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Abstract 

Multi-generation cloud fleet predictive capacity modeling is a radical change in the 
behavior of hyperscale infrastructure providers in the context of a heterogeneous 
hardware environment, with respect to their ability to manage computational 

resources. Conventional reactive and static capacity planning tools have inherent 
shortcomings in their use with current cloud systems, where virtual machines are of 

different families, using mixed hardware generations, and where customer migrations 
are multifaceted. These traditional methods may struggle to respond to the changes 
in workload with the speed of their provisioning response times, leading to sustained 

performance impairments during periods of demand change or unnecessary over-
allocation during periods of low utilization. The predictive capacity modeling 

addresses these limitations by integrating multi-dimensional signals, machine 
learning, and future-oriented demand prediction, which can be used to provide 
resources proactively in accordance with the projected workload trends. Combining 

technical telemetry, data on workload characterization, and operational measures in 
the form of neural network models provides predictions that are superior to the more 

conventional statistical methods. Cross-generational demand modeling, which takes 
into account the power management issues, virtualization dynamics, and migration 
patterns, allows optimal capacity allocation on different hardware platforms. The 

closed-loop predictive systems are directly fed into capital allocation and pricing, 
service lifecycle, and product management, which changes the capacity from an 

operational consideration to a strategic data-driven asset that increases the efficiency 
of the fleet utilization without reducing the reliability of the service provision. 
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1. Introduction 

Cloud computing infrastructure has grown exponentially, transforming how organizations manage 

computational resources. Data center networks now serve as critical enablers of modern cloud services. 

Microsoft's economic analysis of cloud infrastructure reveals that network costs account for approximately 

15-20% of total data center expenditure [1]. The networking infrastructure connecting thousands of servers 

presents unique engineering and economic challenges. These costs differ significantly from traditional 

enterprise deployments, where network expenses typically represent smaller budget fractions. 

This cost structure directly impacts capacity planning decisions. Infrastructure investments must address 

both computational resources and the networking fabric enabling their utilization. Studies indicate that 

inefficient capacity planning can result in 20-30% resource waste through over-provisioning or substantial 

revenue loss through under-provisioning during peak demand periods [1]. 
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Modern warehouse-scale computing systems function as integrated platforms. The entire data center 

operates as a single massive computer rather than a cluster of independent machines. These facilities 

represent a new computing category with distinct characteristics: homogeneous hardware deployed at 

unprecedented scale, sophisticated software managing resource distribution, and operational processes 

ensuring continuous availability [2]. Industry data suggests that leading cloud providers operate facilities 

containing over 100,000 servers each, processing millions of requests per second [2]. 

This warehouse-scale paradigm introduces complex capacity planning challenges. Traditional 

methodologies cannot effectively address these requirements. Planners must simultaneously optimize 

across multiple interdependent dimensions: computation, storage, memory, and network bandwidth. 

Research indicates that multi-dimensional optimization can improve resource utilization by 15-25% 

compared to single-dimension approaches [2]. 

The shift from reactive to predictive capacity management represents a fundamental operational 

transformation. Reactive approaches address capacity problems only after service degradation or 

availability incidents occur. Predictive strategies leverage historical trends and machine learning models to 

forecast demand inflections before they impact operations. Studies demonstrate that predictive approaches 

can reduce capacity-related incidents by up to 40% while improving overall resource efficiency [1, 2]. 

This paper examines the theoretical foundations, practical implementations, and measurable outcomes of 

predictive capacity modeling in multi-generation cloud environments. The framework presented enables 

organizations to optimize fleet utilization while maintaining service reliability across heterogeneous 

infrastructure portfolios. 

 

2. Limitations of Reactive and Static Capacity Planning 

Conventional capacity planning in cloud computing relies on reactive monitoring systems and static 

demand forecasts derived from historical utilization data. Research on predictive elastic resource scaling 

reveals inherent timing limitations in reactive strategies. A latency gap exists between detecting capacity 

requirements and provisioning additional resources. This delay creates vulnerability windows where 

applications experience degraded performance or reduced availability. Studies from  Predictive Elastic 

Resource Scaling for cloud systems (PRESS) indicate that reactive provisioning delays typically range from 

5-15 minutes, during which service quality may decline by 20-40% [3]. 

The PRESS system research by Gong et al. also demonstrates that reactive scaling mechanisms cannot 

handle rapid workload changes. When workload variations occur faster than provisioning response times, 

sustained under-provisioning results during demand peaks. Conversely, excessive over-provisioning occurs 

during demand troughs. The PRESS study quantified that reactive approaches lead to approximately 30% 

resource inefficiency compared to predictive alternatives [3]. 

Signature-based pattern recognition mechanisms documented in elastic scaling literature identify repetitive 

patterns in cloud workloads across multiple temporal scales. Regular business cycles, periodic batch 

processing, and recurring user behavior create predictable demand variations. However, reactive systems 

respond only after demand changes appear in monitored metrics. This eliminates opportunities to pre-

position capacity for anticipated demand increases. The investigation by Gong et al. demonstrates that 

reactive postures cause consistent performance degradation during demand transitions. Their findings 

indicate that proactive provisioning can reduce transition-related performance drops by 25-35% [3]. 

The comprehensive assessment by Zhang et al. on cloud computing challenges identifies resource 

management and capacity planning as critical obstacles for providers and consumers [4]. Their state-of-the-

art evaluation confirms that traditional provisioning methods generate significant resource waste. Capacity 

allocated based on peak demand estimates remains unutilized during low-demand periods. Research 

estimates this waste at 40-60% of provisioned resources during off-peak hours [4]. Simultaneously, static 

allocations may prove insufficient during unexpected demand surges, potentially causing 15-25% revenue 

loss from unserved requests. 

The study by Zhang et al. examining cloud computing challenges highlights that multi-tenancy properties 

exacerbate reactive planning limitations [4]. Resource sharing among tenants produces interference effects. 

Workload fluctuations from one tenant impact performance experienced by others. These dynamic 
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interference patterns cannot be captured through static capacity planning. Aggregate multi-tenant demand 

exhibits variance characteristics differing substantially from individual tenant projections. Research 

indicates interference effects can cause 10-20% performance variability across tenants [4]. Capacity 

reserves based on single-tenant models prove ineffective in multi-tenant scenarios where demand 

correlations require advanced forecasting methods. 

Reactive methodologies also struggle with heterogeneous resource requirements of modern cloud 

workloads. Applications increasingly demand coordinated allocation across multiple resource types: CPU 

cores, memory capacity, storage bandwidth, and network throughput. Static planning methods 

independently forecast demand for each resource type and this approach ignores interactions between 

resource requirements. The result is uneven distribution where some resources become bottlenecks while 

others remain underutilized. Industry observations suggest that single-dimension planning leads to 20-30% 

efficiency loss compared to integrated approaches [3, 4]. The research community identifies this multi-

dimensional resource management challenge as a fundamental weakness requiring combined forecasting 

techniques. 

 

Table 1: Comparison of Reactive vs. Predictive Capacity Planning Approaches [3, 4] 

 

Characteristic Reactive Planning Predictive Planning 

Response Timing Post-event detection Pre-event anticipation 

Resource Provisioning 
Delayed allocation after threshold 

breach 

Proactive allocation before demand 

increases 

Workload Pattern 

Utilization 
Ignores repetitive patterns Exploits temporal signatures 

Multi-Tenant Handling Independent tenant modeling Aggregate interference modeling 

Demand Spike 

Management 

Performance degradation during 

transitions 
Pre-positioned capacity reserves 

Resource Coordination Single-dimension monitoring Multi-dimensional integration 

Planning Horizon Current state focused Forward-looking estimation 

Efficiency Outcome Over/under provisioning cycles Optimized utilization alignment 

 

3. Predictive Capacity Modeling Across VM and Hardware Generations 

Predictive capacity modeling represents a significant advancement over reactive approaches. This 

methodology implements future-oriented demand forecasting based on multi-dimensional signal 

integration and pattern recognition algorithms. Research by Roy et al. on autoscaling demonstrates that 

workload forecasting enables optimized resource provisioning while meeting service level objectives with 

reduced resource consumption compared to reactive strategies [5]. Studies indicate that predictive models 

can decrease resource usage by 20-30% while maintaining equivalent service quality [5]. The predictive 

autoscaling framework recognizes that advanced knowledge of demand behavior enables scheduling 

algorithms to make optimal allocation decisions based on anticipated requirements. 

Predictive capacity models incorporate workload characterization elements as their architectural 

foundation. These components categorize applications according to resource consumption profiles and 

demand variability patterns. The investigation by Roy et al. on predictive autoscaling documents that 

different workload types exhibit distinct forecasting requirements [5]. Some workloads display highly 

regular patterns suitable for time-series forecasting. Others demonstrate event-driven dynamics requiring 

alternative modeling techniques. Research suggests that workload-aware forecasting improves prediction 

accuracy by 15-25% compared to uniform approaches [5]. This adaptive methodology enables capacity 

planning systems to apply appropriate forecasting models matched to specific application portfolio 

characteristics. 
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Cross-generational demand modeling intersects with power management considerations affecting hardware 

utilization and availability. Research by Nathuji and Schwan on coordinated power management in 

virtualized enterprise systems demonstrates that resource allocation decisions impact application 

performance, infrastructure energy consumption, and hardware longevity [6]. Their VirtualPower 

framework indicates that virtualization enables coordinated power state management across physical hosts. 

This capability creates opportunities to consolidate workloads onto fewer active servers while maintaining 

capacity reserves for demand surges. Studies report that power-aware consolidation can reduce energy 

consumption by 20-35% without compromising performance [6]. This power-sensitive perspective extends 

capacity planning beyond resource counting to include operational conditions and hardware availability 

properties. 

The virtualization layer introduces abstraction that both enables and complicates multi-generation capacity 

modeling. Research on power management in virtualized environments reports that virtual machine 

placement must balance multiple objectives: resource utilization, power efficiency, and performance 

isolation [6]. This flexibility means apparent physical hardware capacity depends not only on raw resource 

availability but also on workload placement constraints and interference characteristics. Industry 

observations indicate that placement optimization can improve overall utilization by 10-20% [6]. Predictive 

models must therefore forecast both aggregate demand and placement feasibility across available hardware 

generations with their respective virtualization capabilities. 

 

 
Fig 1: Predictive Capacity Modeling Architecture [5, 6] 

 

Migration dynamics across hardware generations depend on technical compatibility and operational 

considerations illuminated by power management research. Coordination mechanisms documented for 

power state management on virtualized platforms demonstrate that live migration enables dynamic 

workload redistribution across physical hosts without service interruption [6]. Research indicates that live 

migration can be completed within seconds for typical workloads, enabling rapid capacity rebalancing [6]. 

This flexibility influences capacity planning by allowing demand to flow between hardware generations 

based on availability, efficiency, and capability factors. Workloads are no longer statically bound to initial 
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placement decisions. Predictive models incorporating migration dynamics optimize capacity allocation 

across generations by anticipating migration opportunities and identifying potential constraints in advance. 

 

4. Multi-Dimensional Signal Integration for Demand Forecasting 

Effective predictive capacity modeling requires sophisticated integration of diverse signal sources. These 

include technical telemetry, workload characteristics, and operational metrics. Research by DeepMind in 

collaboration with Google demonstrates that combining multiple input signals through neural network 

models significantly improves optimization outcomes [7]. Google's data centers already represented highly 

optimized environments before machine learning integration. Despite this advanced baseline, the 

DeepMind system achieved a 40% reduction in cooling energy consumption through multi-signal analysis 

[7]. This result demonstrates the substantial untapped potential in telemetry data that traditional monitoring 

approaches miss to exploit. 

The DeepMind framework processes comprehensive sensor data streams generated by thousands of data 

center sensors [7]. These signals include temperatures, power consumption, pump speeds, and operational 

setpoints. An ensemble of deep neural networks analyzes this multi-dimensional data to predict future 

Power Usage Effectiveness (PUE). The system also forecasts temperature and pressure conditions over the 

following hour. Google's implementation achieved a 15% reduction in overall PUE overhead after 

accounting for electrical losses and non-cooling inefficiencies [7]. This multi-signal integration paradigm 

extends naturally to capacity prediction. Combining diverse telemetry sources enables demand forecasting 

that captures complex interdependencies invisible to single-metric monitoring approaches. 

Major cloud service providers have operationalized predictive scaling capabilities based on multi-

dimensional signal integration. Amazon Web Services documents that predictive scaling analyzes historical 

load data to detect daily and weekly traffic patterns [8]. The system uses this information to forecast future 

capacity needs. AWS predictive scaling proactively increases Auto Scaling group capacity to match 

anticipated load before demand materializes [8]. This approach proves particularly effective for cyclical 

traffic patterns with high resource usage during business hours and low usage during evenings and 

weekends. 

The AWS predictive scaling framework addresses scenarios where reactive approaches prove insufficient 

[8]. Applications with recurring on-and-off workload patterns benefit significantly from predictive capacity 

adjustment. Batch processing, periodic testing, and scheduled data analysis represent ideal use cases. 

Applications requiring extended initialization times particularly benefit from predictive scaling. These 

applications experience noticeable latency impacts during reactive scale-out events [8]. Predictive scaling 

launches capacity in advance of forecasted load, eliminating the performance degradation associated with 

reactive scaling delays. 

Predictive scaling delivers measurable advantages over purely reactive approaches in production 

environments. AWS documentation confirms that predictive scaling helps applications maintain high 

availability during utilization transitions [8]. The system scales faster by launching capacity before traffic 

increases rather than responding after demand spikes occur. This proactive approach potentially reduces 

costs by avoiding capacity over-provisioning. Organizations no longer need to maintain excessive buffer 

capacity to handle unexpected demand increases [8]. The combination of historical pattern analysis with 

forward-looking capacity adjustment represents a mature implementation of multi-dimensional signal 

integration for demand forecasting. 

 

Table 2: Multi-Dimensional Signal Sources for Demand Forecasting [7, 8] 

 

Signal Category Data Sources Application in Forecasting 

Technical 

Telemetry 

CPU utilization, memory 

consumption, and I/O bandwidth 

Baseline resource demand 

patterns 

Environmental 

Sensors 

Temperature, power consumption, and 

cooling metrics 

Infrastructure constraint 

modeling 
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Workload Metrics 
Job arrival rates, execution duration, 

and queue depth 

Application-level demand 

signals 

Resource 

Contention 

Lock waits, cache misses, network 

congestion 

Interference effect 

quantification 

Customer Behavior 
Provisioning requests, scaling events, 

migrations 
Demand trajectory prediction 

Hardware Status 
Failure rates, maintenance schedules, 

and age indicators 
Available capacity estimation 

Control System 

Feedback 

Allocation decisions, performance 

targets, SLA metrics 
Closed-loop optimization 

External Indicators 
Business cycles, seasonal patterns, and 

event calendars 
Contextual demand correlation 

 

5. Machine Learning Approaches in Capacity Prediction 

Machine learning techniques have now become vital predictive capacity modeling utilities that provide 

pattern recognition and workload characterization capabilities more powerful than standard statistical 

forecasting algorithms. The studies that describe the difference between cloud and grid workloads show 

that large-scale computing environments have complex demand patterns that are characterized by which 

demand advanced methods of analysis to comprehend and predict [9]. The research on workload 

characterization indicates that the distribution of job arrival patterns, resource consumption, and temporal 

dynamics is not similar in traditional grid computing as observed in cloud environments, and prediction 

methods tailored to the specific workload characteristics of cloud environments are required. 

Research on workload characterization provides a basis of understanding of demand patterns that machine 

learning models should be able to predict capacity accurately. Comparative studies between cloud and grid 

workloads record that cloud systems have more job variation when they are loaded with jobs, shorter job 

mean length, and variability in resource consumption patterns than grid computing systems [9]. Those 

differences in characteristics suggest that prediction models trained in grid locations might not be easily 

transferred to cloud locations, and cloud-related training data and model architectures are needed that can 

represent the unique behavior of cloud workload patterns. 

The production cluster trace analysis offers empirical roots to the study of workload heterogeneity that 

capacity prediction models should take into consideration. Studies that have been conducted on Google 

cluster traces show that production cloud environments are highly heterogeneous in various aspects, such 

as the requirements of job resources, duration distributions, and scheduling constraints [10]. This trace 

analysis has indicated that workload populations are characterized by unique job classes of different 

properties compared to homogeneous ones, meaning that prediction models need to reflect this 

heterogeneity by incorporating the individual classes in prediction by class-sensitive forecasting models or 

mixture modeling methods. 

Prediction systems based on machine learning face specific difficulties with the temporal dynamics of cloud 

workloads. According to the Google trace analysis, the characteristics of the workload change significantly 

over time, and the job arrival rate, patterns of resource utilization, and scheduling constraints change in the 

everyday cycle and weekly cycle [10]. Capacity prediction machine learning models should thus both have 

the ability to predict cross-sectional heterogeneity of concurrent workloads and the temporal dynamics of 

workload as they change over time. It is this twin need that drives the recurrent architectures and time 

modelling methodologies that are capable of learning patterns on multiple time scales. 

Modern cloud environments open opportunities and challenges in machine learning capacity prediction 

because of the scale of those environments. Studies on the analysis of traces of production provide reports 

that large clusters handle a large volume of jobs per day, which provides abundant training data to machine 

learning models [10]. Nevertheless, this scale also raises such challenges as data processing needs, the cost 

of model training, and the necessity to have distributed prediction systems that could produce forecasts that 
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keep up with the workload evolution. The trace analysis study offers an empirical basis for the 

comprehension of the scale requirements that scale prediction systems of production capacity have to cover. 

 

 
Fig 2: Machine Learning Pipeline for Capacity Prediction [9, 10] 

 

6. Future-State Cloud Operations and Measurable Outcomes 

Closed-loop predictive capacity systems represent the next evolution in cloud infrastructure management. 

These systems integrate demand forecasting with resource allocation, cost optimization, and operational 

decision-making. Research by Greenberg et al. analyzing data center network costs demonstrates that 

infrastructure investments constitute substantial capital commitments requiring careful optimization [1]. 

Studies indicate that data center construction costs range from $10-25 million per megawatt of capacity [1]. 

Capacity planning decisions impact multiple cost centers: hardware acquisition, networking infrastructure, 

power and cooling, and operational staffing. Improved prediction accuracy generates compounding cost 

benefits across all these categories. 

Network infrastructure capacity planning exemplifies the multi-dimensional optimization challenges 

predictive systems must address. Research by Greenberg et al. documents that networking equipment 

comprises 15-20% of total data center capital expenditure [1]. Modern applications require high bisection 

bandwidth, driving significant network infrastructure investments that can exceed computational hardware 

costs in some configurations. Predictive capacity models forecasting network demand enable optimized 

procurement timing based on topology requirements. This approach minimizes networking costs while 

maintaining performance standards. Network-conscious capacity planning extends beyond computational 

resource forecasting to encompass the interconnection infrastructure enabling resource utilization. 

The warehouse-scale computing paradigm documented by Barroso et al. provides frameworks for 

comprehensive system optimization [2]. Their datacenter-as-computer model emphasizes that capacity 

planning must address the entire system rather than individual servers. This includes hardware 

infrastructure, software systems, and operational processes. Research indicates that holistic capacity 

planning improves overall system efficiency by 25-35% compared to component-level approaches [2]. 

Capacity prediction systems must generate forecasts informing decisions across multiple infrastructure 

layers: hardware acquisition, software configuration, and operational procedures. 
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Predictive capacity modeling delivers measurable operational efficiency improvements across several 

dimensions documented in warehouse-scale computing literature. Research by Barroso et al. identifies key 

operational characteristics of large-scale infrastructure: statistical regularity of aggregate behavior, critical 

importance of automated management, and economic significance of utilization efficiency [2]. Quantifiable 

benefits from predictive capacity systems are likely in the ranges below: 

● Resource utilization improvement: 20-30% increase through informed placement decisions [2] 

● Manual intervention reduction: 40-50% decrease through proactive resource management [2] 

● Capacity adjustment automation: 60-70% of routine scaling decisions automated [1, 2] 

● Over-provisioning reduction: 25-35% decrease in excess capacity requirements [1] 

● Service availability improvement: 15-25% reduction in capacity-related incidents [2] 

Energy efficiency represents an increasingly critical outcome dimension for predictive capacity systems. 

Research by Nathuji and Schwan on power management in virtualized systems demonstrates that 

coordinated resource management significantly reduces infrastructure energy consumption while 

maintaining service quality [6]. Studies report energy savings of 20-40% through predictive power 

management [6]. Predictive capacity models forecasting demand trends enable proactive power 

management decisions. These include workload consolidation during low-demand periods, capacity pre-

positioning before demand increases, and cooling system optimization based on anticipated heat loads. 

Energy-conscious capacity planning becomes increasingly valuable as power expenses represent growing 

proportions of data center operational costs, currently estimated at 30-40% of total operating expenditure 

[6]. 

 

Conclusion 

Multi-generation cloud fleet predictive capacity modeling radically alters the approach to infrastructure 

planning that is responsive to administration, to the proactive optimization of such heterogeneous 

computing environments. The shortcomings of the static provisioning and reactive monitoring become even 

more acute with the growth of the cloud architecture that involves multiple simultaneous hardware 

generations that possess different performance profiles, depreciation cycles, and customer adoption curves. 

Demand forecasting based on machine learning algorithms that combine a wide range of signal sources 

(such as technical telemetry, workload patterns and operational metrics) can reflect complex 

interdependencies not easily seen by a single-metric monitoring system. The warehouse scale computing 

paradigm requires holistic capacity planning in which individual servers are not considered, but instead the 

aggregate systems of hardware, software infrastructure, and processes of operation that are considered as 

holistic computational platforms. The virtualization layers facilitate elasticity of resource coordination by 

live migration, as well as coordinated power management which predictive systems leverage in order to 

enhance efficiency and optimization of utilization. The combined economic need to optimize infrastructure 

costs and the availability of advanced forecasting techniques make predictive capacity modeling an 

essential capability for cloud providers. The future-state cloud operations utilize closed-loop systems that 

not only translate the demand forecasts into resource allocation decisions, but also optimize procurement 

timing and energy-sensitive workload consolidation strategies. 

 

References 

[1] Albert Greenberg et al., "The Cost of a Cloud: Research Problems in Data Center Networks," Microsoft, 

2009. Available: https://www.microsoft.com/en-us/research/publication/the-cost-of-a-cloud-research-

problems-in-data-center-networks/ 

[2] Luiz André Barroso et al., "The Datacenter as a Computer," SMorgan & Claypool, 2013. Available: 

https://web.eecs.umich.edu/~mosharaf/Readings/DC-Computer.pdf 

[3] Zhenhuan Gong et al., "PRESS: PRedictive Elastic ReSource Scaling for cloud systems," IEEE, 2010. 

Available: 

https://www1.ece.neu.edu/~ningfang/SimPaper/PRESS%20PRedictive%20Elastic%20ReSource%20Scali

ng%20for%20Cloud%20Systems.pdf 

https://www.microsoft.com/en-us/research/publication/the-cost-of-a-cloud-research-problems-in-data-center-networks/
https://www.microsoft.com/en-us/research/publication/the-cost-of-a-cloud-research-problems-in-data-center-networks/
https://web.eecs.umich.edu/~mosharaf/Readings/DC-Computer.pdf
https://www1.ece.neu.edu/~ningfang/SimPaper/PRESS%20PRedictive%20Elastic%20ReSource%20Scaling%20for%20Cloud%20Systems.pdf
https://www1.ece.neu.edu/~ningfang/SimPaper/PRESS%20PRedictive%20Elastic%20ReSource%20Scaling%20for%20Cloud%20Systems.pdf


Priyadarshni Shanmugavadivelu 

332 
 

[4] Qi Zhang et al., "Cloud computing: state-of-the-art and research challenges," ResearchGate, 2010. 

Available: https://www.researchgate.net/publication/225252747_Cloud_computing_state-of-the-

art_and_research_challenges 

[5] Nilabja Roy et al., "Efficient Autoscaling in the Cloud using Predictive Models for Workload 

Forecasting". Available: 

https://www.dre.vanderbilt.edu/~gokhale/WWW/papers/Cloud11_Autoscaling.pdf 

[6] Ripal Nathuji and Karsten Schwan, "VirtualPower: Coordinated Power Management in Virtualized 

Enterprise Systems," ACM, 2007. Available: https://www.csd.uwo.ca/~hlutfiyy/610/papers/sosp111-

nathuji.pdf 

[7] Richard Evans and Jim Gao, "DeepMind AI Reduces Google Data Centre Cooling Bill by 40%," 

Google DeepMind, 2016. Available: https://deepmind.google/blog/deepmind-ai-reduces-google-data-

centre-cooling-bill-by-40/ 

[8] AWS, "Predictive scaling for Amazon EC2 Auto Scaling". Available: 

https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-predictive-scaling.html 

[9] Sheng Di et al., "Characterization and Comparison of Cloud versus Grid Workloads," ResearchGate, 

2012. Available: 

https://www.researchgate.net/publication/262397441_Characterization_and_Comparison_of_Cloud_vers

us_Grid_Workloads 

[10] Charles Reiss et al., "Heterogeneity and Dynamicity of Clouds at Scale: Google Trace Analysis," 

ACM, 2012. Available: https://www.pdl.cmu.edu/PDL-FTP/CloudComputing/googletrace-socc2012.pdf 

 

https://www.researchgate.net/publication/225252747_Cloud_computing_state-of-the-art_and_research_challenges
https://www.researchgate.net/publication/225252747_Cloud_computing_state-of-the-art_and_research_challenges
https://www.dre.vanderbilt.edu/~gokhale/WWW/papers/Cloud11_Autoscaling.pdf
https://www.csd.uwo.ca/~hlutfiyy/610/papers/sosp111-nathuji.pdf
https://www.csd.uwo.ca/~hlutfiyy/610/papers/sosp111-nathuji.pdf
https://deepmind.google/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-by-40/
https://deepmind.google/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-by-40/
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-predictive-scaling.html
https://www.researchgate.net/publication/262397441_Characterization_and_Comparison_of_Cloud_versus_Grid_Workloads
https://www.researchgate.net/publication/262397441_Characterization_and_Comparison_of_Cloud_versus_Grid_Workloads
https://www.pdl.cmu.edu/PDL-FTP/CloudComputing/googletrace-socc2012.pdf

