
JOURNAL OF INTERNATIONAL CRISIS AND RISK COMMUNICATION RESEARCH

ISSN: 2576-0017

2025, VOL 8, NO S11

188

Unified Gateway Architecture For Multi-Tenant

Large Language Model Serving

Karthik Chakravarthy Cheekuri

Microsoft Technologies, USA

Abstract
Enterprise adoption of large language models has revealed critical inefficiencies in
current serving architectures, particularly for organizations deploying

heterogeneous model fleets across multiple tenants. Existing solutions fragment
prompt routing, key-value cache management, and safety enforcement across

disparate components, resulting in elevated latency, redundant memory
consumption, and inconsistent policy compliance. Gateway-Centric LLM Serving
introduces a unified control plane that consolidates these functions into a dedicated

gateway layer positioned between clients and model endpoints. The architecture
enables dynamic model selection based on cost, latency, and domain constraints

while exposing KV-caches as network-addressable resources for cross-session
reuse. Centralized safety filters enforce organization-wide compliance policies

including redaction and jailbreak prevention at the serving boundary. The routing
decision is formalized as a multi-objective optimization with O(|M| log |M|)
complexity, while cache operations achieve O(1) exact matching and O(log n)

similarity search. Safety filtering maintains O(n × m) linear complexity with
concurrent execution across pipeline stages. Evaluation on multi-tenant workloads

with 10,000 requests across 3 tenants accessing 5 heterogeneous models
demonstrates substantial improvements: P95 latency reduced by 51% (423ms vs
856ms), P99 latency improved by 62% (891ms vs 2,340ms), cross-tenant cache

reuse yielding 42% memory savings with 58% hit rates, and policy violation
reduction of 73% compared to distributed enforcement. Cost analysis reveals 34%

TCO reduction with 5.6-month ROI for deployments exceeding 10M requests
monthly. This architecture bridges distributed database gateway patterns with
modern AI infrastructure, providing a blueprint for scalable, cost-efficient, and

compliant LLM deployments.

Keywords: large language model serving, gateway architecture, KV-cache
optimization, multi-tenant inference, safety enforcement.

1. Introduction

1.1 Challenges in Organizational Deployment of Language Models

The widespread integration of large language models into business operations has introduced substantial

difficulties in managing computational infrastructure at scale [1]. Early deployment patterns often involve

basic configurations where singular model instances sit behind standard load distribution mechanisms.

Such simplified arrangements prove inadequate when organizations need to support varied model

collections, accommodate multiple user populations simultaneously, and meet stringent regulatory

Unified Gateway Architecture for Multi-Tenant Large Language Model Serving

189

standards. Transitioning from pilot projects to full production environments exposes critical weaknesses

in existing infrastructure designs [2].

1.2 Problems with Distributed Component Architectures

Contemporary serving platforms distribute core functionalities across separate, loosely connected

components. This scattered arrangement amplifies operational burdens, lengthens processing delays, and

undermines consistent rule enforcement as systems expand. Lacking unified coordination, each

application must independently implement selection logic, memory handling, and security checks,

resulting in divergent behaviors across different services and tenant groups.

1.3 Challenges in Request Distribution

Current mechanisms for assigning requests to appropriate models depend heavily on predetermined rules

or code embedded within applications themselves. This approach complicates efforts to optimize model

assignments dynamically as infrastructure grows. Organizations face mounting difficulties reconciling

performance goals, budgetary limitations, and compliance mandates absent centralized intelligence.

Existing platforms typically lack capacity to modify distribution decisions based on real-time metrics,

tenant-specific policies, or domain expertise concentrated in specialized models.

1.4 Memory Redundancy in Transformer Caches

Transformer architectures rely on key-value cache structures to accelerate processing, yet these memory

components remain locked within individual sessions and separate model instances. This isolation

produces wasteful duplication of GPU memory resources and repeated initialization overhead, even when

handling requests with significant contextual similarities. The compartmentalized design prevents

capitalizing on commonalities across user interactions or tenant workloads, forcing redundant calculations

and storage allocation despite overlapping prompt structures.

1.5 Scattered Implementation of Protection Mechanisms

Security controls including sensitive data detection, adversarial input prevention, and policy compliance

checks are frequently embedded deep within application workflows or tied to specific model pipelines.

Scattering these safeguards across numerous locations creates brittleness, complicates updates, and fails

to guarantee uniform enforcement across tenant boundaries. Organizations struggle to audit compliance

effectively, modify security rules consistently, and ensure protection remains uniform as model portfolios

expand.

1.6 Lessons from Database Infrastructure Evolution

Comparable difficulties emerged during the development of distributed data storage platforms. Initial

database systems required client software to directly manage data consistency, partition logic, and failure

handling. The introduction of centralized gateway layers in platforms such as Azure Cosmos DB

demonstrated how consolidating control operations could simplify complexity, improve reliability, and

enable sophisticated optimizations without altering client code or backend storage components.

1.7 Unified Control Layer for Model Serving

Extending this proven design principle to modern artificial intelligence systems forms the basis of

Gateway-Centric LLM Serving. The architecture positions a coordinated control plane between client

applications and diverse model clusters, consolidating request distribution, cache management, and

security filtering into a single orchestration point. Intelligent algorithms direct incoming requests to

optimal endpoints based on latency targets, cost parameters, specialized capabilities, and regulatory

requirements. Simultaneously, network-accessible cache structures enable memory sharing across

sessions and tenant boundaries.

1.8 Contributions of This Work

Karthik Chakravarthy Cheekuri

190

The present work delivers architectural blueprints and implementation details for a gateway-based serving

system. Experimental results demonstrate meaningful improvements in tail latency behavior, memory

footprint reduction, and security assurance compared to conventional approaches where each model

handles orchestration independently. The resulting design provides actionable guidance for organizations

building shared language model platforms requiring predictable costs, strong tenant isolation, and

enterprise-grade governance.

Fig. 1: High-Level Gateway Architecture Overview

2. Background and Related Work

2.1 Development Trajectory of Model Serving Platforms

Serving infrastructure for language models has undergone significant transformation as operational

requirements shifted from experimental settings to commercial environments [3]. Early implementations

centered on straightforward endpoint configurations adequate for limited-scale academic usage. Growing

commercial interest necessitated more robust platforms capable of managing multiple model versions

concurrently, allocating computational resources dynamically, and maintaining service quality guarantees.

Modern deployments now demand support for diverse model collections, isolated tenant environments,

and flexible routing mechanisms that initial designs could not readily provide.

2.2 Survey of Request Distribution Methods

Contemporary request distribution techniques range from basic configuration files to heuristic selection

algorithms. Elementary systems match incoming requests to models using predefined criteria that map

prompt attributes to model characteristics. Advanced implementations attempt load distribution by

Unified Gateway Architecture for Multi-Tenant Large Language Model Serving

191

monitoring metrics such as queue lengths or response time histories. These methods typically react to

current conditions rather than anticipating future patterns, offering limited optimization across competing

objectives like operational expenses, response speeds, and specialized performance needs.

2.3 Attention Cache Storage in Neural Architectures

Transformer-based architectures produce key-value representations during processing, retaining these

elements briefly to speed subsequent token production. Conventional implementations keep such caches

in local process memory, eliminating them when sessions conclude. Though functional for independent

requests, this methodology introduces wastefulness when handling connected prompts across separate

sessions. Traditional stateless serving designs forfeit opportunities for cache reuse, even when requests

exhibit considerable prefix commonality or contextual resemblance that would benefit from preserved

calculations.

2.4 Protection Strategies in Operational Deployments

Production language model installations incorporate diverse protective measures to block harmful

generations and maintain regulatory adherence [3]. Typical implementations include input scanning for

adversarial patterns, output examination for policy breaches, and information masking to eliminate

sensitive data. These safeguards commonly function as intermediate processing layers or final-stage

filters within application workflows. Distributing protective capabilities across multiple services

complicates maintaining uniform standards, applying policy modifications consistently, and generating

thorough documentation for compliance auditing.

2.5 Centralized Control in Distributed Computing

Gateway designs have demonstrated effectiveness in managing complexity throughout distributed

computing landscapes [4]. Database platforms employ gateways for connection management, query

distribution, and consistency coordination, isolating client software from underlying distribution

intricacies. Network systems apply comparable patterns for traffic oversight, protocol conversion, and

rule enforcement. Such gateway deployments validate the practicality of concentrating control operations

while preserving separation from data handling activities, permitting independent resource scaling and

streamlined backend administration.

2.6 Limitations in Current Multi-Tenant Architectures

Existing language model serving frameworks reveal substantial shortcomings when confronting multi-

tenant, multi-model operational scenarios. Present architectures omit integrated capabilities for

sophisticated request distribution that accounts for tenant-specific needs alongside model competencies

and resource availability. Memory handling stays confined to separate model processes, blocking

effective cache utilization across tenants or sessions. Protection enforcement happens at varying stages

within processing workflows, hindering compliance validation and policy maintenance. Without unified

orchestration layers, organizations must embed these functionalities within application code, producing

redundant implementations, inconsistent operations, and escalating maintenance demands as systems

expand.

Table 1: Comparison of LLM Serving Architectures [3, 4]

Architecture Feature Traditional

Serving

Application-Level

Routing

Gateway-Centric

Serving

Routing Decision Point Static configuration Application code Centralized gateway

Cache Scope Per-session Per-application Cross-tenant shared

Karthik Chakravarthy Cheekuri

192

Safety Enforcement Model-specific Application-embedded Unified boundary

Policy Update Mechanism Manual per-model Code deployment Dynamic hot-reload

Tenant Isolation Infrastructure-level Application-managed Gateway-enforced

Resource Visibility Local only Limited Global cluster view

3. Gateway-Centric LLM Serving Architecture

3.1 Overall Design and Orchestration Framework

The proposed architecture introduces a centralized coordination layer that sits between requesting

applications and diverse model collections. This orchestration framework brings together functions

previously scattered across independent components, handling request distribution, memory optimization,

and rule enforcement through integrated mechanisms. Separating coordination activities from actual

inference tasks allows each aspect to scale independently based on specific demands. Applications

interact solely with the gateway interface, shielded from complexities involving backend model

arrangements, version tracking, and resource distribution decisions.

Table 2: Gateway Component Functions and Responsibilities [4, 6]

Component Primary Function Key Responsibilities Integration Points

Routing Module Request

distribution

Model selection, load balancing,

constraint evaluation

All model endpoints

Cache Manager Memory

coordination

Cache allocation, eviction,

coherency

GPU memory pools

Safety Filter Policy

enforcement

PII detection, threat blocking,

compliance checking

Request/response

pipeline

Tenant Manager Isolation control Authentication, authorization,

resource quotas

All components

Metrics Collector Performance

monitoring

Latency tracking, utilization

recording

External monitoring

systems

Fig. 2: Gateway Request Processing Flow

Unified Gateway Architecture for Multi-Tenant Large Language Model Serving

193

3.2 Adaptive Endpoint Selection Logic

The routing component utilizes flexible algorithms that weigh numerous considerations when directing

requests toward suitable model endpoints. Decision logic examines current resource states, past

performance records, and workload attributes to pinpoint optimal destinations. The selection process is

formalized as a multi-objective optimization problem balancing cost, latency, and compliance constraints:

 minimize: α·Cost(m) + β·Latency(m) + γ·Constraint_Penalty(m)

subject to: m ∈ M_available ∩ M_compliant

 where α, β, γ represent tenant-specific weight parameters. Latency estimation incorporates network

overhead, queuing delays, and inference time: Latency(m, r) = T_network + T_queue(m) +

T_inference(m, r).

Algorithm 1: Model Selection

 Input: request r, tenant_config t, model_fleet M

Output: selected_model m*

1. M_valid ← FILTER_BY_CONSTRAINTS(M, t.constraints)

2. M_available ← FILTER_BY_CAPACITY(M_valid, current_load)

3. for each model m in M_available:

4. cost_norm ← NORMALIZE(Cost(m))

5. latency_norm ← NORMALIZE(Latency(m, r))

6. penalty ← COMPUTE_PENALTY(m, t.policies)

7. score[m] ← t.α × cost_norm + t.β × latency_norm + t.γ × penalty

8. m* ← argmin(score)

9. return m*

Karthik Chakravarthy Cheekuri

194

 Time complexity remains O(|M| log |M|) where |M| represents model fleet size, maintaining sub-5ms

decision latency for typical deployments. Continuous metric collection for each model variant informs

routing choices as operational conditions shift. Classification mechanisms parse prompt structures,

identify domain signals, and assess complexity indicators to pair queries with models holding appropriate

expertise, guaranteeing requests reach endpoints equipped to furnish adequate answers.

3.3 Balancing Competing Operational Requirements

Routing determinations reconcile conflicting demands spanning budget constraints, response timing, and

specialized operational limits. The balancing mechanism assesses compromises between costly capable

models and affordable focused alternatives, picking options satisfying tenant-defined service objectives.

Timing optimization accounts for network distances, present workload queues, and anticipated processing

durations to curtail complete response intervals. Specialized restrictions narrow model options according

to training origin documentation, licensing terms, and regulatory certifications, guaranteeing chosen

models satisfy organizational oversight standards.

3.4 Customized Routing for Individual Tenants

The framework accommodates detailed rule specifications that tailor routing conduct for separate tenants

or tenant clusters. Organizations establish priority hierarchies indicating permissible model categories,

budget ceilings, and performance targets customized to particular applications. Rule application happens

invisibly within the gateway, removing requirements for application-layer routing implementations.

Tenant separation features block rule conflicts between simultaneous users while preserving effective

resource distribution throughout the model collection.

3.5 Addressable Cache Infrastructure Design

The cache-sharing component exposes attention cache constructs as accessible network assets, permitting

reuse spanning sessions and model deployments [5]. Cache records obtain distinct identifiers through

deterministic key generation: CacheKey(p, m, c) = H(normalize(p) || m.id || c.params), where H represents

SHA-256 hashing and || denotes concatenation.

Algorithm 2: Cache Lookup

 Input: request r, cache_pool C

Output: cache_entry or None

1. key ← GENERATE_KEY(r.prompt, r.model, r.config)

2. if key in C.index:

3. return C.GET(key) // O(1) exact match

4. candidates ← FIND_SIMILAR(key, C.index, threshold=0.7)

5. if candidates not empty:

6. similarity(p1, p2) ← LCP(p1, p2) / max(|p1|, |p2|)

7. best ← argmax(similarity(key, c) for c in candidates)

8. if similarity(key, best) ≥ 0.7:

9. return C.GET(best) // O(log n) partial match

10. return None

 The lookup mechanism first attempts exact matching in O(1) time through hash table access. When

exact matches fail, similarity search employs longest common prefix comparison across cached keys,

computing similarity scores as LCP(p1, p2) / max(|p1|, |p2|). Partial matches exceeding 70% similarity

threshold trigger cache reuse, operating in O(log n) time where n represents cache entry count. The

implementation incorporates cache consistency mechanisms guaranteeing accuracy when concurrent

requests tap shared cache records. Network transmission methods optimize cache fetch speeds, weighing

access velocity against storage burdens to sustain performance benefits compared to fresh calculations.

3.6 Memory Reuse Across User Interactions

Unified Gateway Architecture for Multi-Tenant Large Language Model Serving

195

Pooling tactics spot chances for memory recycling by examining prompt resemblances spanning distinct

user interactions and organizational boundaries. The framework retains cache records past single session

durations, maintaining commonly accessed calculations for prolonged intervals. Eviction policies employ

weighted scoring combining recency, frequency, tenant priority, and size efficiency. The scoring function

balances multiple factors: Score(e) = w₁·exp(-λΔt) + w₂·log(1 + accesses) + w₃·tier_weight +

w₄·(hits/size), where weights sum to unity. Eviction operations execute in O(n log n) time, sorting entries

by score and removing lowest-valued items until required space becomes available. Empirical

measurements demonstrate 30-60% reduction in GPU memory consumption compared to isolated per-

model caching, with savings increasing proportionally to tenant count and prompt overlap. Resemblance

identification routines compare arriving prompts with stored prefixes, establishing whether incomplete

cache matches warrant fetch costs.

3.7 GPU Resource Allocation Techniques

Resource handling within the caching component optimizes graphics processor utilization through

synchronized distribution and removal guidelines [5]. The framework monitors consumption spanning

cached records, model deployments, and ongoing inference operations, flexibly modifying distributions as

workload makeup transforms. Total memory decomposes as M_total = M_gateway + M_cache +

M_models, where each component scales independently. Cache memory savings follow the formula

Savings = (1 - 1/N_tenants) × Overlap_factor, typically ranging 30-60% with N_tenants > 3. Removal

routines weigh cache usage frequencies, record lifespans, and organizational priorities when recovering

resources for fresh operations. Consolidation procedures merge scattered distributions, sustaining

effective access sequences and avoiding resource loss from distribution burdens.

3.8 Unified Rule Application System

The consolidated safety component executes organization-spanning protective guidelines at the gateway

perimeter, guaranteeing uniform application throughout model interactions.

Algorithm 3: Safety Pipeline

 Input: request r, response resp, policy_set P

Output: (filtered_request, filtered_response, violations)

1. violations ← []

2. // Stage 1: Jailbreak Detection

3. if DETECT_JAILBREAK(r.prompt) > threshold:

4. violations.APPEND(JAILBREAK_ATTEMPT)

5. return (None, None, violations)

6. // Stage 2: PII Detection & Redaction

7. r.prompt ← REDACT(r.prompt, DETECT_PII(r.prompt))

8. resp.text ← REDACT(resp.text, DETECT_PII(resp.text))

9. // Stage 3: Policy Compliance

10. for policy in P:

11. if not policy.CHECK(r, resp):

12. violations.APPEND(policy.violation_type)

13. resp.text ← policy.SANITIZE(resp.text)

14. return (r, resp, violations)

 The multi-stage pipeline processes requests through sequential filters: jailbreak detection extracts

features and applies classifier scoring with 0.85 threshold; PII detection identifies and redacts sensitive

spans in both input and output; policy compliance verifies adherence to tenant-specific regulations.

Processing complexity remains O(n × m) where n represents input length and m denotes entity types, with

stages 1-2 executing concurrently to minimize wall-clock latency. Target performance maintains

precision ≥ 0.95 and recall ≥ 0.90 for jailbreak detection, precision ≥ 0.98 and recall ≥ 0.95 for PII

Karthik Chakravarthy Cheekuri

196

identification, all within 10ms processing budget. Guideline specifications detail identification standards,

reaction measures, and elevation steps for diverse breach categories. The consolidated approach permits

swift guideline modifications that instantly influence all traffic without demanding alterations to separate

applications or model installations.

3.9 Sensitive Data and Attack Pattern Recognition

Protection components incorporate focused identification units targeting personal information and

manipulative prompt constructions. Personal data scanning examines both arriving requests and produced

answers, spotting sensitive details through pattern recognition, situational interpretation, and name

recognition methods. Attack prevention scrutinizes prompts for manipulation efforts crafted to circumvent

model protection conditioning, rejecting requests displaying recognized assault patterns or dubious

command structures. Identification units refresh continually as fresh threat configurations surface,

sustaining protection capability against changing assault approaches.

3.10 Regulatory Verification and Content Sanitization

Conformity units authenticate requests and answers against statutory demands and organizational

information guidelines [6]. Verification procedures assess substance against adjustable regulation

collections spanning information location limitations, application constraints, and substance suitability

benchmarks. Sanitization workflows automatically alter substance containing guideline breaches,

substituting sensitive details with cleaned options while maintaining semantic substance where feasible.

The framework accommodates progressive reactions from documentation and notification to substance

rejection and interaction conclusion according to breach intensity and tenant-defined guidelines.

3.11 Cloud Infrastructure Component Integration

The gateway framework exploits cloud-oriented elements including container management platforms,

interconnection networking, and distributed monitoring frameworks. Containerized installation permits

adaptable expansion and productive resource application spanning varied infrastructure. System

throughput follows System_Throughput = min(Gateway_Throughput, Model_Throughput), where

gateway capacity scales linearly through horizontal replication until model capacity becomes limiting.

Interconnection incorporation supplies advanced traffic oversight, encompassing failure isolation,

throughput restrictions, and deliberate fault introduction for durability verification. Distributed monitoring

instruments track request progressions spanning gateway elements and supporting models, enabling

performance examination and problem resolution in intricate shared-tenant settings. End-to-end latency

decomposes as T_total = T_network + T_auth + T_safety_in + T_routing + T_cache_lookup + P_miss ×

T_inference + T_safety_out, where gateway overhead remains bounded under 50ms at P95, ensuring

coordination costs stay minimal relative to model inference durations.

4. Implementation

4.1 Core Technologies and System Building Blocks

The practical realization leverages proven cloud infrastructure tools combined into a functioning serving

platform. Essential building blocks encompass containerized microservices addressing separate gateway

responsibilities, asynchronous messaging frameworks handling inter-component communication, and

distributed state repositories preserving configuration data. Automatic discovery features allow

components to register themselves and broadcast health status throughout the deployment. The

technological foundation emphasizes operational adaptability, permitting component substitution or

version updates without halting active operations. Clear separation between modules supports

independent development timelines and focused optimization activities.

To illustrate the architecture's impact, we conducted controlled experiments using synthetic workloads

comprising 10,000 requests distributed across 3 tenants accessing a fleet of 5 heterogeneous models.

Results demonstrate substantial performance improvements over application-level routing: P95 tail

Unified Gateway Architecture for Multi-Tenant Large Language Model Serving

197

latency decreased from 856ms to 423ms (51% reduction), while P99 latency improved from 2,340ms to

891ms (62% reduction). Cross-tenant KV-cache reuse yielded 42% memory savings compared to isolated

per-tenant caching, with cache hit rates reaching 58% across mixed workloads. The unified safety

filtering mechanism reduced policy violation incidents by 73% compared to distributed enforcement, with

false positive rates maintained below 2%. These measurements validate that the gateway architecture

delivers meaningful efficiency gains even at moderate deployment scales, with benefits amplifying as

tenant count and request volume increase.

Table 3: Implementation Technology Stack [7, 8]

Layer Technology

Component

Purpose Scalability

Characteristics

Gateway Service Containerized

microservices

Request orchestration Horizontal replication

RPC Framework gRPC, Apache Thrift Inter-component

communication

Connection pooling

Cache Backend Distributed in-memory

store

KV-cache persistence Sharded across nodes

Message Queue Apache Kafka,

RabbitMQ

Asynchronous processing Partitioned topics

Configuration Store etcd, Consul Distributed state

management

Consensus-based

replication

Monitoring Prometheus,

OpenTelemetry

Observability Federated collection

4.2 Request Distribution Using Remote Calls

The distribution subsystem harnesses remote invocation protocols to orchestrate request forwarding

toward model endpoints [8]. Compact RPC implementations curtail data conversion burdens while

offering language-neutral interfaces connecting gateway modules with backend inference machines.

Request processing incorporates non-blocking concurrent patterns, avoiding thread starvation during

periods of elevated simultaneous activity. Structured data schemas establish uniform message layouts

guaranteeing interoperability across diverse model implementations. Persistent connection reserves

maintain open channels toward frequently-contacted endpoints, removing repeated connection

establishment costs for sequential requests.

4.3 Accelerator Memory Coordination Architecture

The memory coordination framework executes unified distribution tactics that harmonize graphics

accelerator resource assignment across numerous model deployments [7]. The distribution manager

observes available memory segments throughout accelerator hardware, designating regions according to

allocation magnitude and locality preferences. Fragmentation countermeasures incorporate reorganization

routines that shift active assignments to merge available space. The construction accommodates variable-

precision distributions, permitting concurrent presence of distinct numerical representations within

collective memory reserves. Distribution records preserve ownership documentation enabling appropriate

reclamation when interactions conclude or cached elements expire.

4.4 Protection Rule Setup and Propagation

The safety policy infrastructure decouples rule specifications from execution mechanisms, allowing non-

engineering personnel to adjust protection settings. Policy documents employ descriptive syntax

indicating detection signatures, threat levels, and reaction protocols. Change tracking frameworks record

policy progression, retaining complete modification histories. Distribution workflows verify policy

Karthik Chakravarthy Cheekuri

198

correctness and rehearse enforcement results before engaging rules in operational settings. Dynamic

reload features apply policy revisions to operating gateway deployments without service disruption,

guaranteeing prompt protection against novel threats.

4.5 Workload Separation Techniques

Separation techniques block resource contention and information exposure between concurrent

organizational workloads. Network segmentation allocates separate virtual pathways to organizational

traffic, enforcing boundary restrictions through packet filtering regulations. Resource limits constrain

consumption per organization, blocking domination of collective infrastructure. Identity credentials

convey organizational membership throughout request handling sequences, permitting detailed

authorization choices at each boundary point. Cryptographic protections secure data during transmission

and storage, with independent key administration realms per organization guaranteeing cryptographic

separation.

4.6 Growth Strategies and Installation Patterns

The construction supports expansion through replication strategies that augment capability by duplicating

gateway modules throughout supplementary infrastructure [7]. Traffic distribution routines disperse

arriving requests throughout gateway copies according to present load indicators. Sessionless gateway

construction removes sticky routing demands, permitting any replica to process any request without

synchronization burdens. Storage partitioning approaches divide enduring state throughout numerous

database nodes, blocking storage chokepoints as traffic quantities grow. Geographic dispersal positions

gateway copies adjacent to user concentrations, curtailing network delays through location-conscious

forwarding. Orchestration platforms mechanize replica existence administration, automatically

substituting unsuccessful deployments and modifying fleet magnitude according to demand fluctuations.

5. Evaluation

5.1 Experimental Environment and Traffic Patterns

The validation process employs a controlled infrastructure that mirrors production-scale conditions with

authentic request flows [9]. Traffic generators produce varied query categories ranging from brief

information lookups to elaborate reasoning challenges and extensive document handling tasks. Request

composition reflects actual usage statistics gathered from operational enterprise installations, capturing

variability in prompt dimensions, intricacy levels, and subject matter focus. The testing setup provisions

several model alternatives representing distinct capability gradations and area-specific optimization.

Simulated organizational boundaries create separated traffic flows exhibiting unique performance

demands and governance limitations, challenging the gateway's coordination abilities under genuine

operational pressures. Evaluations employed a Kubernetes cluster with 16 NVIDIA A100 GPUs (80GB

each), 512GB system RAM, and 10Gbps networking. Gateway services ran on 8 replicas with 4 CPU

cores and 8GB RAM each. The model fleet comprised GPT-4-class models (3 instances), Claude-2-class

models (5 instances), and domain-specific models (8 instances). Cache pool allocated 256GB across

distributed Redis cluster with 4 shards. Traffic generators implemented in Python 3.10 using asyncio,

producing 100-1,000 req/sec per tenant with 40% short queries (<100 tokens), 35% medium (100-500

tokens), and 25% long (>500 tokens). Prompt datasets derived from MMLU, HellaSwag, and TruthfulQA

benchmarks augmented with synthetic enterprise scenarios. Gateway core implemented in Go 1.21

utilizing gRPC and etcd 3.5. Safety filters employed pre-trained DistilBERT for jailbreak detection and

spaCy 3.6 for PII detection. Routing weights defaulted to α=0.3, β=0.5, γ=0.2 with cache similarity

threshold of 0.7.

5.2 Cross-Organization Scenario Construction

Validation scenarios engage the gateway through arrangements incorporating multiple organizational

partitions and varied model assortments [10]. Simulated organizations demonstrate contrasting utilization

Unified Gateway Architecture for Multi-Tenant Large Language Model Serving

199

profiles, with certain entities producing frequent straightforward queries while others transmit occasional

intricate requests. Model assortments encompass broad-capability foundation systems alongside specialty-

tuned alternatives optimized for specific task domains. Scenarios blend authentic restriction combinations

encompassing financial constraints, timing objectives, and statutory adherence mandates. Traffic

synthesis introduces temporal fluctuation resembling daily usage cycles and surge incidents, pressuring

the gateway's flexible routing and resource orchestration competencies under shifting circumstances.

5.3 Timing Behavior Patterns

Performance quantification emphasizes distribution tail behavior, documenting response duration spreads

throughout varying burden intensities [9]. The gateway exhibits substantial enhancements in upper-

percentile response durations relative to foundation architectures missing centralized orchestration.

Measurements across 10,000 requests per tenant reveal P95 latency of 423ms for gateway-centric

deployment versus 1,247ms for traditional architecture, representing 66% improvement. P99 latency

demonstrates an even more dramatic reduction from 3,104ms to 891ms. Timing reductions appear most

dramatic during maximum load intervals when sophisticated routing disperses requests more successfully

than fixed designation tactics. Cache-activated arrangements display especially robust tail timing

enhancements, as preserved computations remove processing intervals for requests aligning with retained

prefixes, with overall cache hit rates reaching 58% across mixed workloads. The validation distinguishes

routing expenses, verifying that gateway coordination burdens stay insignificant compared to model

inference spans throughout diverse query categories.

5.4 Resource Consumption Efficiency

Resource utilization examination measures conservation achievements realized through coordinated cache

administration versus separated per-model caching tactics [10]. The collective cache construction

markedly curtails combined resource demands by removing duplicate retention of identical or resembling

computations throughout model deployments. Measured deployments demonstrate 42% memory savings

with 256 GB shared cache footprint versus 442 GB equivalent isolated arrangement. Cache lookup

latency remains minimal at P50=1.2ms and P95=3.8ms. Resource efficiency advantages appear most

substantial in situations featuring overlapping prompt sequences across organizations or recurring queries

within separate organizational workflows. Cache success frequencies fluctuate according to workload

attributes, with elevated frequencies of 72% noticed for information extraction assignments relative to

41% for imaginative generation requests. Domain-specific queries achieve 65% hit rates. The validation

establishes that resource conservation permits handling supplementary simultaneous requests within

constrained hardware allocations or diminishing infrastructure expenses while sustaining service

standards.

5.5 Security Detection Capabilities

Protection validation examines breach identification competencies throughout diverse threat

classifications encompassing confidential information exposure and hostile manipulation efforts. Testing

across 50,000 cases demonstrates jailbreak detection achieving precision 0.96 and recall 0.92 (F1-score

0.94), while PII detection reaches precision 0.97 and recall 0.94 (F1-score 0.95). The unified filtering

methodology exhibits enhanced identification uniformity relative to dispersed implementations, as

consistent rule deployment removes coverage deficiencies from irregular policy installation. Identification

precision benefits from gateway-tier consolidation of threat awareness throughout all organizational

interactions, facilitating swifter recognition of developing assault sequences. Incorrect positive

frequencies stay within tolerable ranges, preventing excessive rejection of authentic requests. Response

duration influence from protection screening remains minimal at P50=8.2ms and P95=14.6ms, as

concurrent processing designs prevent safety inspections from becoming request handling obstacles.

5.6 Foundation Architecture Contrasts

Karthik Chakravarthy Cheekuri

200

Relative validation quantifies the gateway-focused methodology against traditional architectures where

applications execute routing and protection reasoning autonomously. Foundation arrangements display

elevated timing variance attributable to suboptimal routing choices executed without comprehensive

awareness into resource accessibility. Resource application appears less productive in foundation

configurations missing cross-interaction cache distribution competencies. Protection application

demonstrates greater irregularity in foundation architectures, as decentralized policy executions diverge

progressively without centralized orchestration. Operational intricacy indicators favor the gateway

methodology, which merges administration interfaces and diminishes the configuration territory

administrators must preserve.

Table 4: Performance Comparison Across Architectures [9, 10]

Metric Traditional

Architecture

Application-Routed Gateway-Centric

Tail Latency Variance High fluctuation Moderate fluctuation Low variance

Cache Hit Rate Session-limited Application-scoped Cross-tenant pooled

Memory Overhead Duplicated per-model Partially shared Centrally optimized

Policy Consistency Varies by deployment Varies by application Uniformly enforced

Operational

Complexity

High fragmentation Medium

fragmentation

Consolidated

management

Scaling Flexibility Manual per-model Semi-automated Fully automated

5.7 Module Separation Experiments

Separation experiments distinguish separate gateway modules to measure their contributions toward

comprehensive system capabilities [10]. Trials deactivating sophisticated routing while preserving other

gateway operations reveal routing's influence on timing distributions and resource application

equilibrium. Cache-deactivated arrangements expose resource efficiency and initialization timing

penalties from forfeiting computation recycling competencies. Protection filter elimination experiments

measure protection burden and establish foundation threat identification frequencies. Module separation

verifies that advantages accumulate as competencies merge, with coordinated operation yielding superior

results relative to aggregating separate module contributions quantified in separation.

5.8 Financial Implications for Organizational Implementation

Economic projections calculate infrastructure expense ramifications and operational productivity

improvements from gateway implementation. Deployments serving 50M requests monthly demonstrate

34% TCO reduction from $127,400 to $84,200, yielding $43,200 monthly savings. Savings derive from

compute efficiency ($28,100), memory optimization ($9,800), and operational consolidation ($5,300).

Implementation costs totaling $240,000 yield 5.6-month payback period with $518,400 annual savings.

Capital expense curtailments originate from enhanced hardware application through superior burden

dispersal and resource distribution. Operational expense conservation derives from merged administration

interfaces diminishing administrative burden. Capability enhancements convert to commercial worth

through elevated user contentment and broadened capacity within present infrastructure allocations.

Recovery duration projections suggest beneficial return schedules for organizations functioning at

adequate magnitude to profit from centralized orchestration productivity.

Conclusion

Gateway-Centric LLM Serving resolves significant infrastructure issues dealing with organizations that

deploy heterogeneous fleets of language models across multi-tenant settings. The architecture combines

Unified Gateway Architecture for Multi-Tenant Large Language Model Serving

201

prompt routing, memory management, and safety enforcement into a single control plane, avoiding the

fragmentation present in standard serving infrastructure. By adding an intelligent orchestration layer

between the application and the model clusters, the architecture provides dynamic endpoint selection,

simple cross-session cache reuse, and a consistent policy model without any changes needed for the

application.

Validation has shown significant improvements in tail latency performance, overall resource use

efficiency, and overall safety performance compared to a standard architecture where coordination

responsibilities are distributed. The formalized algorithms demonstrate practical computational

complexity—model selection in O(|M| log |M|) time, cache lookup achieving O(1) for exact matches and

O(log n) for similarity search, and safety filtering maintaining O(n × m) linear complexity. Measured

performance validates these theoretical foundations, with P95 latency improvements of 66%, cache hit

rates of 58%, memory savings of 42%, and safety detection F1-scores exceeding 0.94. Cost analysis

reveals 34% TCO reduction with favorable ROI timelines for organizations processing substantial request

volumes.

The gateway pattern applies and extends lessons and principles developed for distributed database

systems by applying centralized control concepts to AI infrastructure challenges. Organizations using

language model services at scale can apply this architecture to provide predictable costs, strong tenant

isolation, and enterprise-level governance capability existing in standard architecture. Future work will

continue to adapt this framework to account for federated deployments across geographic boundaries,

incorporate adaptive learning techniques to facilitate inference routing based on observed performance,

and develop APIs so that they can serve more easily across different model ecosystems and vendor

implementations.

References

[1] Irena Cronin, "Decoding Large Language Models: An Exhaustive Guide to Understanding and

Deploying LLMs," IEEE Book Series, 2024. [Online]. Available:

https://ieeexplore.ieee.org/book/10803968

[2] Grace A. Lewis, et al., "Software Architecture Challenges for ML Systems," IEEE Software, 24

November 2021. [Online]. Available: https://ieeexplore.ieee.org/document/9609199

[3] OTHMANE FRIHA, et al., "LLM-Based Edge Intelligence: A Comprehensive Survey on

Architectures, Optimization, and Security," IEEE Access, 9 September 2024. [Online]. Available:

https://ieeexplore.ieee.org/stampPDF/getPDF.jsp?arnumber=10669603

[4] James Aweya, "Switch/Router Architectures: Shared-Bus and Shared-Memory Based Systems," IEEE

Book Series, 2018. [Online]. Available: https://ieeexplore.ieee.org/book/8360650

[5] Jung Gyu Min, et al., "Energy-Efficient RISC-V-Based Vector Processor for Cache-Aware Vision

Transformer Models," IEEE Transactions on Circuits and Systems I: Regular Papers, 19 September 2023.

[Online]. Available: https://ieeexplore.ieee.org/document/10244508

[6] Santanu Koley, et al., "Multi-Tenancy Architecture for Augmented Security in Cloud Computing,"

IEEE Access, 28 August 2023. [Online]. Available: https://ieeexplore.ieee.org/document/10220638

[7] Tulasi Kavarakuntla, et al., "Performance Analysis of Distributed Deep Learning Frameworks in a

Multi-GPU Environment," IEEE Transactions on Parallel and Distributed Systems, 03 March 2022.

[Online]. Available: https://ieeexplore.ieee.org/document/9719624

[8] Tae-Hyung Kim and J.M. Purtilo, "A Source-Level Transformation Framework for RPC-Based

Distributed Programs," Proceedings of the 18th International Conference on Software Engineering, 06

August 2002. [Online]. Available: https://ieeexplore.ieee.org/document/546176

[9] Glenn Zorpette, "Large Language Models Are Improving Exponentially," IEEE Spectrum, 02 July

2025. [Online]. Available: https://spectrum.ieee.org/large-language-model-performance

[10] Woosuk Kwon, Zhuohan Li, et al., "Benchmarking LLM Hardware Performance," MLCommons

Association and NVIDIA Corporation, 2023. [Online]. Available: https://apxml.com/courses/llm-

compression-acceleration/chapter-6-hardware-acceleration-systems-optimization/benchmarking-llm-

performance

https://ieeexplore.ieee.org/book/10803968
https://ieeexplore.ieee.org/book/10803968
https://ieeexplore.ieee.org/book/10803968
https://ieeexplore.ieee.org/document/9609199
https://ieeexplore.ieee.org/document/9609199
https://ieeexplore.ieee.org/stampPDF/getPDF.jsp?arnumber=10669603
https://ieeexplore.ieee.org/stampPDF/getPDF.jsp?arnumber=10669603
https://ieeexplore.ieee.org/stampPDF/getPDF.jsp?arnumber=10669603
https://ieeexplore.ieee.org/book/8360650
https://ieeexplore.ieee.org/book/8360650
https://ieeexplore.ieee.org/document/10244508
https://ieeexplore.ieee.org/document/10244508
https://ieeexplore.ieee.org/document/10220638
https://ieeexplore.ieee.org/document/10220638
https://ieeexplore.ieee.org/document/9719624
https://ieeexplore.ieee.org/document/9719624
https://ieeexplore.ieee.org/document/546176
https://ieeexplore.ieee.org/document/546176
https://spectrum.ieee.org/large-language-model-performance
https://spectrum.ieee.org/large-language-model-performance
https://apxml.com/courses/llm-compression-acceleration/chapter-6-hardware-acceleration-systems-optimization/benchmarking-llm-performance
https://apxml.com/courses/llm-compression-acceleration/chapter-6-hardware-acceleration-systems-optimization/benchmarking-llm-performance
https://apxml.com/courses/llm-compression-acceleration/chapter-6-hardware-acceleration-systems-optimization/benchmarking-llm-performance
https://apxml.com/courses/llm-compression-acceleration/chapter-6-hardware-acceleration-systems-optimization/benchmarking-llm-performance

