JOURNAL OF INTERNATIONAL CRISIS AND RISK COMMUNICATION RESEARCH
ISSN: 2576-0017
2026, VOL 9, NO 1

Scaling And Devops In Cloud Architectures: Automation,
Monitoring, And Resource Management In Modern Cloud
Systems

Pooja Rajiv Ranjan
Independent Researcher, USA

Abstract

Cloud computing's journey from its early commercial days in the 2000s to becoming
a backbone of enterprise technology has demanded increasingly sophisticated
operational methods to satisfy the strict uptime guarantees written into modern
service contracts. The biggest cloud platform companies pull in more than 350
billion US dollars every year while keeping their systems running at 99.99%
availability or better—that means downtime gets measured in minutes per year, not
hours. This piece digs into how DevOps techniques get put into practice across
cloud systems, zeroing in on automated building and deployment pipelines, round-
the-clock monitoring backed by alarm systems and operational guides, and flexible
resource management through autoscaling. Control planes handling system setup
work separately from data planes that crunch and move information, which stops
failures from spreading through the distributed infrastructure like dominoes.
Today's deployment pipelines string together validation checkpoints—automated
tests, security scans, careful rollout plans—that cut deployment risks while keeping
the pace of improvements quick. Alert platforms pull together warnings from
hundreds of monitoring systems, using smart routing rules and escalation
procedures to slash response times when problems hit. Autoscaling tech tweaks
how many computational resources get used based on what's happening right now
with traffic, cutting infrastructure bills through horizontal scaling that adds more
servers and vertical scaling that beefs up individual machines. When all these
operational practices are combined, cloud companies will be able to fulfill hard
promises of availability and maintain the process of services in a smooth flow to
users all over the world.

Keywords: Cloud Computing, DevOps Automation, Autoscaling Mechanisms, Fault
Isolation Boundaries, Incident Management Systems.

1. Introduction

The cloud computing sphere has evolved significantly since the era of commercial offering introduction
during the early 2000s, shifting toward the status of experimental technology up until the late 2010s,
when it became an indispensable part of the infrastructure that can no longer be ignored by modern
businesses. This is a market dominated by Amazon Web Services, Google Cloud Platform, Microsoft
Azure, and Oracle Cloud Infrastructure, which each attract more than $350 billion US dollars in a year by
selling Infrastructure as a Service, Software as a Service, and Platform as a Service to firms in any
industry under the sun. These platforms maintain the operation at an uptime of 99.99% or higher, which
requires having significant DevOps skills, immense automation, and a full-time engineering team focus.

350

Scaling And Devops In Cloud Architectures: Automation, Monitoring, And Resource Management In Modern Cloud
Systems

Keeping systems available across data centers scattered around the world presents real headaches. The
math behind availability shows just how demanding today's service contracts have become: 99.99%
availability means only 52 minutes and 35 seconds of downtime gets tolerated per year, while 99.95%
availability gives roughly 4 hours and 22 minutes annually [1]. To further break this down: 99.9%
availability - which is commonly the minimum required of production systems - permits 8 hours and 45
minutes of annual unavailability, but the much more desired 99.999% availability, commonly known as
five nines, leaves the maximum downtime at just 5 minutes and 15 seconds a year [1]. These figures
presuppose the twenty-four-hour working of all 525,600 minutes comprising a regular year, which
necessitates the phenomenal organizational discipline that one must possess to achieve such figures.
DevOps - a method of operation that incorporates software development into Information Technology has
become the solution of choice in addressing these issues based on automation, integration, and
uninterrupted linkages between the development and operation teams.

Cloud system architecture today depends heavily on keeping control planes separate from data planes, a
design choice that boosts both scalability and fault isolation [2]. The control plane acts as the
management and setup layer, handling resource orchestration, request authentication, and system state
tracking, while the data plane takes care of actually processing and moving customer information through
the system [2]. This split-up design allows independent scaling behavior, with the control plane usually
seeing lower traffic focused on configuration tweaks and admin tasks, while the data plane has to handle
massive amounts of high-speed data processing [2]. Most importantly, this setup creates fault isolation
boundaries that stop failures from cascading, making sure that problems in data plane operations don't
automatically wreck control plane functionality, which preserves the ability to manage and fix issues even
when parts of the system go down [2].

This piece looks at how DevOps practices actually get implemented across cloud architectures, focusing
on three main areas: automation in build and deploy pipelines, continuous monitoring through alarm
systems and runbooks, and flexible resource management using autoscaling tricks. The discussion
explores how these practices let cloud providers stick to service agreements promising 99.95% to 99.99%
yearly availability, which translates to between 52 minutes and 4.4 hours of acceptable downtime per
year, and checks out how control plane and data plane coordination mechanisms support nonstop service
delivery on a global scale.

Table 1: Availability Requirements and Control-Data Plane Architecture [1][2]

Availability Annual Downtime Architectural . .

. Primary Function
Tier Tolerance Component
5 ,

99.9 A) (Three R hours 45 minutes Control Plane Configuration management and
Nines) resource orchestration
99.95% 4 hours 22 minutes Control Plane Authentlcathn and system state

maintenance

99.99% (Four 52 minutes 35 Customer data processing and

. Data Plane
Nines) seconds movement
99.999% (Five 5 minutes 15 High-volume transaction
. Data Plane .
Nines) seconds handling

2. Cloud Service Models and DevOps Integration

Cloud computing services spread across a range of abstraction levels, with each tier giving different
amounts of infrastructure management and operational responsibility. The three main service models—
laaS, PaaS, and SaaS—represent increasingly higher abstraction from underlying hardware, with each
model fundamentally redrawing the line between what providers manage and what customers handle
within the technology stack.

351

Pooja Rajiv Ranjan

Infrastructure as a Service hands over virtualized computing resources through the internet, working best
when organizations need maximum control and customization over their computing setup [3]. The laaS
model lets companies provision virtual machines, set up network designs, and manage storage systems
exactly as needed while the cloud provider takes care of physical hardware, data center buildings, and
basic network infrastructure [3]. This service model particularly helps organizations moving existing
applications to the cloud, building custom solutions that need specific operating system setups, or keeping
legacy systems running that require particular runtime conditions [3]. Platform as a Service takes the
abstraction layer much further by handling not just infrastructure but also operating systems, development
frameworks, middleware, and database management systems, which lets developers zero in exclusively
on application logic and business functionality [3]. The PaaS model wipes out worries about server
provisioning, capacity planning, software patching, and infrastructure scaling, letting development teams
speed up application delivery while cutting operational headaches [3]. Software as a Service sits at the top
of cloud abstraction, delivering complete, ready-to-go applications accessible through web browsers or
mobile interfaces without needing any installation, configuration, or maintenance from end users [3].
Within the SaaS setup, customers just access productivity tools, collaboration platforms, or business
applications right after subscribing, with the cloud vendor taking full responsibility for application
performance, security updates, feature additions, and infrastructure management [3].

DevOps pipelines inside SaaS systems are designed specifically to cut down deployment delays while
keeping service reliability across geographically spread-out infrastructure. Current cloud setups use zonal
services that spread workloads across multiple availability zones in each region, with availability zones
representing physically separated data centers spaced far enough apart that related failures won't hit
multiple zones at once [4]. Each availability zone runs with independent power grids, cooling systems,
and network connections, creating fault isolation boundaries that trap failures inside individual zones and
stop domino effects across broader regional infrastructure [4]. Zonal services put redundant copies of both
control plane and data plane components in each zone, setting up per-zone service endpoints that handle
customer requests independently while keeping coordination for configuration state and cross-zone data
copying [4]. This architectural pattern lets cloud services keep running even when entire availability
zones suffer catastrophic failures, as traffic automatically gets redirected to healthy zones through load-
balancing tricks and DNS failover protocols [4]. The control plane typically uses strongly consistent
replication across zones to keep unified configuration state, while data plane components often use
eventual consistency models that put request throughput and latency optimization ahead of instant cross-
zone synchronization [4]. Gradual deployment strategies take advantage of this zonal architecture by
rolling out software updates to one availability zone first, watching service health metrics and error rates
for weird behavior, then moving ahead with sequential rollouts to more zones only after confirming
stability in previously updated zones [4].

Table 2: Cloud Service Models and Zonal Deployment Characteristics [3][4]

Service Provider Customer Control Scope Fault Isolation
Model Responsibilities P Mechanism
Physical hardware, Operating systems, Independent availability
laaS networking infrastructure, applications, and data zones with separate power
and virtualization management and cooling

Infrastructure, operating
PaaS systems, middleware,
development frameworks

Per-zone service endpoints
with cross-zone
replication

Application code and
business logic

Complete technology DNS failover and load

SaaS stack from hardware to Data access and appl'lcatlon— balancing across healthy
. level configuration
application zZones

352

Scaling And Devops In Cloud Architectures: Automation, Monitoring, And Resource Management In Modern Cloud
Systems

Strongly consistent control
plane, eventual
consistency data plane

Zonal Redundant component Minimal intervention during
Services deployment across zones zone failures

3. Automated Build and Deployment Pipelines

The DevOps lifecycle begins with code development on local machines through the engineering teams
that are located at various localities. VCS products such as Git and Perforce maintain a consistent master
codebase and also allow multiple developers to commit code simultaneously. Each pull request is
subjected to rigorous automated and manual inspection processes with a final merge into the master
repository, establishing numerous quality verification points, preventing any buggy code from making it
to production systems.

Automated validation tools act as the first defense line in code quality assurance. Linters enforce
consistent code formatting and style rules, while static code analysis tools check code against predefined
rule sets, spotting violations of coding standards, potential bugs, and security holes. Custom security
scanners catch possible data leaks through object passing or value transmission in code. These tools look
at all external interfaces—Application Programming Interfaces (APIs), Software Development Kits
(SDKs), Command Line Interfaces (CLIs), and web applications—for security threats brought in by
proposed changes. These requirements of manual code review are that two to three non-writers of the
changes must approve them, and ensure that more than two individuals contribute to the consideration of
the quality and correctness of the code. Extensive test suites will execute unit tests, integration tests, and
end-to-end functional tests that ensure that new functionality does not break the old functionality but adds
real value as expected. Code coverage tools, such as Clover, require minimum standards, typically 70-
80% line coverage, to prevent merges failing to meet testing standards.

After successful validation, approved code gets merged into the master repository and enters the
deployment pipeline, a structured automated process covering build, test, and release phases that turn
source code into production-ready software [S]. The deployment pipeline architecture usually has five
separate stages: the commit stage, where code compilation and unit testing happen, the automated
acceptance testing stage, checking functional requirements, the capacity testing stage, looking at
performance under load, the manual exploratory testing stage for user experience checks, and finally the
production deployment stage [5]. Each pipeline stage works as a quality gate that code has to successfully
pass through before moving forward, with failures at any stage stopping progression and triggering
immediate developer notification [5]. Modern deployment pipelines use containerization and
orchestration platforms to hit deployment speed, with leading organizations pushing out multiple
deployments daily compared to old-school quarterly or monthly release cycles [5]. The pipeline
automation cuts down manual intervention points that historically caused deployment errors and delays,
turning release processes from high-risk events needing long maintenance windows into routine
operations that can run during business hours with minimal service disruption [5].

Infrastructure-as-code tools like Terraform give declarative configuration management that enables
version-controlled infrastructure definitions supporting repeatable deployments across environments [6].
Terraform works as an open-source tool handling infrastructure lifecycle through three core workflows:
write phase, where infrastructure gets defined in human-readable configuration files, plan phase, where
Terraform creates execution plans showing exactly which resources will be created, changed, or
destroyed, and apply phase, where Terraform runs planned changes to reach the desired infrastructure
state [6]. The tool keeps state files tracking resource configurations and interdependencies, enabling
detection of configuration drift where actual infrastructure wanders away from codified specifications [6].
Terraform supports infrastructure provisioning across over 300 cloud providers and services through its
provider plugin architecture, allowing unified management of multi-cloud and hybrid cloud environments
through consistent declarative syntax [6]. Organizations picking up infrastructure-as-code practices report
major improvements in deployment consistency, with infrastructure provisioning times dropping from
days or weeks to minutes while wiping out manual configuration errors that previously caused production
incidents [6]. Configuration management tools coordinate version dependencies across control plane and

353

Pooja Rajiv Ranjan

data plane components, stopping out-of-order deployments that could bring in system instabilities through
incompatible component versions running at the same time [6].

Table 3: Deployment Pipeline Stages and Infrastructure-as-Code Workflows [5][6]

Pipeline Stage | Validation Activity Terraform Workflow Phase Capability Provided
Commit Stage Code cqmpﬂafcmn and Write Phase Infrastructure Qeﬁnltlon in
unit testing configuration files
Automated
Functional requirement Execution plan generation
Acceptance g Plan Phase .
. validation showing resource changes
Testing
Capacity Performance assessment Automated infrastructure
. Apply Phase .
Testing under load provisioning
Manual User experience Configuration drift
Exploratory o State Management .
. validation detection
Testing
Production Progressive rollout to . . Multi-cloud unified
Provider Integration
Deployment data centers management

4. Monitoring, Alerting, and Operational Response

Following deployment to all data centers, continuous monitoring systems track application health and
performance metrics through alarm configurations. Alarms are automated notifications in case predefined
conditions are breached. Alarm rules are based on regular expressions and conditional logic to define
expected system behavior, such as saying that the 500-series server errors should never be returned by
API endpoints.

Alert management platforms, including Jira Service Management, Ocean, and PagerDuty, facilitate alarm
configuration, routing, and tracking across distributed engineering teams. PagerDuty operates as a
comprehensive incident management platform that centralizes alerts from diverse monitoring tools,
implements intelligent routing to appropriate on-call personnel, and orchestrates response workflows to
accelerate incident resolution [7]. The platform aggregates notifications from over 700 integrated
monitoring, observability, and security tools, including Datadog, New Relic, Prometheus, Splunk, and
CloudWatch, creating unified incident streams that eliminate the fragmentation typical of organizations
using multiple specialized monitoring solutions [7]. PagerDuty's intelligent alert grouping employs
machine learning algorithms to cluster related alerts into single incidents, dramatically reducing
notification fatigue where cascading failures across interdependent systems might otherwise generate
hundreds of individual alerts overwhelming on-call engineers [7]. The platform's scheduling capabilities
manage complex on-call rotations across global teams, supporting follow-the-sun coverage models where
incident responsibility transfers between geographical regions as business hours shift, ensuring 24-hour
response availability without requiring individual engineers to maintain continuous on-call status [7].
Large organizations maintain on-call rotation schedules whereby approximately 20% of engineering staff
focus exclusively on alarm resolution, deployment monitoring, and customer issue remediation at any
given time, with PagerDuty analytics indicating that organizations using automated escalation policies
achieve median response times of 2-3 minutes compared to 8-10 minutes for manual notification
processes [7].

Alarm classification by severity enables prioritized response allocation. Severity-1 alarms indicate critical
system failures requiring immediate resolution within one hour, such as authentication service outages
that render entire services inoperable. These highest-priority incidents redirect all available on-call

354

Scaling And Devops In Cloud Architectures: Automation, Monitoring, And Resource Management In Modern Cloud
Systems

resources toward root cause identification and mitigation deployment or version rollback. Lower-priority
alarms, such as disk space utilization reaching 60% capacity on a load balancer, permit extended response
windows following alarm acknowledgment. Jira Service Management facilitates alert notification
configuration through integration with monitoring tools, automatically creating incident tickets when
predefined conditions trigger [8]. The platform enables administrators to establish alert notification rules
that specify which teams receive notifications based on service ownership, geographical location, time of
day, and incident severity levels [8]. Alert rules support conditional logic, including time-based filters that
adjust notification routing during business hours versus after-hours periods, ensuring appropriate
escalation paths based on temporal context [8]. Jira Service Management's alert aggregation capabilities
deduplicate redundant notifications from multiple monitoring sources reporting identical issues,
preventing alert storms where single infrastructure failures generate excessive ticket creation [8]. The
platform tracks alert lifecycle metrics, including acknowledgment times, resolution durations, and false
positive rates, providing visibility into operational efficiency and identifying opportunities for threshold
tuning to reduce noise while maintaining comprehensive coverage of genuine incidents [8].

Runbooks—also termed playbooks—provide standardized operational procedures for alarm response.
These documents contain step-by-step instructions for diagnosing and resolving specific alarm conditions.
High-severity runbooks enumerate potential root causes, including software deployment failures, data
center power outages, security attacks, and network configuration errors, with corresponding mitigation
procedures. The runbook approach standardizes operational knowledge, reduces mean time to resolution,
and enables consistent response quality regardless of which on-call engineer handles particular incidents

[7].

Table 4: Alert Management and Incident Response Characteristics [7][8]

Platform PagerDuty Jira Service Overational Impact
Capability Implementation Management Feature P P
Alert Integration with 700+ Deduplication of Reduced notification
Aggregation monitoring tools redundant notifications fragmentation
Intelligent Machine learning Alert storm prevention Minimized engineer
Grouping clustering of related alerts from single failures fatigue
On-Call Follow-the-sun coverage Time-based routing filters Continuous response
Scheduling across global teams & availability
Escalation Automated senior engineer Severity-based Faster incident
Policies involvement notification rules acknowledgment
Response 2-3 minutes median with . . . Improved mean time to
: . Lifecycle metric tracking .
Time automation resolution

5. Autoscaling Strategies and Resource Management

Beyond deployment and monitoring, cloud operations require dynamic hardware resource management—
servers, block storage volumes, Graphics Processing Units (GPUs), graphics cards, network switches, and
routers. Data center physical hardware capacity typically maintains a 1.5x buffer above current daily
traffic processing requirements, though not all resources remain actively utilized simultaneously. Cloud
providers implement usage-based billing models, creating economic incentives for efficient resource
utilization through automated scaling mechanisms.

Autoscaling systems dynamically adjust resource allocation in response to traffic patterns, scaling up
during predicted demand increases and scaling down during low-traffic periods [9]. Autoscaling operates
as a cloud computing capability that automatically modifies the quantity of active servers or
computational resources based on real-time application load, ensuring optimal performance during peak
demand while reducing costs during low-traffic periods [9]. The fundamental process keeps track of

355

Pooja Rajiv Ranjan

predefined measures such as CPU use, memory utilization, network throughput, or application-specific
measures and takes scaling measures when these thresholds are met or when capacity drops to levels
below minimum requirements [9]. This automated solution is also more stable and cost-efficient when
compared to manual provisioning of resources, which requires a significant number of skilled employees,
training, and is still prone to human error. Organizations implementing autoscaling report infrastructure
cost reductions ranging from 20% to 50% by eliminating persistent over-provisioning, while
simultaneously achieving improved application responsiveness during unexpected traffic surges that
would overwhelm static resource allocations [9]. Autoscaling frameworks typically enforce configurable
boundaries, including minimum instance counts ensuring baseline availability even during zero-load
conditions, maximum instance counts preventing runaway scaling costs from misconfigured policies or
denial-of-service attacks, and desired capacity representing the target instance count under normal
operating conditions [9].

Horizontal scaling adds or removes discrete resource units—additional servers to load balancer fleets,
Kubernetes pods to container orchestration systems, or memory modules to block storage database servers
[9]. This scaling approach, commonly termed "scaling out" when adding resources or "scaling in" when
removing them, distributes workload across multiple identical compute instances, enabling near-linear
capacity expansion limited primarily by load balancer throughput and network bandwidth rather than
individual server specifications [9]. AWS Auto Scaling Groups exemplify horizontal scaling
implementation, automatically launching new EC2 instances when aggregate CPU utilization across the
fleet exceeds 70% for sustained periods typically configured as 5-10 minutes, preventing transient spikes
from triggering unnecessary scaling actions [10]. These Auto Scaling Groups integrate with Elastic Load
Balancers that distribute incoming requests across all healthy instances, automatically incorporating
newly launched instances into the traffic distribution pool once they pass health checks, typically within
30-60 seconds of instance initialization [10]. Vertical scaling increases the capacity of individual
resources by adding Random Access Memory (RAM), Central Processing Units (CPUs), or block storage
capacity to existing servers [9]. While vertical scaling may require service interruptions for
reconfiguration and server restarts, it proves advantageous for monolithic applications unable to distribute
processing across multiple instances, particularly database systems requiring strong consistency
guarantees that complicate horizontal distribution [9].

Modern autoscaling implementations increasingly leverage artificial intelligence and machine learning
algorithms to predict scaling requirements based on historical usage patterns, peak usage hours by
geographic location, and event-driven demand spikes such as live sports streaming [9]. Predictive
autoscaling analyzes time-series metrics to identify recurring patterns, including daily traffic cycles,
weekly variations between weekday and weekend usage, and seasonal trends, enabling proactive resource
allocation 10-15 minutes before anticipated demand surges rather than reactive scaling after performance
degradation occurs [10]. These predictive models enable proactive scaling ahead of demand surges,
maintaining performance while minimizing resource waste, with autoscaling policies encoding
operational rules such as target tracking policies maintaining specific metric values like 70% average
CPU utilization across the fleet [10].

Conclusion

The technical complexity of the current cloud computing infrastructure can be attributed to the change in
operational practices that were manual and prone to errors to highly automated and resilient systems with
the ability to sustain more than 99.99 percent of availability during a given year. Coordination between
DevOps practices throughout the software development lifecycle, including code validation and
deployment pipeline, continuous monitoring, and dynamic resource management, has allowed cloud
providers to offer consistent service levels, notwithstanding the complexity of globally distributed
infrastructure, which caters to millions of users at any given time. The isolation of faults by the
architectural separation of control planes and data planes between localized failures in a system, and zonal
distribution through physically isolated availability zones, results in continuity of service in spite of
catastrophic data center failures. Deployment pipelines with various levels of validation, gradual rollout

356

Scaling And Devops In Cloud Architectures: Automation, Monitoring, And Resource Management In Modern Cloud
Systems

plans, and automated rollback functions are changing software releases from high-risk events into daily
operations that can occur severally times throughout the day without interrupting service. Intelligent
grouping algorithms and automated policies on escalation are used in alert management platforms
aggregating hundreds of monitoring tools, both to decrease mean time to resolution from hours to minutes
and to maintain a consistent quality of operational response irrespective of who is the on-call engineer.
Auto-scaling systems using rule-based cuts and machine learning forecasting automatically scale up and
down the computational resources based on traffic patterns, which saves on the cost of infrastructure by
20-50 percent whilst ensuring consistent performance at times of surge demand. With the continued
proliferation of cloud computing into new areas such as edge computing, serverless computing, and more
specialized workloads that may demand quantum computing capabilities, the underlying DevOps patterns
and principles will keep changing to meet new technical demands and remain just as reliable and efficient
as the cloud services of today have become.

References

[1] Niall Richard Murphy, et al., "Site Reliability Engineering," O'Reilly Media, 2016. [Online].
Available: https://www.oreilly.com/library/view/site-reliability-engineering/9781491929117/app01.html
[2] Amazon Web Services, "Control planes and data planes," AWS Whitepapers. [Online]. Available:
https://docs.aws.amazon.com/whitepapers/latest/aws-fault-isolation-boundaries/control-planes-and-data-
planes.html

[3] Salesforce, "laaS, PaaS, and SaaS: Decoding Cloud Service Models," 2025. [Online]. Available:
https://www.salesforce.com/in/blog/what-is-iaas-paas-saas/

[4] Amazon Web Services, "AWS Fault [solation Boundaries: Zonal Services," AWS Whitepapers.
[Online]. Available: https://docs.aws.amazon.com/whitepapers/latest/aws-fault-isolation-
boundaries/zonal-services.html

[5] Dan Merron, "Deployment Pipelines (CI/CD) in Software Engineering" BMC Blogs, 2020. [Online].
Available: https://www.bmc.com/blogs/deployment-pipeline/

[6] Gregg Lindemulder, Matthew Kosinski, "What is Terraform?" IBM, 2024. [Online]. Available:
https://www.ibm.com/think/topics/terraform

[7] Adservio, "PagerDuty: What is it?" [Online]. Available: https://www.adservio.fr/post/pagerduty-what-
is-it

[8] Atlassian, "Set up your alert notifications,". [Online]. Available: https://support.atlassian.com/jira-
service-management-cloud/docs/set-up-your-alert-notifications

[9] Neel Shah, "What is AutoScaling? Explained in Detail (Updated),"” Middleware, 2025. [Online].
Available: https://middleware.io/blog/what-is-autoscaling/

[10]Khalil Faqiri, "Create a Scalable AWS VPC with Auto Scaling & Load Balancer: Hands-on
Learning," Medium, 2023. [Online]. Available: https://aws.plainenglish.io/create-a-scalable-aws-vpc-
with-auto-scaling-load-balancer-hands-on-learning-ce3abe9916fa

357

https://www.oreilly.com/library/view/site-reliability-engineering/9781491929117/app01.html
https://docs.aws.amazon.com/whitepapers/latest/aws-fault-isolation-boundaries/control-planes-and-data-planes.html
https://docs.aws.amazon.com/whitepapers/latest/aws-fault-isolation-boundaries/control-planes-and-data-planes.html
https://www.salesforce.com/in/blog/what-is-iaas-paas-saas/
https://docs.aws.amazon.com/whitepapers/latest/aws-fault-isolation-boundaries/zonal-services.html
https://docs.aws.amazon.com/whitepapers/latest/aws-fault-isolation-boundaries/zonal-services.html
https://www.bmc.com/blogs/deployment-pipeline/
https://www.ibm.com/think/topics/terraform
https://www.adservio.fr/post/pagerduty-what-is-it
https://www.adservio.fr/post/pagerduty-what-is-it
https://support.atlassian.com/jira-service-management-cloud/docs/set-up-your-alert-notifications
https://support.atlassian.com/jira-service-management-cloud/docs/set-up-your-alert-notifications
https://middleware.io/blog/what-is-autoscaling/
https://aws.plainenglish.io/create-a-scalable-aws-vpc-with-auto-scaling-load-balancer-hands-on-learning-ce3abe9916fa
https://aws.plainenglish.io/create-a-scalable-aws-vpc-with-auto-scaling-load-balancer-hands-on-learning-ce3abe9916fa

