
JOURNAL OF INTERNATIONAL CRISIS AND RISK COMMUNICATION RESEARCH
ISSN: 2576-0017
2026, VOL 9, NO 1

126

Agentic AI For Network Management: Autonomous

Troubleshooting And Configuration Through MCP

Servers

Vivek Koodakkara Shanmughan

Independent Researcher, USA.

Abstract

Enterprise networks have grown much more complex, with distributed network
topologies, hybrid cloud infrastructure, and on-the-fly configuration. Customary

approaches to operationalizing network infrastructure have been reactive and
inefficient. Collocating agentic artificial intelligence with the Model Context Protocol
allows the development of a scalable system for self-managing networks, where

clever agents observe, analyze, plan, execute, and verify via common interfaces. As
a replacement for manual operational troubleshooting and configuration processes,

the architecture employs automated reasoning cycles for real-time anomaly
detection, root cause analysis, and remediation. The Model Context Protocol exposes
network functions as clean, typed, and validation-friendly interfaces that allow the

use of artificial intelligence agents in the architecture to interoperate with the
underlying network infrastructure, enabling a reliable semantic understanding of

routing protocols, security policies, interface states, and performance indicators. Pre-
execution validation, policy-based verification, rollback, and audit logging are
supported as part of the architecture for secure, accountable automated operations.

Intent-driven configuration management is especially noteworthy: Natural language
requirements are converted into validated network configurations. This reduces time-

to-deployment of complex operations across multiple devices and, at the same time,
minimizes human error. Stateful processing abstractions, network-wide synthesis

techniques, and declarative models enable the diagnosis of problems by separating
symptoms from root causes while preserving network-wide invariants across a
distributed set of network elements. This enables network healing, compliance

enforcement, and operational agility at a scale not achievable by human analysts and
administrators. Organizations using agentic network management can achieve orders

of magnitude improvement in service availability and operational efficiency, and
infrastructure agility, while enabling network and service architects to focus on design
rather than implementation. Self-healing networks represent the next generation of

enterprise networking infrastructure, where smart automation deals with operational
complexity with precision and speed that fundamentally changes the economics and

capabilities of network operations.

Keywords: Agentic Artificial Intelligence, Network Management Automation, Model

Context Protocol, Intent-Driven Configuration, Autonomous Troubleshooting.

1. Introduction

Enterprise networks have become distributed and are hybridly connected to various cloud networks and

thousands of configuration points to consider. The report on Cisco Global Networking Trends explains that

Agentic AI For Network Management: Autonomous Troubleshooting And Configuration Through MCP Servers

127

organizations are experiencing new levels of complexity as they introduce artificial intelligence in their

networks. Complexity of the network has also been cited by enterprise customers as being one of the most

significant issues in the operation of scaled-up digital infrastructure [1]. Traditional Network Management

Systems are mainly reactive and need human intervention to troubleshoot and/or reconfigure infrastructure

components. It can cause more lengthy outages, configuration drift, and high costs because network outages

may negatively affect the productivity of the enterprise. Network downtimes can be expensive, and

estimates of downtime vary by industry sector, although outages usually become the most expensive

operation costs to a business when both direct costs (lost productivity and lost income) and indirect costs

(tarnished reputation and customer dissatisfaction) are combined [2]. The emergence of agentic AI is

transforming the character of network operations radically. New systems are agentic AI systems, which

independently make their decisions and are able to perform actions using structured tools. Via the addition

of the Model Context Protocol, agentic AI systems can act as an independent entity that is capable of

operating networks with unmatched accuracy, consistency, and awareness in real time. This transformation

will enable organizations to drop the reactive firefighting approach to the intelligent coordination of

network resources.

2. Architectural Foundation: MCP Servers as Network Interfaces

An architectural basis for autonomous network management is the Model Context Protocol server, which

provides an open abstraction layer between the AI agents and the network. MCP servers expose clean,

typed, and validated interfaces to network operations, causing the client never to parse unstructured

command line interface (CLI) output, nor work through vendor APIs. Network update is a well-studied

problem in software-defined networking. As the size and complexity of networks increase, the question of

how to write network updates in a strong way becomes more relevant. In particular, inside updates,

programmers need abstractions that give certain guarantees about update semantics. For example, if a

network operator updates their network, they want to be sure that, at no point during the update, packets

are forwarded through a mix of the old and new configurations (packet consistency) and that all packets

from a single flow are either entirely under the old or new configuration (per-flow consistency). The

protocol has provided a consistent semantic for interfaces, virtual LANs, routing protocols, access control

lists, VPN tunnels, and health metrics. The work on the consistent network updates has established that

several coordination mechanisms are required to achieve consistency in distributed networking

environments, especially when multiple switches are updated and forwarding correctness is maintained

when a network is being updated [4]. The MCP architecture implements these principles via conventional

version control, schema validation, and transaction semantics to ensure every interaction of the AI agent

with the network infrastructure is safe. This allows AI agents to learn generalizable network management

skills that can be shared across vendor platforms and deployment scenarios in order to remove the vendor-

specific complications that have historically obstructed network automation.

Table 1: MCP Server Network Interface Capabilities [3, 4]

Interface Function Description Key Benefits

Device Status

Retrieval

Real-time collection of operational

state information from network

elements

Provides comprehensive visibility into

hardware health, software versions, and

operational parameters

Routing Table

Export

Extraction of forwarding information

base and routing protocol state

Enables analysis of path selection,

convergence behavior, and routing policy

effectiveness

Configuration

Validation

Syntax checking, policy compliance

verification, and conflict detection

Identifies errors before deployment,

preventing configuration-induced outages

Rollback Triggers
Automated restoration of previous

configuration states

Enables rapid recovery from problematic

changes with minimal service disruption

Vivek Koodakkara Shanmughan

128

Change Application

Coordinated deployment of

configuration updates across multiple

devices

Ensures atomic updates that maintain

network consistency during transitions

Health Metrics

Collection

Gathering of performance indicators,

including latency, throughput, and

error rates

Supports baseline establishment, anomaly

detection, and capacity planning

3. Agentic Reasoning Cycle: From Observation to Execution

The agentic AI systems pursue a process of five development phases. They will autonomously and

networked work with less or no human intervention. In the observation stage, an AI agent monitors the

health of a network, its present settings and performance using queries at MCP server to establish the normal

state of the network and the circumstance that shows the presence of an abnormal scenario. Pattern

recognition methods are employed during analysis to detect the root cause of the anomalies that have been

identified. Stateful abstractions also support more advanced features in a network that would not exist with

stateless implementations [5]. These stateful functionalities enable the agent to trace connection states,

sequence numbers and counters across a number of devices that provide the full visibility of how the

network is being operated. During the planning phase, candidate remediations are created based on the

thinking about policy constraints and the operational state of the agent. The agent involves network-wide

synthesis methods which generate valid configurations automatically by a high-level policy specification

[6]. Network-wide synthesis will map logical network properties into the actual per-device configurations

in such a way that the synthesized network behavior satisfies the policy of all traffic patterns and failure

scenarios. The execution phase implies that the plan that is selected is implemented within the functions of

the corresponding MCP server. Pre-execution checks, dry-run simulators, and automatic checkpointing of

executing code are also part of this stage to be able to switch back in case of undesirable side effects. The

last procedure, a verification is to help know whether the desired outcome has been achieved. This is

achieved by testing the convergence of behavior of the control plane and the data plane forwarding. This is

an open ended reasoning loop. This loop has a temporal and spatial scale of single parameter setting all the

way to multi-device orchestration, and becomes increasingly complicated as an increasing number of past

incidences are taken into account.

Table 2: Agentic AI Reasoning Cycle Phases [5, 6]

Phase Primary Functions Outputs

Observe

Continuous monitoring of telemetry data,

collection of configuration states, and

establishment of behavioral baselines

Normalized metrics, state snapshots,

deviation alerts

Analyze
Pattern recognition across multiple data sources,

correlation of events, and root cause identification

Diagnostic hypotheses, causal

relationships, and impacted

components

Plan

Generation of remediation alternatives, evaluation

against constraints, and selection of optimal

strategy

Ranked action proposals, impact

assessments, and risk evaluations

Execute
Configuration deployment, coordinated updates,

checkpoint creation, transaction management

Applied changes, rollback points,

execution logs

Agentic AI For Network Management: Autonomous Troubleshooting And Configuration Through MCP Servers

129

Verify
Post-change validation, performance comparison,

secondary issue detection

Confirmation reports, residual

problem identification, and knowledge

base updates

4. Autonomous Troubleshooting: Reducing MTTD and MTTR

Using agentic AI for network troubleshooting turns the reactive incident-management process customarily

conducted by human staff into immediate action planning. This considerably improves service availability.

For instance, in case of packet loss or delay spikes, the AI agent can proactively retrieve health information

from the MCP server and compare the current health metrics with historical baselines to detect

positive/negative deviations and take appropriate actions. AI-powered monitoring can detect anomalies,

predict failures, and respond to intrusions far more quickly than customary monitoring based on fixed

thresholds with manual operator analysis. AI can also be more effective in detecting patterns that

correspond to a range of different problems. For example, it can detect unusual patterns at different layers

of the network or when the network gradually degrades in ways that are not obvious to human operators.

This system relies on correlation to identify the difference between a symptom and its cause, in order to

avoid the situation seen by operators frequently, where symptoms such as error messages are dealt with as

the underlying failures or misconfigurations that may continue to generate them. In the case of performance,

the agent would look for the cause in the network topology based on routing table stability, protocol state

machines, interface error rates, and resource usage. The distributed nature of the modern network poses

difficulties in fault localization as faults may be with components in different administrative domains, or

with components from different vendors. When an agent detects a misconfiguration or a failing component,

it recommends a corrective action and provides transparent reasoning of the diagnostic process, the cause

of the problem, the action taken, and the expected result. This transparency allows human oversight and

approval of interventions in high-consequence situations, or complete automation of remediation, if the

agent can show consistent reliability in past interactions and can display appropriate understanding of the

situation.

Table 3: Autonomous Troubleshooting Capabilities [7, 8]

Capability

Domain
Automated Functions Operational Impact

Anomaly

Detection

Real-time comparison of observed metrics

against statistical baselines and learned

patterns

Identifies performance degradation,

protocol failures, and resource

exhaustion before user impact

Root Cause

Analysis

Correlation of symptoms across network

layers, elimination of secondary effects,

isolation of failure points

Reduces diagnostic time and prevents

ineffective remediation of

downstream symptoms

Remediation

Synthesis

Generation of corrective actions based on

failure type, validation against policies, and

impact prediction

Produces safe, compliant solutions

that address underlying problems

rather than masking symptoms

Autonomous

Execution

Coordinated application of fixes across

affected devices, creation of rollback

checkpoints, and verification of outcomes

Enables rapid resolution without

human intervention for well-

understood failure scenarios

Knowledge

Retention

Recording of incident patterns, remediation

effectiveness, and outcome correlations

Improves future diagnostic accuracy

and response speed through

accumulated operational experience

Escalation

Management

Recognition of novel or high-risk scenarios,

preparation of context for human review, and

recommendation formulation

Ensures appropriate human

involvement for situations outside

autonomous operation boundaries

Vivek Koodakkara Shanmughan

130

5. Intent-Driven Configuration Management: From Natural Language to Network Reality

Besides network troubleshooting after the fact, agentic AI also enables proactive, intent-based configuration

management able to close the divide between business intent and technical configuration via natural

language understanding and automated synthesis. Network operators specify their operational intent as

natural language specifications of the intended behavior of the network, while an AI agent automatically

synthesizes the corresponding configuration artifacts that realize the intended policies on the network. This

has been demonstrated in the ONOS platform, where distributed control planes implement large-scale

networks with the help of abstraction layers. The use of abstract network programming allows the operator

to think of network-wide policies rather than the lower-level configuration of the devices within the system

[8]. The separation of concerns allows the AI agent to reason about network behavior at a higher level and

automatically compile abstract policies into vendor-specific configuration language across heterogeneous

device populations. The agent uses network design patterns, vendor best practices, and organizational

preferences to synthesize complete sets of configurations from high-level intent. When using this option,

routing protocol, security zone, quality of service, and monitoring configurations are generated by the agent

and verified by the MCP server. Checking network configurations serves to verify that the configurations

are correct with respect to syntax, policy, and conflict-checking rules. Network configuration correctness

checkers that can process abstract network topologies can prove the network will always behave correctly

in all possible scenarios [9]. This formal verification detects configuration errors that are extremely difficult

to detect via testing, such as configurations that push the system into the exotic failure mode or

configurations with complex interactions among distributed components. The agent takes snapshots of the

state of the entire network before every configuration change, which are called automatic rollback

checkpoints, so that erroneous configurations can be quickly rolled back in production. Configuration

simulation is how the agent predicts the effects of proposed changes. It does this by digitally modeling the

network in an identical twin environment, where a copy of the production topology, traffic patterns, and

failures is simulated. This eliminates manually configuring the network, which is error-prone and requires

vendor-specific, expert knowledge to understand how to use their command-line interface. It provides a

safe, declarative, and intent-based model, meaning that domain experts do not have to know how to

configure how to achieve an intent on a specific vendor platform or specific software version.

Table 4: Intent-Driven Configuration Capabilities [9, 10]

Configuration

Aspect
Automated Processes Value Delivered

Natural Language

Processing

Parsing of operational requirements,

extraction of semantic intent, and

ambiguity resolution

Eliminates the need for command-line

expertise, making configuration accessible

to domain experts

Policy Synthesis

Translation of high-level objectives into

device-specific configurations across

vendor platforms

Ensures consistent implementation of

business requirements across

heterogeneous infrastructure

Formal Verification

Mathematical proof of correctness,

invariant preservation checking, and

reachability analysis

Provides guarantees that configurations

will behave as intended under all traffic

and failure scenarios

Simulation Testing

Digital twin modeling, traffic pattern

replay, failure injection, performance

prediction

Identifies problematic configurations

before production deployment through

comprehensive scenario testing

Coordinated

Deployment

Atomic multi-device updates,

dependency ordering, rollback

coordination, and consistency

maintenance

Eliminates configuration windows where

network behavior is undefined or

inconsistent

Agentic AI For Network Management: Autonomous Troubleshooting And Configuration Through MCP Servers

131

Compliance

Enforcement

Continuous validation against regulatory

requirements, corporate policies, and

security standards

Prevents configuration drift and ensures

ongoing adherence to governance

frameworks

Conclusion

With agentic artificial intelligence and Model Context Protocol (MCP) servers, enterprise networks will

shift from human-driven reactive operating models to automated self-healing and self-optimizing ones. As

networks grow in complexity, agents at scale will follow. Agent intelligence will provide reliable,

consistent, and generic interfaces for safe consumption between agentic operations and the underlying

network infrastructure through full validation, policy compliance, and audit capabilities. This reasoning

cycle enables diagnosis and the synthesis of corrective action orders of magnitude faster and more

accurately than current human-based processes. It resolves the error-prone translation from business

requirements to technical implementation with natural language to vendor-neutral and validated

configuration specification, and through autonomic adaptation to populations of heterogeneous devices.

Formal verification is also used to guarantee that autonomous reconfiguration of a network's configuration

preserves properties such as reachability, isolation, and performance guarantees, even when the underlying

network infrastructure is being automatically reconfigured to meet different sets of operational

requirements. Companies adopting smart automation data center architectures have experienced dramatic

increases in service availability, operational cost, and infrastructure agility, while moving technical staff

from tactical troubleshooting to calculated architecture, capacity planning, and policy work. The result of

these approaches leads to continuous learning, when systems develop an increasingly advanced model of

network behavior and optimized responses based on experience gained across different types of failures

and traffic patterns. Reinforcing policy enforcement mechanisms allows autonomous systems to maintain

compliance with organizational and regulatory requirements using role-based access controls, graduated

autonomy, and detailed logging for auditability and operator trust. In operational deployments, these

technologies will drive a model shift in the network from one that is human-controlled to one that is self-

optimizing with a higher level of automation, improving network performance and reliability in known use

cases while deferring new or risky use cases to a human expert. In a highly competitive landscape, first

movers will not only realize meaningful cost advantages they will also positively impact service quality,

accelerate innovation cycles, and provide greater business agility. In short, this is not simply improved

efficiency of network management; it is a rethink of how businesses design, provision, and run the critical

infrastructure that supports the digital economy.

References

[1] Cisco Systems, "2024 Global Networking Trends Report". [Online]. Available:

https://www.cisco.com/site/us/en/solutions/networking/global-networking-trends/index.html

[2] John Moore, "The cost of downtime and how businesses can avoid it," SearchDataBackup, 2025.

[Online]. Available: https://www.techtarget.com/searchdatabackup/feature/The-cost-of-downtime-and-

how-businesses-can-avoid-it

[3] Mark Reitblatt et al., "Abstractions for network update," SIGCOMM '12: Proceedings of the ACM

SIGCOMM 2012 conference on Applications, technologies, architectures, and protocols for computer

communication, 2012. [Online]. Available: https://dl.acm.org/doi/10.1145/2342356.2342427

[4] Ratul Mahajan and Roger Wattenhofer, "On Consistent Updates in Software Defined Networks".

[Online]. Available: https://conferences.sigcomm.org/hotnets/2013/papers/hotnets-final108.pdf

[5] Mina Tahmasbi Arashloo, et al., "SNAP: Stateful Network-Wide Abstractions for Packet Processing,"

SIGCOMM '16: Proceedings of the 2016 ACM SIGCOMM Conference. [Online]. Available:

https://dl.acm.org/doi/10.1145/2934872.2934892

[6] Ahmed El-Hassany et al., "Network-wide Configuration Synthesis," arxiv>cs>arXiv:1611.02537, 2016.

[Online]. Available: https://arxiv.org/abs/1611.02537

https://www.cisco.com/site/us/en/solutions/networking/global-networking-trends/index.html
https://www.cisco.com/site/us/en/solutions/networking/global-networking-trends/index.html
https://www.cisco.com/site/us/en/solutions/networking/global-networking-trends/index.html
https://www.techtarget.com/searchdatabackup/feature/The-cost-of-downtime-and-how-businesses-can-avoid-it
https://www.techtarget.com/searchdatabackup/feature/The-cost-of-downtime-and-how-businesses-can-avoid-it
https://www.techtarget.com/searchdatabackup/feature/The-cost-of-downtime-and-how-businesses-can-avoid-it
https://dl.acm.org/doi/10.1145/2342356.2342427
https://dl.acm.org/doi/10.1145/2342356.2342427
https://conferences.sigcomm.org/hotnets/2013/papers/hotnets-final108.pdf
https://conferences.sigcomm.org/hotnets/2013/papers/hotnets-final108.pdf
https://dl.acm.org/doi/10.1145/2934872.2934892
https://dl.acm.org/doi/10.1145/2934872.2934892
https://dl.acm.org/doi/10.1145/2934872.2934892
https://arxiv.org/abs/1611.02537
https://arxiv.org/abs/1611.02537

Vivek Koodakkara Shanmughan

132

[7] Pratik Patel, "How to Optimize Network Performance and User Experience with AI-Powered

Monitoring," Motadata, 2025. [Online]. Available: https://www.motadata.com/blog/how-to-optimize-

network-performance-and-user-experience-with-ai-powered-monitoring/

[8] Pankaj Berde et al., "ONOS: towards an open, distributed SDN OS," HotSDN '14: Proceedings of the

third workshop on Hot topics in software defined networking, 2014. [Online]. Available:

https://dl.acm.org/doi/10.1145/2620728.2620744

[9] Ryan Beckett et al., "Network configuration synthesis with abstract topologies," PLDI 2017:

Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and

Implementation, 2017. [Online]. Available: https://dl.acm.org/doi/10.1145/3062341.3062367

[10] Ari Fogel et al., "A General Approach to Network Configuration Analysis," 12th USENIX Symposium

on Networked Systems Design and Implementation (NSDI ’15), 2015. [Online]. Available:

https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-fogel.pdf

https://www.motadata.com/blog/how-to-optimize-network-performance-and-user-experience-with-ai-powered-monitoring/
https://www.motadata.com/blog/how-to-optimize-network-performance-and-user-experience-with-ai-powered-monitoring/
https://www.motadata.com/blog/how-to-optimize-network-performance-and-user-experience-with-ai-powered-monitoring/
https://dl.acm.org/doi/10.1145/2620728.2620744
https://dl.acm.org/doi/10.1145/2620728.2620744
https://dl.acm.org/doi/10.1145/2620728.2620744
https://dl.acm.org/doi/10.1145/3062341.3062367
https://dl.acm.org/doi/10.1145/3062341.3062367
https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-fogel.pdf
https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-fogel.pdf
https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-fogel.pdf

