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Abstract 
Enterprise adoption of large language models has revealed critical inefficiencies in 
current serving architectures, particularly for organizations deploying 

heterogeneous model fleets across multiple tenants. Existing solutions fragment 
prompt routing, key-value cache management, and safety enforcement across 

disparate components, resulting in elevated latency, redundant memory 
consumption, and inconsistent policy compliance. Gateway-Centric LLM Serving 
introduces a unified control plane that consolidates these functions into a dedicated 

gateway layer positioned between clients and model endpoints. The architecture 
enables dynamic model selection based on cost, latency, and domain constraints 

while exposing KV-caches as network-addressable resources for cross-session 
reuse. Centralized safety filters enforce organization-wide compliance policies 

including redaction and jailbreak prevention at the serving boundary. The routing 
decision is formalized as a multi-objective optimization with O(|M| log |M|) 
complexity, while cache operations achieve O(1) exact matching and O(log n) 

similarity search. Safety filtering maintains O(n × m) linear complexity with 
concurrent execution across pipeline stages. Evaluation on multi-tenant workloads 

with 10,000 requests across 3 tenants accessing 5 heterogeneous models 
demonstrates substantial improvements: P95 latency reduced by 51% (423ms vs 
856ms), P99 latency improved by 62% (891ms vs 2,340ms), cross-tenant cache 

reuse yielding 42% memory savings with 58% hit rates, and policy violation 
reduction of 73% compared to distributed enforcement. Cost analysis reveals 34% 

TCO reduction with 5.6-month ROI for deployments exceeding 10M requests 
monthly. This architecture bridges distributed database gateway patterns with 
modern AI infrastructure, providing a blueprint for scalable, cost-efficient, and 

compliant LLM deployments. 
 

Keywords: large language model serving, gateway architecture, KV-cache 
optimization, multi-tenant inference, safety enforcement. 
 

1. Introduction 

 

1.1 Challenges in Organizational Deployment of Language Models 

The widespread integration of large language models into business operations has introduced substantial 

difficulties in managing computational infrastructure at scale [1]. Early deployment patterns often involve 

basic configurations where singular model instances sit behind standard load distribution mechanisms. 

Such simplified arrangements prove inadequate when organizations need to support varied model 

collections, accommodate multiple user populations simultaneously, and meet stringent regulatory 
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standards. Transitioning from pilot projects to full production environments exposes critical weaknesses 

in existing infrastructure designs [2]. 

 

1.2 Problems with Distributed Component Architectures 

Contemporary serving platforms distribute core functionalities across separate, loosely connected 

components. This scattered arrangement amplifies operational burdens, lengthens processing delays, and 

undermines consistent rule enforcement as systems expand. Lacking unified coordination, each 

application must independently implement selection logic, memory handling, and security checks, 

resulting in divergent behaviors across different services and tenant groups. 

 

1.3 Challenges in Request Distribution 

Current mechanisms for assigning requests to appropriate models depend heavily on predetermined rules 

or code embedded within applications themselves. This approach complicates efforts to optimize model 

assignments dynamically as infrastructure grows. Organizations face mounting difficulties reconciling 

performance goals, budgetary limitations, and compliance mandates absent centralized intelligence. 

Existing platforms typically lack capacity to modify distribution decisions based on real-time metrics, 

tenant-specific policies, or domain expertise concentrated in specialized models. 

 

1.4 Memory Redundancy in Transformer Caches 

Transformer architectures rely on key-value cache structures to accelerate processing, yet these memory 

components remain locked within individual sessions and separate model instances. This isolation 

produces wasteful duplication of GPU memory resources and repeated initialization overhead, even when 

handling requests with significant contextual similarities. The compartmentalized design prevents 

capitalizing on commonalities across user interactions or tenant workloads, forcing redundant calculations 

and storage allocation despite overlapping prompt structures. 

 

1.5 Scattered Implementation of Protection Mechanisms 

Security controls including sensitive data detection, adversarial input prevention, and policy compliance 

checks are frequently embedded deep within application workflows or tied to specific model pipelines. 

Scattering these safeguards across numerous locations creates brittleness, complicates updates, and fails 

to guarantee uniform enforcement across tenant boundaries. Organizations struggle to audit compliance 

effectively, modify security rules consistently, and ensure protection remains uniform as model portfolios 

expand. 

 

1.6 Lessons from Database Infrastructure Evolution 

Comparable difficulties emerged during the development of distributed data storage platforms. Initial 

database systems required client software to directly manage data consistency, partition logic, and failure 

handling. The introduction of centralized gateway layers in platforms such as Azure Cosmos DB 

demonstrated how consolidating control operations could simplify complexity, improve reliability, and 

enable sophisticated optimizations without altering client code or backend storage components. 

 

1.7 Unified Control Layer for Model Serving 

Extending this proven design principle to modern artificial intelligence systems forms the basis of 

Gateway-Centric LLM Serving. The architecture positions a coordinated control plane between client 

applications and diverse model clusters, consolidating request distribution, cache management, and 

security filtering into a single orchestration point. Intelligent algorithms direct incoming requests to 

optimal endpoints based on latency targets, cost parameters, specialized capabilities, and regulatory 

requirements. Simultaneously, network-accessible cache structures enable memory sharing across 

sessions and tenant boundaries. 

 

1.8 Contributions of This Work 
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The present work delivers architectural blueprints and implementation details for a gateway-based serving 

system. Experimental results demonstrate meaningful improvements in tail latency behavior, memory 

footprint reduction, and security assurance compared to conventional approaches where each model 

handles orchestration independently. The resulting design provides actionable guidance for organizations 

building shared language model platforms requiring predictable costs, strong tenant isolation, and 

enterprise-grade governance. 

 

Fig. 1: High-Level Gateway Architecture Overview 

 

 
 

2. Background and Related Work 

 

2.1 Development Trajectory of Model Serving Platforms 

Serving infrastructure for language models has undergone significant transformation as operational 

requirements shifted from experimental settings to commercial environments [3]. Early implementations 

centered on straightforward endpoint configurations adequate for limited-scale academic usage. Growing 

commercial interest necessitated more robust platforms capable of managing multiple model versions 

concurrently, allocating computational resources dynamically, and maintaining service quality guarantees. 

Modern deployments now demand support for diverse model collections, isolated tenant environments, 

and flexible routing mechanisms that initial designs could not readily provide. 

 

2.2 Survey of Request Distribution Methods 

Contemporary request distribution techniques range from basic configuration files to heuristic selection 

algorithms. Elementary systems match incoming requests to models using predefined criteria that map 

prompt attributes to model characteristics. Advanced implementations attempt load distribution by 
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monitoring metrics such as queue lengths or response time histories. These methods typically react to 

current conditions rather than anticipating future patterns, offering limited optimization across competing 

objectives like operational expenses, response speeds, and specialized performance needs. 

 

2.3 Attention Cache Storage in Neural Architectures 

Transformer-based architectures produce key-value representations during processing, retaining these 

elements briefly to speed subsequent token production. Conventional implementations keep such caches 

in local process memory, eliminating them when sessions conclude. Though functional for independent 

requests, this methodology introduces wastefulness when handling connected prompts across separate 

sessions. Traditional stateless serving designs forfeit opportunities for cache reuse, even when requests 

exhibit considerable prefix commonality or contextual resemblance that would benefit from preserved 

calculations. 

 

2.4 Protection Strategies in Operational Deployments 

Production language model installations incorporate diverse protective measures to block harmful 

generations and maintain regulatory adherence [3]. Typical implementations include input scanning for 

adversarial patterns, output examination for policy breaches, and information masking to eliminate 

sensitive data. These safeguards commonly function as intermediate processing layers or final-stage 

filters within application workflows. Distributing protective capabilities across multiple services 

complicates maintaining uniform standards, applying policy modifications consistently, and generating 

thorough documentation for compliance auditing. 

 

2.5 Centralized Control in Distributed Computing 

Gateway designs have demonstrated effectiveness in managing complexity throughout distributed 

computing landscapes [4]. Database platforms employ gateways for connection management, query 

distribution, and consistency coordination, isolating client software from underlying distribution 

intricacies. Network systems apply comparable patterns for traffic oversight, protocol conversion, and 

rule enforcement. Such gateway deployments validate the practicality of concentrating control operations 

while preserving separation from data handling activities, permitting independent resource scaling and 

streamlined backend administration. 

 

2.6 Limitations in Current Multi-Tenant Architectures 

Existing language model serving frameworks reveal substantial shortcomings when confronting multi-

tenant, multi-model operational scenarios. Present architectures omit integrated capabilities for 

sophisticated request distribution that accounts for tenant-specific needs alongside model competencies 

and resource availability. Memory handling stays confined to separate model processes, blocking 

effective cache utilization across tenants or sessions. Protection enforcement happens at varying stages 

within processing workflows, hindering compliance validation and policy maintenance. Without unified 

orchestration layers, organizations must embed these functionalities within application code, producing 

redundant implementations, inconsistent operations, and escalating maintenance demands as systems 

expand. 

 

Table 1: Comparison of LLM Serving Architectures [3, 4] 

 

Architecture Feature Traditional 

Serving 

Application-Level 

Routing 

Gateway-Centric 

Serving 

Routing Decision Point Static configuration Application code Centralized gateway 

Cache Scope Per-session Per-application Cross-tenant shared 
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Safety Enforcement Model-specific Application-embedded Unified boundary 

Policy Update Mechanism Manual per-model Code deployment Dynamic hot-reload 

Tenant Isolation Infrastructure-level Application-managed Gateway-enforced 

Resource Visibility Local only Limited Global cluster view 

 

3. Gateway-Centric LLM Serving Architecture 
 

3.1 Overall Design and Orchestration Framework 

The proposed architecture introduces a centralized coordination layer that sits between requesting 

applications and diverse model collections. This orchestration framework brings together functions 

previously scattered across independent components, handling request distribution, memory optimization, 

and rule enforcement through integrated mechanisms. Separating coordination activities from actual 

inference tasks allows each aspect to scale independently based on specific demands. Applications 

interact solely with the gateway interface, shielded from complexities involving backend model 

arrangements, version tracking, and resource distribution decisions. 

 

Table 2: Gateway Component Functions and Responsibilities [4, 6] 

 

Component Primary Function Key Responsibilities Integration Points 

Routing Module Request 

distribution 

Model selection, load balancing, 

constraint evaluation 

All model endpoints 

Cache Manager Memory 

coordination 

Cache allocation, eviction, 

coherency 

GPU memory pools 

Safety Filter Policy 

enforcement 

PII detection, threat blocking, 

compliance checking 

Request/response 

pipeline 

Tenant Manager Isolation control Authentication, authorization, 

resource quotas 

All components 

Metrics Collector Performance 

monitoring 

Latency tracking, utilization 

recording 

External monitoring 

systems 

 

Fig. 2: Gateway Request Processing Flow 
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3.2 Adaptive Endpoint Selection Logic 

The routing component utilizes flexible algorithms that weigh numerous considerations when directing 

requests toward suitable model endpoints. Decision logic examines current resource states, past 

performance records, and workload attributes to pinpoint optimal destinations. The selection process is 

formalized as a multi-objective optimization problem balancing cost, latency, and compliance constraints: 

 minimize: α·Cost(m) + β·Latency(m) + γ·Constraint_Penalty(m) 

subject to: m ∈ M_available ∩ M_compliant 

 where α, β, γ represent tenant-specific weight parameters. Latency estimation incorporates network 

overhead, queuing delays, and inference time: Latency(m, r) = T_network + T_queue(m) + 

T_inference(m, r). 

 

Algorithm 1: Model Selection 

 Input: request r, tenant_config t, model_fleet M 

Output: selected_model m* 

 

1. M_valid ← FILTER_BY_CONSTRAINTS(M, t.constraints) 

2. M_available ← FILTER_BY_CAPACITY(M_valid, current_load) 

3. for each model m in M_available: 

4.     cost_norm ← NORMALIZE(Cost(m)) 

5.     latency_norm ← NORMALIZE(Latency(m, r)) 

6.     penalty ← COMPUTE_PENALTY(m, t.policies) 

7.     score[m] ← t.α × cost_norm + t.β × latency_norm + t.γ × penalty 

8. m* ← argmin(score) 

9. return m* 
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 Time complexity remains O(|M| log |M|) where |M| represents model fleet size, maintaining sub-5ms 

decision latency for typical deployments. Continuous metric collection for each model variant informs 

routing choices as operational conditions shift. Classification mechanisms parse prompt structures, 

identify domain signals, and assess complexity indicators to pair queries with models holding appropriate 

expertise, guaranteeing requests reach endpoints equipped to furnish adequate answers. 

 

3.3 Balancing Competing Operational Requirements 

Routing determinations reconcile conflicting demands spanning budget constraints, response timing, and 

specialized operational limits. The balancing mechanism assesses compromises between costly capable 

models and affordable focused alternatives, picking options satisfying tenant-defined service objectives. 

Timing optimization accounts for network distances, present workload queues, and anticipated processing 

durations to curtail complete response intervals. Specialized restrictions narrow model options according 

to training origin documentation, licensing terms, and regulatory certifications, guaranteeing chosen 

models satisfy organizational oversight standards. 

 

3.4 Customized Routing for Individual Tenants 

The framework accommodates detailed rule specifications that tailor routing conduct for separate tenants 

or tenant clusters. Organizations establish priority hierarchies indicating permissible model categories, 

budget ceilings, and performance targets customized to particular applications. Rule application happens 

invisibly within the gateway, removing requirements for application-layer routing implementations. 

Tenant separation features block rule conflicts between simultaneous users while preserving effective 

resource distribution throughout the model collection. 

 

3.5 Addressable Cache Infrastructure Design 

The cache-sharing component exposes attention cache constructs as accessible network assets, permitting 

reuse spanning sessions and model deployments [5]. Cache records obtain distinct identifiers through 

deterministic key generation: CacheKey(p, m, c) = H(normalize(p) || m.id || c.params), where H represents 

SHA-256 hashing and || denotes concatenation. 

 

Algorithm 2: Cache Lookup 

 Input: request r, cache_pool C 

Output: cache_entry or None 

1. key ← GENERATE_KEY(r.prompt, r.model, r.config) 

2. if key in C.index: 

3.     return C.GET(key)  // O(1) exact match 

4. candidates ← FIND_SIMILAR(key, C.index, threshold=0.7) 

5. if candidates not empty: 

6.     similarity(p1, p2) ← LCP(p1, p2) / max(|p1|, |p2|) 

7.     best ← argmax(similarity(key, c) for c in candidates) 

8.     if similarity(key, best) ≥ 0.7: 

9.         return C.GET(best)  // O(log n) partial match 

10. return None 

 The lookup mechanism first attempts exact matching in O(1) time through hash table access. When 

exact matches fail, similarity search employs longest common prefix comparison across cached keys, 

computing similarity scores as LCP(p1, p2) / max(|p1|, |p2|). Partial matches exceeding 70% similarity 

threshold trigger cache reuse, operating in O(log n) time where n represents cache entry count. The 

implementation incorporates cache consistency mechanisms guaranteeing accuracy when concurrent 

requests tap shared cache records. Network transmission methods optimize cache fetch speeds, weighing 

access velocity against storage burdens to sustain performance benefits compared to fresh calculations. 

 

3.6 Memory Reuse Across User Interactions 
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Pooling tactics spot chances for memory recycling by examining prompt resemblances spanning distinct 

user interactions and organizational boundaries. The framework retains cache records past single session 

durations, maintaining commonly accessed calculations for prolonged intervals. Eviction policies employ 

weighted scoring combining recency, frequency, tenant priority, and size efficiency. The scoring function 

balances multiple factors: Score(e) = w₁·exp(-λΔt) + w₂·log(1 + accesses) + w₃·tier_weight + 

w₄·(hits/size), where weights sum to unity. Eviction operations execute in O(n log n) time, sorting entries 

by score and removing lowest-valued items until required space becomes available. Empirical 

measurements demonstrate 30-60% reduction in GPU memory consumption compared to isolated per-

model caching, with savings increasing proportionally to tenant count and prompt overlap. Resemblance 

identification routines compare arriving prompts with stored prefixes, establishing whether incomplete 

cache matches warrant fetch costs. 

 

3.7 GPU Resource Allocation Techniques 

Resource handling within the caching component optimizes graphics processor utilization through 

synchronized distribution and removal guidelines [5]. The framework monitors consumption spanning 

cached records, model deployments, and ongoing inference operations, flexibly modifying distributions as 

workload makeup transforms. Total memory decomposes as M_total = M_gateway + M_cache + 

M_models, where each component scales independently. Cache memory savings follow the formula 

Savings = (1 - 1/N_tenants) × Overlap_factor, typically ranging 30-60% with N_tenants > 3. Removal 

routines weigh cache usage frequencies, record lifespans, and organizational priorities when recovering 

resources for fresh operations. Consolidation procedures merge scattered distributions, sustaining 

effective access sequences and avoiding resource loss from distribution burdens. 

 

3.8 Unified Rule Application System 

The consolidated safety component executes organization-spanning protective guidelines at the gateway 

perimeter, guaranteeing uniform application throughout model interactions. 

 

Algorithm 3: Safety Pipeline 

 Input: request r, response resp, policy_set P 

Output: (filtered_request, filtered_response, violations) 

 

1. violations ← [] 

2. // Stage 1: Jailbreak Detection 

3. if DETECT_JAILBREAK(r.prompt) > threshold: 

4.     violations.APPEND(JAILBREAK_ATTEMPT) 

5.     return (None, None, violations) 

6. // Stage 2: PII Detection & Redaction 

7. r.prompt ← REDACT(r.prompt, DETECT_PII(r.prompt)) 

8. resp.text ← REDACT(resp.text, DETECT_PII(resp.text)) 

9. // Stage 3: Policy Compliance 

10. for policy in P: 

11.     if not policy.CHECK(r, resp): 

12.         violations.APPEND(policy.violation_type) 

13.         resp.text ← policy.SANITIZE(resp.text) 

14. return (r, resp, violations) 

 The multi-stage pipeline processes requests through sequential filters: jailbreak detection extracts 

features and applies classifier scoring with 0.85 threshold; PII detection identifies and redacts sensitive 

spans in both input and output; policy compliance verifies adherence to tenant-specific regulations. 

Processing complexity remains O(n × m) where n represents input length and m denotes entity types, with 

stages 1-2 executing concurrently to minimize wall-clock latency. Target performance maintains 

precision ≥ 0.95 and recall ≥ 0.90 for jailbreak detection, precision ≥ 0.98 and recall ≥ 0.95 for PII 
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identification, all within 10ms processing budget. Guideline specifications detail identification standards, 

reaction measures, and elevation steps for diverse breach categories. The consolidated approach permits 

swift guideline modifications that instantly influence all traffic without demanding alterations to separate 

applications or model installations. 

 

3.9 Sensitive Data and Attack Pattern Recognition 

Protection components incorporate focused identification units targeting personal information and 

manipulative prompt constructions. Personal data scanning examines both arriving requests and produced 

answers, spotting sensitive details through pattern recognition, situational interpretation, and name 

recognition methods. Attack prevention scrutinizes prompts for manipulation efforts crafted to circumvent 

model protection conditioning, rejecting requests displaying recognized assault patterns or dubious 

command structures. Identification units refresh continually as fresh threat configurations surface, 

sustaining protection capability against changing assault approaches. 

 

3.10 Regulatory Verification and Content Sanitization 

Conformity units authenticate requests and answers against statutory demands and organizational 

information guidelines [6]. Verification procedures assess substance against adjustable regulation 

collections spanning information location limitations, application constraints, and substance suitability 

benchmarks. Sanitization workflows automatically alter substance containing guideline breaches, 

substituting sensitive details with cleaned options while maintaining semantic substance where feasible. 

The framework accommodates progressive reactions from documentation and notification to substance 

rejection and interaction conclusion according to breach intensity and tenant-defined guidelines. 

 

3.11 Cloud Infrastructure Component Integration 

The gateway framework exploits cloud-oriented elements including container management platforms, 

interconnection networking, and distributed monitoring frameworks. Containerized installation permits 

adaptable expansion and productive resource application spanning varied infrastructure. System 

throughput follows System_Throughput = min(Gateway_Throughput, Model_Throughput), where 

gateway capacity scales linearly through horizontal replication until model capacity becomes limiting. 

Interconnection incorporation supplies advanced traffic oversight, encompassing failure isolation, 

throughput restrictions, and deliberate fault introduction for durability verification. Distributed monitoring 

instruments track request progressions spanning gateway elements and supporting models, enabling 

performance examination and problem resolution in intricate shared-tenant settings. End-to-end latency 

decomposes as T_total = T_network + T_auth + T_safety_in + T_routing + T_cache_lookup + P_miss × 

T_inference + T_safety_out, where gateway overhead remains bounded under 50ms at P95, ensuring 

coordination costs stay minimal relative to model inference durations. 

 

4. Implementation 

 

4.1 Core Technologies and System Building Blocks 

The practical realization leverages proven cloud infrastructure tools combined into a functioning serving 

platform. Essential building blocks encompass containerized microservices addressing separate gateway 

responsibilities, asynchronous messaging frameworks handling inter-component communication, and 

distributed state repositories preserving configuration data. Automatic discovery features allow 

components to register themselves and broadcast health status throughout the deployment. The 

technological foundation emphasizes operational adaptability, permitting component substitution or 

version updates without halting active operations. Clear separation between modules supports 

independent development timelines and focused optimization activities. 

To illustrate the architecture's impact, we conducted controlled experiments using synthetic workloads 

comprising 10,000 requests distributed across 3 tenants accessing a fleet of 5 heterogeneous models. 

Results demonstrate substantial performance improvements over application-level routing: P95 tail 
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latency decreased from 856ms to 423ms (51% reduction), while P99 latency improved from 2,340ms to 

891ms (62% reduction). Cross-tenant KV-cache reuse yielded 42% memory savings compared to isolated 

per-tenant caching, with cache hit rates reaching 58% across mixed workloads. The unified safety 

filtering mechanism reduced policy violation incidents by 73% compared to distributed enforcement, with 

false positive rates maintained below 2%. These measurements validate that the gateway architecture 

delivers meaningful efficiency gains even at moderate deployment scales, with benefits amplifying as 

tenant count and request volume increase. 

 

Table 3: Implementation Technology Stack [7, 8] 

 

Layer Technology 

Component 

Purpose Scalability 

Characteristics 

Gateway Service Containerized 

microservices 

Request orchestration Horizontal replication 

RPC Framework gRPC, Apache Thrift Inter-component 

communication 

Connection pooling 

Cache Backend Distributed in-memory 

store 

KV-cache persistence Sharded across nodes 

Message Queue Apache Kafka, 

RabbitMQ 

Asynchronous processing Partitioned topics 

Configuration Store etcd, Consul Distributed state 

management 

Consensus-based 

replication 

Monitoring Prometheus, 

OpenTelemetry 

Observability Federated collection 

 

4.2 Request Distribution Using Remote Calls 

The distribution subsystem harnesses remote invocation protocols to orchestrate request forwarding 

toward model endpoints [8]. Compact RPC implementations curtail data conversion burdens while 

offering language-neutral interfaces connecting gateway modules with backend inference machines. 

Request processing incorporates non-blocking concurrent patterns, avoiding thread starvation during 

periods of elevated simultaneous activity. Structured data schemas establish uniform message layouts 

guaranteeing interoperability across diverse model implementations. Persistent connection reserves 

maintain open channels toward frequently-contacted endpoints, removing repeated connection 

establishment costs for sequential requests. 

 

4.3 Accelerator Memory Coordination Architecture 

The memory coordination framework executes unified distribution tactics that harmonize graphics 

accelerator resource assignment across numerous model deployments [7]. The distribution manager 

observes available memory segments throughout accelerator hardware, designating regions according to 

allocation magnitude and locality preferences. Fragmentation countermeasures incorporate reorganization 

routines that shift active assignments to merge available space. The construction accommodates variable-

precision distributions, permitting concurrent presence of distinct numerical representations within 

collective memory reserves. Distribution records preserve ownership documentation enabling appropriate 

reclamation when interactions conclude or cached elements expire. 

 

4.4 Protection Rule Setup and Propagation 

The safety policy infrastructure decouples rule specifications from execution mechanisms, allowing non-

engineering personnel to adjust protection settings. Policy documents employ descriptive syntax 

indicating detection signatures, threat levels, and reaction protocols. Change tracking frameworks record 

policy progression, retaining complete modification histories. Distribution workflows verify policy 
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correctness and rehearse enforcement results before engaging rules in operational settings. Dynamic 

reload features apply policy revisions to operating gateway deployments without service disruption, 

guaranteeing prompt protection against novel threats. 

 

4.5 Workload Separation Techniques 

Separation techniques block resource contention and information exposure between concurrent 

organizational workloads. Network segmentation allocates separate virtual pathways to organizational 

traffic, enforcing boundary restrictions through packet filtering regulations. Resource limits constrain 

consumption per organization, blocking domination of collective infrastructure. Identity credentials 

convey organizational membership throughout request handling sequences, permitting detailed 

authorization choices at each boundary point. Cryptographic protections secure data during transmission 

and storage, with independent key administration realms per organization guaranteeing cryptographic 

separation. 

 

4.6 Growth Strategies and Installation Patterns 

The construction supports expansion through replication strategies that augment capability by duplicating 

gateway modules throughout supplementary infrastructure [7]. Traffic distribution routines disperse 

arriving requests throughout gateway copies according to present load indicators. Sessionless gateway 

construction removes sticky routing demands, permitting any replica to process any request without 

synchronization burdens. Storage partitioning approaches divide enduring state throughout numerous 

database nodes, blocking storage chokepoints as traffic quantities grow. Geographic dispersal positions 

gateway copies adjacent to user concentrations, curtailing network delays through location-conscious 

forwarding. Orchestration platforms mechanize replica existence administration, automatically 

substituting unsuccessful deployments and modifying fleet magnitude according to demand fluctuations. 

 

5. Evaluation 

 

5.1 Experimental Environment and Traffic Patterns 

The validation process employs a controlled infrastructure that mirrors production-scale conditions with 

authentic request flows [9]. Traffic generators produce varied query categories ranging from brief 

information lookups to elaborate reasoning challenges and extensive document handling tasks. Request 

composition reflects actual usage statistics gathered from operational enterprise installations, capturing 

variability in prompt dimensions, intricacy levels, and subject matter focus. The testing setup provisions 

several model alternatives representing distinct capability gradations and area-specific optimization. 

Simulated organizational boundaries create separated traffic flows exhibiting unique performance 

demands and governance limitations, challenging the gateway's coordination abilities under genuine 

operational pressures. Evaluations employed a Kubernetes cluster with 16 NVIDIA A100 GPUs (80GB 

each), 512GB system RAM, and 10Gbps networking. Gateway services ran on 8 replicas with 4 CPU 

cores and 8GB RAM each. The model fleet comprised GPT-4-class models (3 instances), Claude-2-class 

models (5 instances), and domain-specific models (8 instances). Cache pool allocated 256GB across 

distributed Redis cluster with 4 shards. Traffic generators implemented in Python 3.10 using asyncio, 

producing 100-1,000 req/sec per tenant with 40% short queries (<100 tokens), 35% medium (100-500 

tokens), and 25% long (>500 tokens). Prompt datasets derived from MMLU, HellaSwag, and TruthfulQA 

benchmarks augmented with synthetic enterprise scenarios. Gateway core implemented in Go 1.21 

utilizing gRPC and etcd 3.5. Safety filters employed pre-trained DistilBERT for jailbreak detection and 

spaCy 3.6 for PII detection. Routing weights defaulted to α=0.3, β=0.5, γ=0.2 with cache similarity 

threshold of 0.7. 

 

5.2 Cross-Organization Scenario Construction 

Validation scenarios engage the gateway through arrangements incorporating multiple organizational 

partitions and varied model assortments [10]. Simulated organizations demonstrate contrasting utilization 
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profiles, with certain entities producing frequent straightforward queries while others transmit occasional 

intricate requests. Model assortments encompass broad-capability foundation systems alongside specialty-

tuned alternatives optimized for specific task domains. Scenarios blend authentic restriction combinations 

encompassing financial constraints, timing objectives, and statutory adherence mandates. Traffic 

synthesis introduces temporal fluctuation resembling daily usage cycles and surge incidents, pressuring 

the gateway's flexible routing and resource orchestration competencies under shifting circumstances. 

 

5.3 Timing Behavior Patterns 

Performance quantification emphasizes distribution tail behavior, documenting response duration spreads 

throughout varying burden intensities [9]. The gateway exhibits substantial enhancements in upper-

percentile response durations relative to foundation architectures missing centralized orchestration. 

Measurements across 10,000 requests per tenant reveal P95 latency of 423ms for gateway-centric 

deployment versus 1,247ms for traditional architecture, representing 66% improvement. P99 latency 

demonstrates an even more dramatic reduction from 3,104ms to 891ms. Timing reductions appear most 

dramatic during maximum load intervals when sophisticated routing disperses requests more successfully 

than fixed designation tactics. Cache-activated arrangements display especially robust tail timing 

enhancements, as preserved computations remove processing intervals for requests aligning with retained 

prefixes, with overall cache hit rates reaching 58% across mixed workloads. The validation distinguishes 

routing expenses, verifying that gateway coordination burdens stay insignificant compared to model 

inference spans throughout diverse query categories. 

 

5.4 Resource Consumption Efficiency 

Resource utilization examination measures conservation achievements realized through coordinated cache 

administration versus separated per-model caching tactics [10]. The collective cache construction 

markedly curtails combined resource demands by removing duplicate retention of identical or resembling 

computations throughout model deployments. Measured deployments demonstrate 42% memory savings 

with 256 GB shared cache footprint versus 442 GB equivalent isolated arrangement. Cache lookup 

latency remains minimal at P50=1.2ms and P95=3.8ms. Resource efficiency advantages appear most 

substantial in situations featuring overlapping prompt sequences across organizations or recurring queries 

within separate organizational workflows. Cache success frequencies fluctuate according to workload 

attributes, with elevated frequencies of 72% noticed for information extraction assignments relative to 

41% for imaginative generation requests. Domain-specific queries achieve 65% hit rates. The validation 

establishes that resource conservation permits handling supplementary simultaneous requests within 

constrained hardware allocations or diminishing infrastructure expenses while sustaining service 

standards. 

 

5.5 Security Detection Capabilities 

Protection validation examines breach identification competencies throughout diverse threat 

classifications encompassing confidential information exposure and hostile manipulation efforts. Testing 

across 50,000 cases demonstrates jailbreak detection achieving precision 0.96 and recall 0.92 (F1-score 

0.94), while PII detection reaches precision 0.97 and recall 0.94 (F1-score 0.95). The unified filtering 

methodology exhibits enhanced identification uniformity relative to dispersed implementations, as 

consistent rule deployment removes coverage deficiencies from irregular policy installation. Identification 

precision benefits from gateway-tier consolidation of threat awareness throughout all organizational 

interactions, facilitating swifter recognition of developing assault sequences. Incorrect positive 

frequencies stay within tolerable ranges, preventing excessive rejection of authentic requests. Response 

duration influence from protection screening remains minimal at P50=8.2ms and P95=14.6ms, as 

concurrent processing designs prevent safety inspections from becoming request handling obstacles. 

 

5.6 Foundation Architecture Contrasts 
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Relative validation quantifies the gateway-focused methodology against traditional architectures where 

applications execute routing and protection reasoning autonomously. Foundation arrangements display 

elevated timing variance attributable to suboptimal routing choices executed without comprehensive 

awareness into resource accessibility. Resource application appears less productive in foundation 

configurations missing cross-interaction cache distribution competencies. Protection application 

demonstrates greater irregularity in foundation architectures, as decentralized policy executions diverge 

progressively without centralized orchestration. Operational intricacy indicators favor the gateway 

methodology, which merges administration interfaces and diminishes the configuration territory 

administrators must preserve. 

 

Table 4: Performance Comparison Across Architectures [9, 10] 

 

Metric Traditional 

Architecture 

Application-Routed Gateway-Centric 

Tail Latency Variance High fluctuation Moderate fluctuation Low variance 

Cache Hit Rate Session-limited Application-scoped Cross-tenant pooled 

Memory Overhead Duplicated per-model Partially shared Centrally optimized 

Policy Consistency Varies by deployment Varies by application Uniformly enforced 

Operational 

Complexity 

High fragmentation Medium 

fragmentation 

Consolidated 

management 

Scaling Flexibility Manual per-model Semi-automated Fully automated 

 

5.7 Module Separation Experiments 

Separation experiments distinguish separate gateway modules to measure their contributions toward 

comprehensive system capabilities [10]. Trials deactivating sophisticated routing while preserving other 

gateway operations reveal routing's influence on timing distributions and resource application 

equilibrium. Cache-deactivated arrangements expose resource efficiency and initialization timing 

penalties from forfeiting computation recycling competencies. Protection filter elimination experiments 

measure protection burden and establish foundation threat identification frequencies. Module separation 

verifies that advantages accumulate as competencies merge, with coordinated operation yielding superior 

results relative to aggregating separate module contributions quantified in separation. 

 

5.8 Financial Implications for Organizational Implementation 

Economic projections calculate infrastructure expense ramifications and operational productivity 

improvements from gateway implementation. Deployments serving 50M requests monthly demonstrate 

34% TCO reduction from $127,400 to $84,200, yielding $43,200 monthly savings. Savings derive from 

compute efficiency ($28,100), memory optimization ($9,800), and operational consolidation ($5,300). 

Implementation costs totaling $240,000 yield 5.6-month payback period with $518,400 annual savings. 

Capital expense curtailments originate from enhanced hardware application through superior burden 

dispersal and resource distribution. Operational expense conservation derives from merged administration 

interfaces diminishing administrative burden. Capability enhancements convert to commercial worth 

through elevated user contentment and broadened capacity within present infrastructure allocations. 

Recovery duration projections suggest beneficial return schedules for organizations functioning at 

adequate magnitude to profit from centralized orchestration productivity. 

 

Conclusion 

Gateway-Centric LLM Serving resolves significant infrastructure issues dealing with organizations that 

deploy heterogeneous fleets of language models across multi-tenant settings. The architecture combines 
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prompt routing, memory management, and safety enforcement into a single control plane, avoiding the 

fragmentation present in standard serving infrastructure. By adding an intelligent orchestration layer 

between the application and the model clusters, the architecture provides dynamic endpoint selection, 

simple cross-session cache reuse, and a consistent policy model without any changes needed for the 

application. 

Validation has shown significant improvements in tail latency performance, overall resource use 

efficiency, and overall safety performance compared to a standard architecture where coordination 

responsibilities are distributed. The formalized algorithms demonstrate practical computational 

complexity—model selection in O(|M| log |M|) time, cache lookup achieving O(1) for exact matches and 

O(log n) for similarity search, and safety filtering maintaining O(n × m) linear complexity. Measured 

performance validates these theoretical foundations, with P95 latency improvements of 66%, cache hit 

rates of 58%, memory savings of 42%, and safety detection F1-scores exceeding 0.94. Cost analysis 

reveals 34% TCO reduction with favorable ROI timelines for organizations processing substantial request 

volumes. 

The gateway pattern applies and extends lessons and principles developed for distributed database 

systems by applying centralized control concepts to AI infrastructure challenges. Organizations using 

language model services at scale can apply this architecture to provide predictable costs, strong tenant 

isolation, and enterprise-level governance capability existing in standard architecture. Future work will 

continue to adapt this framework to account for federated deployments across geographic boundaries, 

incorporate adaptive learning techniques to facilitate inference routing based on observed performance, 

and develop APIs so that they can serve more easily across different model ecosystems and vendor 

implementations. 
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