operation at an uptime of 99.99% or higher, which

requires having significant DevOps skills, immense automation, and a full-time engineering team focus.

Scaling And Devops In Cloud Architectures: Automation, Monitoring, And Resource Management In Modern Cloud
Systems

351

Keeping systems available across data centers scattered around the world presents real headaches. The

math behind availability shows just how demanding today's service contracts have become: 99.99%

availability means only 52 minutes and 35 seconds of downtime gets tolerated per year, while 99.95%

availability gives roughly 4 hours and 22 minutes annually [1]. To further break this down: 99.9%

availability - which is commonly the minimum required of production systems - permits 8 hours and 45

minutes of annual unavailability, but the much more desired 99.999% availability, commonly known as

five nines, leaves the maximum downtime at just 5 minutes and 15 seconds a year [1]. These figures

presuppose the twenty-four-hour working of all 525,600 minutes comprising a regular year, which

necessitates the phenomenal organizational discipline that one must possess to achieve such figures.

DevOps - a method of operation that incorporates software development into Information Technology has

become the solution of choice in addressing these issues based on automation, integration, and

uninterrupted linkages between the development and operation teams.

Cloud system architecture today depends heavily on keeping control planes separate from data planes, a

design choice that boosts both scalability and fault isolation [2]. The control plane acts as the

management and setup layer, handling resource orchestration, request authentication, and system state

tracking, while the data plane takes care of actually processing and moving customer information through

the system [2]. This split-up design allows independent scaling behavior, with the control plane usually

seeing lower traffic focused on configuration tweaks and admin tasks, while the data plane has to handle

massive amounts of high-speed data processing [2]. Most importantly, this setup creates fault isolation

boundaries that stop failures from cascading, making sure that problems in data plane operations don't

automatically wreck control plane functionality, which preserves the ability to manage and fix issues even

when parts of the system go down [2].

This piece looks at how DevOps practices actually get implemented across cloud architectures, focusing

on three main areas: automation in build and deploy pipelines, continuous monitoring through alarm

systems and runbooks, and flexible resource management using autoscaling tricks. The discussion

explores how these practices let cloud providers stick to service agreements promising 99.95% to 99.99%

yearly availability, which translates to between 52 minutes and 4.4 hours of acceptable downtime per

year, and checks out how control plane and data plane coordination mechanisms support nonstop service

delivery on a global scale.

Table 1: Availability Requirements and Control-Data Plane Architecture [1][2]

Availability

Tier

Annual Downtime

Tolerance

Architectural

Component
Primary Function

99.9% (Three

Nines)
8 hours 45 minutes Control Plane

Configuration management and

resource orchestration

99.95% 4 hours 22 minutes Control Plane
Authentication and system state

maintenance

99.99% (Four

Nines)

52 minutes 35

seconds
Data Plane

Customer data processing and

movement

99.999% (Five

Nines)

5 minutes 15

seconds
Data Plane

High-volume transaction

handling

2. Cloud Service Models and DevOps Integration

Cloud computing services spread across a range of abstraction levels, with each tier giving different

amounts of infrastructure management and operational responsibility. The three main service models—

IaaS, PaaS, and SaaS—represent increasingly higher abstraction from underlying hardware, with each

model fundamentally redrawing the line between what providers manage and what customers handle

within the technology stack.

Pooja Rajiv Ranjan

352

Infrastructure as a Service hands over virtualized computing resources through the internet, working best

when organizations need maximum control and customization over their computing setup [3]. The IaaS

model lets companies provision virtual machines, set up network designs, and manage storage systems

exactly as needed while the cloud provider takes care of physical hardware, data center buildings, and

basic network infrastructure [3]. This service model particularly helps organizations moving existing

applications to the cloud, building custom solutions that need specific operating system setups, or keeping

legacy systems running that require particular runtime conditions [3]. Platform as a Service takes the

abstraction layer much further by handling not just infrastructure but also operating systems, development

frameworks, middleware, and database management systems, which lets developers zero in exclusively

on application logic and business functionality [3]. The PaaS model wipes out worries about server

provisioning, capacity planning, software patching, and infrastructure scaling, letting development teams

speed up application delivery while cutting operational headaches [3]. Software as a Service sits at the top

of cloud abstraction, delivering complete, ready-to-go applications accessible through web browsers or

mobile interfaces without needing any installation, configuration, or maintenance from end users [3].

Within the SaaS setup, customers just access productivity tools, collaboration platforms, or business

applications right after subscribing, with the cloud vendor taking full responsibility for application

performance, security updates, feature additions, and infrastructure management [3].

DevOps pipelines inside SaaS systems are designed specifically to cut down deployment delays while

keeping service reliability across geographically spread-out infrastructure. Current cloud setups use zonal

services that spread workloads across multiple availability zones in each region, with availability zones

representing physically separated data centers spaced far enough apart that related failures won't hit

multiple zones at once [4]. Each availability zone runs with independent power grids, cooling systems,

and network connections, creating fault isolation boundaries that trap failures inside individual zones and

stop domino effects across broader regional infrastructure [4]. Zonal services put redundant copies of both

control plane and data plane components in each zone, setting up per-zone service endpoints that handle

customer requests independently while keeping coordination for configuration state and cross-zone data

copying [4]. This architectural pattern lets cloud services keep running even when entire availability

zones suffer catastrophic failures, as traffic automatically gets redirected to healthy zones through load-

balancing tricks and DNS failover protocols [4]. The control plane typically uses strongly consistent

replication across zones to keep unified configuration state, while data plane components often use

eventual consistency models that put request throughput and latency optimization ahead of instant cross-

zone synchronization [4]. Gradual deployment strategies take advantage of this zonal architecture by

rolling out software updates to one availability zone first, watching service health metrics and error rates

for weird behavior, then moving ahead with sequential rollouts to more zones only after confirming

stability in previously updated zones [4].

Table 2: Cloud Service Models and Zonal Deployment Characteristics [3][4]

Service

Model

Provider

Responsibilities
Customer Control Scope

Fault Isolation

Mechanism

IaaS

Physical hardware,

networking infrastructure,

and virtualization

Operating systems,

applications, and data

management

Independent availability

zones with separate power

and cooling

PaaS

Infrastructure, operating

systems, middleware,

development frameworks

Application code and

business logic

Per-zone service endpoints

with cross-zone

replication

SaaS

Complete technology

stack from hardware to

application

Data access and application-

level configuration

DNS failover and load

balancing across healthy

zones

Scaling And Devops In Cloud Architectures: Automation, Monitoring, And Resource Management In Modern Cloud
Systems

353

Zonal

Services

Redundant component

deployment across zones

Minimal intervention during

zone failures

Strongly consistent control

plane, eventual

consistency data plane

3. Automated Build and Deployment Pipelines

The DevOps lifecycle begins with code development on local machines through the engineering teams

that are located at various localities. VCS products such as Git and Perforce maintain a consistent master

codebase and also allow multiple developers to commit code simultaneously. Each pull request is

subjected to rigorous automated and manual inspection processes with a final merge into the master

repository, establishing numerous quality verification points, preventing any buggy code from making it

to production systems.

Automated validation tools act as the first defense line in code quality assurance. Linters enforce

consistent code formatting and style rules, while static code analysis tools check code against predefined

rule sets, spotting violations of coding standards, potential bugs, and security holes. Custom security

scanners catch possible data leaks through object passing or value transmission in code. These tools look

at all external interfaces—Application Programming Interfaces (APIs), Software Development Kits

(SDKs), Command Line Interfaces (CLIs), and web applications—for security threats brought in by

proposed changes. These requirements of manual code review are that two to three non-writers of the

changes must approve them, and ensure that more than two individuals contribute to the consideration of

the quality and correctness of the code. Extensive test suites will execute unit tests, integration tests, and

end-to-end functional tests that ensure that new functionality does not break the old functionality but adds

real value as expected. Code coverage tools, such as Clover, require minimum standards, typically 70-

80% line coverage, to prevent merges failing to meet testing standards.

After successful validation, approved code gets merged into the master repository and enters the

deployment pipeline, a structured automated process covering build, test, and release phases that turn

source code into production-ready software [5]. The deployment pipeline architecture usually has five

separate stages: the commit stage, where code compilation and unit testing happen, the automated

acceptance testing stage, checking functional requirements, the capacity testing stage, looking at

performance under load, the manual exploratory testing stage for user experience checks, and finally the

production deployment stage [5]. Each pipeline stage works as a quality gate that code has to successfully

pass through before moving forward, with failures at any stage stopping progression and triggering

immediate developer notification [5]. Modern deployment pipelines use containerization and

orchestration platforms to hit deployment speed, with leading organizations pushing out multiple

deployments daily compared to old-school quarterly or monthly release cycles [5]. The pipeline

automation cuts down manual intervention points that historically caused deployment errors and delays,

turning release processes from high-risk events needing long maintenance windows into routine

operations that can run during business hours with minimal service disruption [5].

Infrastructure-as-code tools like Terraform give declarative configuration management that enables

version-controlled infrastructure definitions supporting repeatable deployments across environments [6].

Terraform works as an open-source tool handling infrastructure lifecycle through three core workflows:

write phase, where infrastructure gets defined in human-readable configuration files, plan phase, where

Terraform creates execution plans showing exactly which resources will be created, changed, or

destroyed, and apply phase, where Terraform runs planned changes to reach the desired infrastructure

state [6]. The tool keeps state files tracking resource configurations and interdependencies, enabling

detection of configuration drift where actual infrastructure wanders away from codified specifications [6].

Terraform supports infrastructure provisioning across over 300 cloud providers and services through its

provider plugin architecture, allowing unified management of multi-cloud and hybrid cloud environments

through consistent declarative syntax [6]. Organizations picking up infrastructure-as-code practices report

major improvements in deployment consistency, with infrastructure provisioning times dropping from

days or weeks to minutes while wiping out manual configuration errors that previously caused production

incidents [6]. Configuration management tools coordinate version dependencies across control plane and

Pooja Rajiv Ranjan

354

data plane components, stopping out-of-order deployments that could bring in system instabilities through

incompatible component versions running at the same time [6].

Table 3: Deployment Pipeline Stages and Infrastructure-as-Code Workflows [5][6]

Pipeline Stage Validation Activity Terraform Workflow Phase Capability Provided

Commit Stage
Code compilation and

unit testing
Write Phase

Infrastructure definition in

configuration files

Automated

Acceptance

Testing

Functional requirement

validation
Plan Phase

Execution plan generation

showing resource changes

Capacity

Testing

Performance assessment

under load
Apply Phase

Automated infrastructure

provisioning

Manual

Exploratory

Testing

User experience

validation
State Management

Configuration drift

detection

Production

Deployment

Progressive rollout to

data centers
Provider Integration

Multi-cloud unified

management

4. Monitoring, Alerting, and Operational Response

Following deployment to all data centers, continuous monitoring systems track application health and

performance metrics through alarm configurations. Alarms are automated notifications in case predefined

conditions are breached. Alarm rules are based on regular expressions and conditional logic to define

expected system behavior, such as saying that the 500-series server errors should never be returned by

API endpoints.

Alert management platforms, including Jira Service Management, Ocean, and PagerDuty, facilitate alarm

configuration, routing, and tracking across distributed engineering teams. PagerDuty operates as a

comprehensive incident management platform that centralizes alerts from diverse monitoring tools,

implements intelligent routing to appropriate on-call personnel, and orchestrates response workflows to

accelerate incident resolution [7]. The platform aggregates notifications from over 700 integrated

monitoring, observability, and security tools, including Datadog, New Relic, Prometheus, Splunk, and

CloudWatch, creating unified incident streams that eliminate the fragmentation typical of organizations

using multiple specialized monitoring solutions [7]. PagerDuty's intelligent alert grouping employs

machine learning algorithms to cluster related alerts into single incidents, dramatically reducing

notification fatigue where cascading failures across interdependent systems might otherwise generate

hundreds of individual alerts overwhelming on-call engineers [7]. The platform's scheduling capabilities

manage complex on-call rotations across global teams, supporting follow-the-sun coverage models where

incident responsibility transfers between geographical regions as business hours shift, ensuring 24-hour

response availability without requiring individual engineers to maintain continuous on-call status [7].

Large organizations maintain on-call rotation schedules whereby approximately 20% of engineering staff

focus exclusively on alarm resolution, deployment monitoring, and customer issue remediation at any

given time, with PagerDuty analytics indicating that organizations using automated escalation policies

achieve median response times of 2-3 minutes compared to 8-10 minutes for manual notification

processes [7].

Alarm classification by severity enables prioritized response allocation. Severity-1 alarms indicate critical

system failures requiring immediate resolution within one hour, such as authentication service outages

that render entire services inoperable. These highest-priority incidents redirect all available on-call

Scaling And Devops In Cloud Architectures: Automation, Monitoring, And Resource Management In Modern Cloud
Systems

355

resources toward root cause identification and mitigation deployment or version rollback. Lower-priority

alarms, such as disk space utilization reaching 60% capacity on a load balancer, permit extended response

windows following alarm acknowledgment. Jira Service Management facilitates alert notification

configuration through integration with monitoring tools, automatically creating incident tickets when

predefined conditions trigger [8]. The platform enables administrators to establish alert notification rules

that specify which teams receive notifications based on service ownership, geographical location, time of

day, and incident severity levels [8]. Alert rules support conditional logic, including time-based filters that

adjust notification routing during business hours versus after-hours periods, ensuring appropriate

escalation paths based on temporal context [8]. Jira Service Management's alert aggregation capabilities

deduplicate redundant notifications from multiple monitoring sources reporting identical issues,

preventing alert storms where single infrastructure failures generate excessive ticket creation [8]. The

platform tracks alert lifecycle metrics, including acknowledgment times, resolution durations, and false

positive rates, providing visibility into operational efficiency and identifying opportunities for threshold

tuning to reduce noise while maintaining comprehensive coverage of genuine incidents [8].

Runbooks—also termed playbooks—provide standardized operational procedures for alarm response.

These documents contain step-by-step instructions for diagnosing and resolving specific alarm conditions.

High-severity runbooks enumerate potential root causes, including software deployment failures, data

center power outages, security attacks, and network configuration errors, with corresponding mitigation

procedures. The runbook approach standardizes operational knowledge, reduces mean time to resolution,

and enables consistent response quality regardless of which on-call engineer handles particular incidents

[7].

Table 4: Alert Management and Incident Response Characteristics [7][8]

Platform

Capability

PagerDuty

Implementation

Jira Service

Management Feature
Operational Impact

Alert

Aggregation

Integration with 700+

monitoring tools

Deduplication of

redundant notifications

Reduced notification

fragmentation

Intelligent

Grouping

Machine learning

clustering of related alerts

Alert storm prevention

from single failures

Minimized engineer

fatigue

On-Call

Scheduling

Follow-the-sun coverage

across global teams
Time-based routing filters

Continuous response

availability

Escalation

Policies

Automated senior engineer

involvement

Severity-based

notification rules

Faster incident

acknowledgment

Response

Time

2-3 minutes median with

automation
Lifecycle metric tracking

Improved mean time to

resolution

5. Autoscaling Strategies and Resource Management

Beyond deployment and monitoring, cloud operations require dynamic hardware resource management—

servers, block storage volumes, Graphics Processing Units (GPUs), graphics cards, network switches, and

routers. Data center physical hardware capacity typically maintains a 1.5x buffer above current daily

traffic processing requirements, though not all resources remain actively utilized simultaneously. Cloud

providers implement usage-based billing models, creating economic incentives for efficient resource

utilization through automated scaling mechanisms.

Autoscaling systems dynamically adjust resource allocation in response to traffic patterns, scaling up

during predicted demand increases and scaling down during low-traffic periods [9]. Autoscaling operates

as a cloud computing capability that automatically modifies the quantity of active servers or

computational resources based on real-time application load, ensuring optimal performance during peak

demand while reducing costs during low-traffic periods [9]. The fundamental process keeps track of

Pooja Rajiv Ranjan

356

predefined measures such as CPU use, memory utilization, network throughput, or application-specific

measures and takes scaling measures when these thresholds are met or when capacity drops to levels

below minimum requirements [9]. This automated solution is also more stable and cost-efficient when

compared to manual provisioning of resources, which requires a significant number of skilled employees,

training, and is still prone to human error. Organizations implementing autoscaling report infrastructure

cost reductions ranging from 20% to 50% by eliminating persistent over-provisioning, while

simultaneously achieving improved application responsiveness during unexpected traffic surges that

would overwhelm static resource allocations [9]. Autoscaling frameworks typically enforce configurable

boundaries, including minimum instance counts ensuring baseline availability even during zero-load

conditions, maximum instance counts preventing runaway scaling costs from misconfigured policies or

denial-of-service attacks, and desired capacity representing the target instance count under normal

operating conditions [9].

Horizontal scaling adds or removes discrete resource units—additional servers to load balancer fleets,

Kubernetes pods to container orchestration systems, or memory modules to block storage database servers

[9]. This scaling approach, commonly termed "scaling out" when adding resources or "scaling in" when

removing them, distributes workload across multiple identical compute instances, enabling near-linear

capacity expansion limited primarily by load balancer throughput and network bandwidth rather than

individual server specifications [9]. AWS Auto Scaling Groups exemplify horizontal scaling

implementation, automatically launching new EC2 instances when aggregate CPU utilization across the

fleet exceeds 70% for sustained periods typically configured as 5-10 minutes, preventing transient spikes

from triggering unnecessary scaling actions [10]. These Auto Scaling Groups integrate with Elastic Load

Balancers that distribute incoming requests across all healthy instances, automatically incorporating

newly launched instances into the traffic distribution pool once they pass health checks, typically within

30-60 seconds of instance initialization [10]. Vertical scaling increases the capacity of individual

resources by adding Random Access Memory (RAM), Central Processing Units (CPUs), or block storage

capacity to existing servers [9]. While vertical scaling may require service interruptions for

reconfiguration and server restarts, it proves advantageous for monolithic applications unable to distribute

processing across multiple instances, particularly database systems requiring strong consistency

guarantees that complicate horizontal distribution [9].

Modern autoscaling implementations increasingly leverage artificial intelligence and machine learning

algorithms to predict scaling requirements based on historical usage patterns, peak usage hours by

geographic location, and event-driven demand spikes such as live sports streaming [9]. Predictive

autoscaling analyzes time-series metrics to identify recurring patterns, including daily traffic cycles,

weekly variations between weekday and weekend usage, and seasonal trends, enabling proactive resource

allocation 10-15 minutes before anticipated demand surges rather than reactive scaling after performance

degradation occurs [10]. These predictive models enable proactive scaling ahead of demand surges,

maintaining performance while minimizing resource waste, with autoscaling policies encoding

operational rules such as target tracking policies maintaining specific metric values like 70% average

CPU utilization across the fleet [10].

Conclusion

The technical complexity of the current cloud computing infrastructure can be attributed to the change in

operational practices that were manual and prone to errors to highly automated and resilient systems with

the ability to sustain more than 99.99 percent of availability during a given year. Coordination between

DevOps practices throughout the software development lifecycle, including code validation and

deployment pipeline, continuous monitoring, and dynamic resource management, has allowed cloud

providers to offer consistent service levels, notwithstanding the complexity of globally distributed

infrastructure, which caters to millions of users at any given time. The isolation of faults by the

architectural separation of control planes and data planes between localized failures in a system, and zonal

distribution through physically isolated availability zones, results in continuity of service in spite of

catastrophic data center failures. Deployment pipelines with various levels of validation, gradual rollout

Scaling And Devops In Cloud Architectures: Automation, Monitoring, And Resource Management In Modern Cloud
Systems

357

plans, and automated rollback functions are changing software releases from high-risk events into daily

operations that can occur severally times throughout the day without interrupting service. Intelligent

grouping algorithms and automated policies on escalation are used in alert management platforms

aggregating hundreds of monitoring tools, both to decrease mean time to resolution from hours to minutes

and to maintain a consistent quality of operational response irrespective of who is the on-call engineer.

Auto-scaling systems using rule-based cuts and machine learning forecasting automatically scale up and

down the computational resources based on traffic patterns, which saves on the cost of infrastructure by

20-50 percent whilst ensuring consistent performance at times of surge demand. With the continued

proliferation of cloud computing into new areas such as edge computing, serverless computing, and more

specialized workloads that may demand quantum computing capabilities, the underlying DevOps patterns

and principles will keep changing to meet new technical demands and remain just as reliable and efficient

as the cloud services of today have become.

References

[1] Niall Richard Murphy, et al., "Site Reliability Engineering," O'Reilly Media, 2016. [Online].

Available: https://www.oreilly.com/library/view/site-reliability-engineering/9781491929117/app01.html

[2] Amazon Web Services, "Control planes and data planes," AWS Whitepapers. [Online]. Available:

https://docs.aws.amazon.com/whitepapers/latest/aws-fault-isolation-boundaries/control-planes-and-data-

planes.html

[3] Salesforce, "IaaS, PaaS, and SaaS: Decoding Cloud Service Models," 2025. [Online]. Available:

https://www.salesforce.com/in/blog/what-is-iaas-paas-saas/

[4] Amazon Web Services, "AWS Fault Isolation Boundaries: Zonal Services," AWS Whitepapers.

[Online]. Available: https://docs.aws.amazon.com/whitepapers/latest/aws-fault-isolation-

boundaries/zonal-services.html

[5] Dan Merron, "Deployment Pipelines (CI/CD) in Software Engineering" BMC Blogs, 2020. [Online].

Available: https://www.bmc.com/blogs/deployment-pipeline/

[6] Gregg Lindemulder, Matthew Kosinski, "What is Terraform?" IBM, 2024. [Online]. Available:

https://www.ibm.com/think/topics/terraform

[7] Adservio, "PagerDuty: What is it?" [Online]. Available: https://www.adservio.fr/post/pagerduty-what-

is-it

[8] Atlassian, "Set up your alert notifications,". [Online]. Available: https://support.atlassian.com/jira-

service-management-cloud/docs/set-up-your-alert-notifications

[9] Neel Shah, "What is AutoScaling? Explained in Detail (Updated)," Middleware, 2025. [Online].

Available: https://middleware.io/blog/what-is-autoscaling/

[10]Khalil Faqiri, "Create a Scalable AWS VPC with Auto Scaling & Load Balancer: Hands-on

Learning," Medium, 2023. [Online]. Available: https://aws.plainenglish.io/create-a-scalable-aws-vpc-

with-auto-scaling-load-balancer-hands-on-learning-ce3abe9916fa

https://www.oreilly.com/library/view/site-reliability-engineering/9781491929117/app01.html
https://docs.aws.amazon.com/whitepapers/latest/aws-fault-isolation-boundaries/control-planes-and-data-planes.html
https://docs.aws.amazon.com/whitepapers/latest/aws-fault-isolation-boundaries/control-planes-and-data-planes.html
https://www.salesforce.com/in/blog/what-is-iaas-paas-saas/
https://docs.aws.amazon.com/whitepapers/latest/aws-fault-isolation-boundaries/zonal-services.html
https://docs.aws.amazon.com/whitepapers/latest/aws-fault-isolation-boundaries/zonal-services.html
https://www.bmc.com/blogs/deployment-pipeline/
https://www.ibm.com/think/topics/terraform
https://www.adservio.fr/post/pagerduty-what-is-it
https://www.adservio.fr/post/pagerduty-what-is-it
https://support.atlassian.com/jira-service-management-cloud/docs/set-up-your-alert-notifications
https://support.atlassian.com/jira-service-management-cloud/docs/set-up-your-alert-notifications
https://middleware.io/blog/what-is-autoscaling/
https://aws.plainenglish.io/create-a-scalable-aws-vpc-with-auto-scaling-load-balancer-hands-on-learning-ce3abe9916fa
https://aws.plainenglish.io/create-a-scalable-aws-vpc-with-auto-scaling-load-balancer-hands-on-learning-ce3abe9916fa

