JOURNAL OF INTERNATIONAL CRISIS AND RISK COMMUNICATION RESEARCH
ISSN: 2576-0017
2025, VOL 8, NO S11

Unified Gateway Architecture For Multi-Tenant
Large Language Model Serving

Karthik Chakravarthy Cheekuri

Microsoft Technologies, USA

Abstract

Enterprise adoption of large language models has revealed critical inefficiencies in
current serving architectures, particularly for organizations deploying
heterogeneous model fleets across multiple tenants. Existing solutions fragment
prompt routing, key-value cache management, and safety enforcement across
disparate components, resulting in elevated latency, redundant memory
consumption, and inconsistent policy compliance. Gateway-Centric LLM Serving
introduces a unified control plane that consolidates these functions into a dedicated
gateway layer positioned between clients and model endpoints. The architecture
enables dynamic model selection based on cost, latency, and domain constraints
while exposing KV-caches as network-addressable resources for cross-session
reuse. Centralized safety filters enforce organization-wide compliance policies
including redaction and jailbreak prevention at the serving boundary. The routing
decision is formalized as a multi-objective optimization with O(|M| log |M])
complexity, while cache operations achieve O(1) exact matching and O(log n)
similarity search. Safety filtering maintains O(n x m) linear complexity with
concurrent execution across pipeline stages. Evaluation on multi-tenant workloads
with 10,000 requests across 3 tenants accessing 5 heterogeneous models
demonstrates substantial improvements: P95 latency reduced by 51% (423ms vs
856ms), P99 latency improved by 62% (891ms vs 2,340ms), cross-tenant cache
reuse yielding 42% memory savings with 58% hit rates, and policy violation
reduction of 73% compared to distributed enforcement. Cost analysis reveals 34%
TCO reduction with 5.6-month ROI for deployments exceeding 10M requests
monthly. This architecture bridges distributed database gateway patterns with
modern Al infrastructure, providing a blueprint for scalable, cost-efficient, and
compliant LLM deployments.

Keywords: large language model serving, gateway architecture, KV-cache
optimization, multi-tenant inference, safety enforcement.

1. Introduction

1.1 Challenges in Organizational Deployment of Language Models

The widespread integration of large language models into business operations has introduced substantial
difficulties in managing computational infrastructure at scale [1]. Early deployment patterns often involve
basic configurations where singular model instances sit behind standard load distribution mechanisms.
Such simplified arrangements prove inadequate when organizations need to support varied model
collections, accommodate multiple user populations simultaneously, and meet stringent regulatory

188

Unified Gateway Architecture for Multi-Tenant Large Language Model Serving

standards. Transitioning from pilot projects to full production environments exposes critical weaknesses
in existing infrastructure designs [2].

1.2 Problems with Distributed Component Architectures

Contemporary serving platforms distribute core functionalities across separate, loosely connected
components. This scattered arrangement amplifies operational burdens, lengthens processing delays, and
undermines consistent rule enforcement as systems expand. Lacking unified coordination, each
application must independently implement selection logic, memory handling, and security checks,
resulting in divergent behaviors across different services and tenant groups.

1.3 Challenges in Request Distribution

Current mechanisms for assigning requests to appropriate models depend heavily on predetermined rules
or code embedded within applications themselves. This approach complicates efforts to optimize model
assignments dynamically as infrastructure grows. Organizations face mounting difficulties reconciling
performance goals, budgetary limitations, and compliance mandates absent centralized intelligence.
Existing platforms typically lack capacity to modify distribution decisions based on real-time metrics,
tenant-specific policies, or domain expertise concentrated in specialized models.

1.4 Memory Redundancy in Transformer Caches

Transformer architectures rely on key-value cache structures to accelerate processing, yet these memory
components remain locked within individual sessions and separate model instances. This isolation
produces wasteful duplication of GPU memory resources and repeated initialization overhead, even when
handling requests with significant contextual similarities. The compartmentalized design prevents
capitalizing on commonalities across user interactions or tenant workloads, forcing redundant calculations
and storage allocation despite overlapping prompt structures.

1.5 Scattered Implementation of Protection Mechanisms

Security controls including sensitive data detection, adversarial input prevention, and policy compliance
checks are frequently embedded deep within application workflows or tied to specific model pipelines.
Scattering these safeguards across numerous locations creates brittleness, complicates updates, and fails
to guarantee uniform enforcement across tenant boundaries. Organizations struggle to audit compliance
effectively, modify security rules consistently, and ensure protection remains uniform as model portfolios
expand.

1.6 Lessons from Database Infrastructure Evolution

Comparable difficulties emerged during the development of distributed data storage platforms. Initial
database systems required client software to directly manage data consistency, partition logic, and failure
handling. The introduction of centralized gateway layers in platforms such as Azure Cosmos DB
demonstrated how consolidating control operations could simplify complexity, improve reliability, and
enable sophisticated optimizations without altering client code or backend storage components.

1.7 Unified Control Layer for Model Serving

Extending this proven design principle to modern artificial intelligence systems forms the basis of
Gateway-Centric LLM Serving. The architecture positions a coordinated control plane between client
applications and diverse model clusters, consolidating request distribution, cache management, and
security filtering into a single orchestration point. Intelligent algorithms direct incoming requests to
optimal endpoints based on latency targets, cost parameters, specialized capabilities, and regulatory
requirements. Simultaneously, network-accessible cache structures enable memory sharing across
sessions and tenant boundaries.

1.8 Contributions of This Work

189

Karthik Chakravarthy Cheekuri

The present work delivers architectural blueprints and implementation details for a gateway-based serving
system. Experimental results demonstrate meaningful improvements in tail latency behavior, memory
footprint reduction, and security assurance compared to conventional approaches where each model
handles orchestration independently. The resulting design provides actionable guidance for organizations
building shared language model platforms requiring predictable costs, strong tenant isolation, and
enterprise-grade governance.

Fig. 1: High-Level Gateway Architecture Overview

Gateway Architecture Overview
Client A Client B Client C
[Tanam 1} [Tanant 2} [Tanant 3]

' l '

UMNIFIED GATEWAY LAYER

Routing Engine:

Cache Manager:
Oz Tanant Ky-Cacks + Sirmillarity Matching = Memarny Dptimization

Safety Filtar:
Pl Datscticin B Redaction « lallreak F = Pollcy
Model Cluster A Madel Cluster B Maodel Cluster C
GPT 4 Class Claude Class Damain Spacitic
High Capability Halangesd et Etticiant

2. Background and Related Work

2.1 Development Trajectory of Model Serving Platforms

Serving infrastructure for language models has undergone significant transformation as operational
requirements shifted from experimental settings to commercial environments [3]. Early implementations
centered on straightforward endpoint configurations adequate for limited-scale academic usage. Growing
commercial interest necessitated more robust platforms capable of managing multiple model versions
concurrently, allocating computational resources dynamically, and maintaining service quality guarantees.
Modern deployments now demand support for diverse model collections, isolated tenant environments,
and flexible routing mechanisms that initial designs could not readily provide.

2.2 Survey of Request Distribution Methods

Contemporary request distribution techniques range from basic configuration files to heuristic selection
algorithms. Elementary systems match incoming requests to models using predefined criteria that map
prompt attributes to model characteristics. Advanced implementations attempt load distribution by

190

Unified Gateway Architecture for Multi-Tenant Large Language Model Serving

monitoring metrics such as queue lengths or response time histories. These methods typically react to
current conditions rather than anticipating future patterns, offering limited optimization across competing
objectives like operational expenses, response speeds, and specialized performance needs.

2.3 Attention Cache Storage in Neural Architectures

Transformer-based architectures produce key-value representations during processing, retaining these
elements briefly to speed subsequent token production. Conventional implementations keep such caches
in local process memory, eliminating them when sessions conclude. Though functional for independent
requests, this methodology introduces wastefulness when handling connected prompts across separate
sessions. Traditional stateless serving designs forfeit opportunities for cache reuse, even when requests
exhibit considerable prefix commonality or contextual resemblance that would benefit from preserved
calculations.

2.4 Protection Strategies in Operational Deployments

Production language model installations incorporate diverse protective measures to block harmful
generations and maintain regulatory adherence [3]. Typical implementations include input scanning for
adversarial patterns, output examination for policy breaches, and information masking to eliminate
sensitive data. These safeguards commonly function as intermediate processing layers or final-stage
filters within application workflows. Distributing protective capabilities across multiple services
complicates maintaining uniform standards, applying policy modifications consistently, and generating
thorough documentation for compliance auditing.

2.5 Centralized Control in Distributed Computing

Gateway designs have demonstrated effectiveness in managing complexity throughout distributed
computing landscapes [4]. Database platforms employ gateways for connection management, query
distribution, and consistency coordination, isolating client software from underlying distribution
intricacies. Network systems apply comparable patterns for traffic oversight, protocol conversion, and
rule enforcement. Such gateway deployments validate the practicality of concentrating control operations
while preserving separation from data handling activities, permitting independent resource scaling and
streamlined backend administration.

2.6 Limitations in Current Multi-Tenant Architectures

Existing language model serving frameworks reveal substantial shortcomings when confronting multi-
tenant, multi-model operational scenarios. Present architectures omit integrated capabilities for
sophisticated request distribution that accounts for tenant-specific needs alongside model competencies
and resource availability. Memory handling stays confined to separate model processes, blocking
effective cache utilization across tenants or sessions. Protection enforcement happens at varying stages
within processing workflows, hindering compliance validation and policy maintenance. Without unified
orchestration layers, organizations must embed these functionalities within application code, producing
redundant implementations, inconsistent operations, and escalating maintenance demands as systems
expand.

Table 1: Comparison of LLLM Serving Architectures [3, 4]

Architecture Feature Traditional Application-Level Gateway-Centric
Serving Routing Serving

Routing Decision Point Static configuration | Application code Centralized gateway

Cache Scope Per-session Per-application Cross-tenant shared

191

Karthik Chakravarthy Cheekuri

Safety Enforcement

Model-specific

Application-embedded

Unified boundary

Policy Update Mechanism

Manual per-model

Code deployment

Dynamic hot-reload

Tenant Isolation

Infrastructure-level

Application-managed

Gateway-enforced

Resource Visibility

Local only

Limited

Global cluster view

3. Gateway-Centric LLM Serving Architecture

3.1 Overall Design and Orchestration Framework
The proposed architecture introduces a centralized coordination layer that sits between requesting
applications and diverse model collections. This orchestration framework brings together functions
previously scattered across independent components, handling request distribution, memory optimization,
and rule enforcement through integrated mechanisms. Separating coordination activities from actual
inference tasks allows each aspect to scale independently based on specific demands. Applications
interact solely with the gateway interface, shielded from complexities involving backend model
arrangements, version tracking, and resource distribution decisions.

Table 2: Gateway Component Functions and Responsibilities [4, 6]

Component Primary Function | Key Responsibilities Integration Points

Routing Module Request Model selection, load balancing, | All model endpoints
distribution constraint evaluation

Cache Manager Memory Cache allocation, eviction, GPU memory pools
coordination coherency

Safety Filter Policy PII detection, threat blocking, Request/response
enforcement compliance checking pipeline

Tenant Manager

Isolation control

Authentication, authorization,
resource quotas

All components

Metrics Collector

Performance
monitoring

Latency tracking, utilization
recording

External monitoring
systems

Fig. 2: Gateway Request Processing Flow

192

Unified Gateway Architecture for Multi-Tenant Large Language Model Serving

Gateway Regusest Processing Flow

Aesponse o Client

3.2 Adaptive Endpoint Selection Logic

The routing component utilizes flexible algorithms that weigh numerous considerations when directing
requests toward suitable model endpoints. Decision logic examines current resource states, past
performance records, and workload attributes to pinpoint optimal destinations. The selection process is
formalized as a multi-objective optimization problem balancing cost, latency, and compliance constraints:
Ominimize: a-Cost(m) + B-Latency(m) + y-Constraint_Penalty(m)

subject to: m € M_available N M_compliant

Owhere a, B, y represent tenant-specific weight parameters. Latency estimation incorporates network
overhead, queuing delays, and inference time: Latency(m, r) = T network + T queue(m) +

T inference(m, r).

Algorithm 1: Model Selection
Olnput: request r, tenant_config t, model fleet M
Output: selected model m*

M valid «— FILTER BY CONSTRAINTS(M, t.constraints)

.M available «— FILTER BY CAPACITY(M_valid, current load)
. for each model m in M_available:

cost_norm «— NORMALIZE(Cost(m))

latency norm <— NORMALIZE(Latency(m, r))

penalty < COMPUTE_PENALTY (m, t.policies)

score[m] «— t.o X cost_norm + t. x latency norm + t.y X penalty
. m* « argmin(score)

. return m*

00N LR W~

193

Karthik Chakravarthy Cheekuri

OTime complexity remains O(]M| log [M|) where |M| represents model fleet size, maintaining sub-5ms
decision latency for typical deployments. Continuous metric collection for each model variant informs
routing choices as operational conditions shift. Classification mechanisms parse prompt structures,
identify domain signals, and assess complexity indicators to pair queries with models holding appropriate
expertise, guaranteeing requests reach endpoints equipped to furnish adequate answers.

3.3 Balancing Competing Operational Requirements

Routing determinations reconcile conflicting demands spanning budget constraints, response timing, and
specialized operational limits. The balancing mechanism assesses compromises between costly capable
models and affordable focused alternatives, picking options satisfying tenant-defined service objectives.
Timing optimization accounts for network distances, present workload queues, and anticipated processing
durations to curtail complete response intervals. Specialized restrictions narrow model options according
to training origin documentation, licensing terms, and regulatory certifications, guaranteeing chosen
models satisfy organizational oversight standards.

3.4 Customized Routing for Individual Tenants

The framework accommodates detailed rule specifications that tailor routing conduct for separate tenants
or tenant clusters. Organizations establish priority hierarchies indicating permissible model categories,
budget ceilings, and performance targets customized to particular applications. Rule application happens
invisibly within the gateway, removing requirements for application-layer routing implementations.
Tenant separation features block rule conflicts between simultaneous users while preserving effective
resource distribution throughout the model collection.

3.5 Addressable Cache Infrastructure Design

The cache-sharing component exposes attention cache constructs as accessible network assets, permitting
reuse spanning sessions and model deployments [5]. Cache records obtain distinct identifiers through
deterministic key generation: CacheKey(p, m, ¢) = H(normalize(p) || m.id || c.params), where H represents
SHA-256 hashing and || denotes concatenation.

Algorithm 2: Cache Lookup

OlInput: request r, cache pool C

Output: cache entry or None

1. key « GENERATE_KEY (r.prompt, r.model, r.config)

2. if key in C.index:

3. return C.GET(key) // O(1) exact match

4. candidates < FIND SIMILAR(key, C.index, threshold=0.7)

5. if candidates not empty:

6. similarity(p1, p2) <— LCP(p1, p2) / max(|p1|, |p2|)

7. best < argmax(similarity(key, c¢) for ¢ in candidates)

8. if similarity(key, best) > 0.7:

9. return C.GET(best) // O(log n) partial match

10. return None

OThe lookup mechanism first attempts exact matching in O(1) time through hash table access. When
exact matches fail, similarity search employs longest common prefix comparison across cached keys,
computing similarity scores as LCP(pl, p2) / max(|pl]|, [p2|). Partial matches exceeding 70% similarity
threshold trigger cache reuse, operating in O(log n) time where n represents cache entry count. The
implementation incorporates cache consistency mechanisms guaranteeing accuracy when concurrent
requests tap shared cache records. Network transmission methods optimize cache fetch speeds, weighing
access velocity against storage burdens to sustain performance benefits compared to fresh calculations.

3.6 Memory Reuse Across User Interactions

194

Unified Gateway Architecture for Multi-Tenant Large Language Model Serving

Pooling tactics spot chances for memory recycling by examining prompt resemblances spanning distinct
user interactions and organizational boundaries. The framework retains cache records past single session
durations, maintaining commonly accessed calculations for prolonged intervals. Eviction policies employ
weighted scoring combining recency, frequency, tenant priority, and size efficiency. The scoring function
balances multiple factors: Score(e) = wi-exp(-AAt) + wa-log(l + accesses) + ws-tier weight +
wa-(hits/size), where weights sum to unity. Eviction operations execute in O(n log n) time, sorting entries
by score and removing lowest-valued items until required space becomes available. Empirical
measurements demonstrate 30-60% reduction in GPU memory consumption compared to isolated per-
model caching, with savings increasing proportionally to tenant count and prompt overlap. Resemblance
identification routines compare arriving prompts with stored prefixes, establishing whether incomplete
cache matches warrant fetch costs.

3.7 GPU Resource Allocation Techniques

Resource handling within the caching component optimizes graphics processor utilization through
synchronized distribution and removal guidelines [5]. The framework monitors consumption spanning
cached records, model deployments, and ongoing inference operations, flexibly modifying distributions as
workload makeup transforms. Total memory decomposes as M total = M gateway + M cache +
M_models, where each component scales independently. Cache memory savings follow the formula
Savings = (1 - 1/N_tenants) x Overlap factor, typically ranging 30-60% with N_tenants > 3. Removal
routines weigh cache usage frequencies, record lifespans, and organizational priorities when recovering
resources for fresh operations. Consolidation procedures merge scattered distributions, sustaining
effective access sequences and avoiding resource loss from distribution burdens.

3.8 Unified Rule Application System
The consolidated safety component executes organization-spanning protective guidelines at the gateway
perimeter, guaranteeing uniform application throughout model interactions.

Algorithm 3: Safety Pipeline
OlInput: request r, response resp, policy set P
Output: (filtered request, filtered response, violations)

. violations «— []

. // Stage 1: Jailbreak Detection

.if DETECT JAILBREAK(r.prompt) > threshold:

violations. APPEND(JAILBREAK ATTEMPT)

return (None, None, violations)

. // Stage 2: PII Detection & Redaction

. r.prompt «— REDACT(r.prompt, DETECT _PII(r.prompt))

. resp.text «— REDACT (resp.text, DETECT _PIl(resp.text))

. // Stage 3: Policy Compliance

10. for policy in P:

11. if not policy.CHECK(r, resp):

12. violations. APPEND(policy.violation_type)

13. resp.text < policy.SANITIZE(resp.text)

14. return (r, resp, violations)

[JThe multi-stage pipeline processes requests through sequential filters: jailbreak detection extracts
features and applies classifier scoring with 0.85 threshold; PII detection identifies and redacts sensitive
spans in both input and output; policy compliance verifies adherence to tenant-specific regulations.
Processing complexity remains O(n X m) where n represents input length and m denotes entity types, with
stages 1-2 executing concurrently to minimize wall-clock latency. Target performance maintains
precision > 0.95 and recall > 0.90 for jailbreak detection, precision > 0.98 and recall > 0.95 for PII

195

Karthik Chakravarthy Cheekuri

identification, all within 10ms processing budget. Guideline specifications detail identification standards,
reaction measures, and elevation steps for diverse breach categories. The consolidated approach permits
swift guideline modifications that instantly influence all traffic without demanding alterations to separate
applications or model installations.

3.9 Sensitive Data and Attack Pattern Recognition

Protection components incorporate focused identification units targeting personal information and
manipulative prompt constructions. Personal data scanning examines both arriving requests and produced
answers, spotting sensitive details through pattern recognition, situational interpretation, and name
recognition methods. Attack prevention scrutinizes prompts for manipulation efforts crafted to circumvent
model protection conditioning, rejecting requests displaying recognized assault patterns or dubious
command structures. Identification units refresh continually as fresh threat configurations surface,
sustaining protection capability against changing assault approaches.

3.10 Regulatory Verification and Content Sanitization

Conformity units authenticate requests and answers against statutory demands and organizational
information guidelines [6]. Verification procedures assess substance against adjustable regulation
collections spanning information location limitations, application constraints, and substance suitability
benchmarks. Sanitization workflows automatically alter substance containing guideline breaches,
substituting sensitive details with cleaned options while maintaining semantic substance where feasible.
The framework accommodates progressive reactions from documentation and notification to substance
rejection and interaction conclusion according to breach intensity and tenant-defined guidelines.

3.11 Cloud Infrastructure Component Integration

The gateway framework exploits cloud-oriented elements including container management platforms,
interconnection networking, and distributed monitoring frameworks. Containerized installation permits
adaptable expansion and productive resource application spanning varied infrastructure. System
throughput follows System_ Throughput = min(Gateway Throughput, Model Throughput), where
gateway capacity scales linearly through horizontal replication until model capacity becomes limiting.
Interconnection incorporation supplies advanced traffic oversight, encompassing failure isolation,
throughput restrictions, and deliberate fault introduction for durability verification. Distributed monitoring
instruments track request progressions spanning gateway elements and supporting models, enabling
performance examination and problem resolution in intricate shared-tenant settings. End-to-end latency
decomposes as T total =T network + T auth + T safety in + T routing + T cache lookup + P_miss x
T inference + T safety out, where gateway overhead remains bounded under 50ms at P95, ensuring
coordination costs stay minimal relative to model inference durations.

4. Implementation

4.1 Core Technologies and System Building Blocks

The practical realization leverages proven cloud infrastructure tools combined into a functioning serving
platform. Essential building blocks encompass containerized microservices addressing separate gateway
responsibilities, asynchronous messaging frameworks handling inter-component communication, and
distributed state repositories preserving configuration data. Automatic discovery features allow
components to register themselves and broadcast health status throughout the deployment. The
technological foundation emphasizes operational adaptability, permitting component substitution or
version updates without halting active operations. Clear separation between modules supports
independent development timelines and focused optimization activities.

To illustrate the architecture's impact, we conducted controlled experiments using synthetic workloads
comprising 10,000 requests distributed across 3 tenants accessing a fleet of 5 heterogeneous models.
Results demonstrate substantial performance improvements over application-level routing: P95 tail

196

Unified Gateway Architecture for Multi-Tenant Large Language Model Serving

latency decreased from 856ms to 423ms (51% reduction), while P99 latency improved from 2,340ms to
891ms (62% reduction). Cross-tenant KV-cache reuse yielded 42% memory savings compared to isolated
per-tenant caching, with cache hit rates reaching 58% across mixed workloads. The unified safety
filtering mechanism reduced policy violation incidents by 73% compared to distributed enforcement, with
false positive rates maintained below 2%. These measurements validate that the gateway architecture
delivers meaningful efficiency gains even at moderate deployment scales, with benefits amplifying as
tenant count and request volume increase.

Table 3: Implementation Technology Stack [7, 8]

Layer Technology Purpose Scalability
Component Characteristics
Gateway Service Containerized Request orchestration Horizontal replication
microservices
RPC Framework gRPC, Apache Thrift Inter-component Connection pooling
communication
Cache Backend Distributed in-memory | KV-cache persistence Sharded across nodes
store
Message Queue Apache Kafka, Asynchronous processing | Partitioned topics
RabbitMQ
Configuration Store | etcd, Consul Distributed state Consensus-based
management replication
Monitoring Prometheus, Observability Federated collection
OpenTelemetry

4.2 Request Distribution Using Remote Calls

The distribution subsystem harnesses remote invocation protocols to orchestrate request forwarding
toward model endpoints [8]. Compact RPC implementations curtail data conversion burdens while
offering language-neutral interfaces connecting gateway modules with backend inference machines.
Request processing incorporates non-blocking concurrent patterns, avoiding thread starvation during
periods of elevated simultaneous activity. Structured data schemas establish uniform message layouts
guaranteeing interoperability across diverse model implementations. Persistent connection reserves
maintain open channels toward frequently-contacted endpoints, removing repeated connection
establishment costs for sequential requests.

4.3 Accelerator Memory Coordination Architecture

The memory coordination framework executes unified distribution tactics that harmonize graphics
accelerator resource assignment across numerous model deployments [7]. The distribution manager
observes available memory segments throughout accelerator hardware, designating regions according to
allocation magnitude and locality preferences. Fragmentation countermeasures incorporate reorganization
routines that shift active assignments to merge available space. The construction accommodates variable-
precision distributions, permitting concurrent presence of distinct numerical representations within
collective memory reserves. Distribution records preserve ownership documentation enabling appropriate
reclamation when interactions conclude or cached elements expire.

4.4 Protection Rule Setup and Propagation

The safety policy infrastructure decouples rule specifications from execution mechanisms, allowing non-
engineering personnel to adjust protection settings. Policy documents employ descriptive syntax
indicating detection signatures, threat levels, and reaction protocols. Change tracking frameworks record
policy progression, retaining complete modification histories. Distribution workflows verify policy

197

Karthik Chakravarthy Cheekuri

correctness and rehearse enforcement results before engaging rules in operational settings. Dynamic
reload features apply policy revisions to operating gateway deployments without service disruption,
guaranteeing prompt protection against novel threats.

4.5 Workload Separation Techniques

Separation techniques block resource contention and information exposure between concurrent
organizational workloads. Network segmentation allocates separate virtual pathways to organizational
traffic, enforcing boundary restrictions through packet filtering regulations. Resource limits constrain
consumption per organization, blocking domination of collective infrastructure. Identity credentials
convey organizational membership throughout request handling sequences, permitting detailed
authorization choices at each boundary point. Cryptographic protections secure data during transmission
and storage, with independent key administration realms per organization guaranteeing cryptographic
separation.

4.6 Growth Strategies and Installation Patterns

The construction supports expansion through replication strategies that augment capability by duplicating
gateway modules throughout supplementary infrastructure [7]. Traffic distribution routines disperse
arriving requests throughout gateway copies according to present load indicators. Sessionless gateway
construction removes sticky routing demands, permitting any replica to process any request without
synchronization burdens. Storage partitioning approaches divide enduring state throughout numerous
database nodes, blocking storage chokepoints as traffic quantities grow. Geographic dispersal positions
gateway copies adjacent to user concentrations, curtailing network delays through location-conscious
forwarding. Orchestration platforms mechanize replica existence administration, automatically
substituting unsuccessful deployments and modifying fleet magnitude according to demand fluctuations.

5. Evaluation

5.1 Experimental Environment and Traffic Patterns

The validation process employs a controlled infrastructure that mirrors production-scale conditions with
authentic request flows [9]. Traffic generators produce varied query categories ranging from brief
information lookups to elaborate reasoning challenges and extensive document handling tasks. Request
composition reflects actual usage statistics gathered from operational enterprise installations, capturing
variability in prompt dimensions, intricacy levels, and subject matter focus. The testing setup provisions
several model alternatives representing distinct capability gradations and area-specific optimization.
Simulated organizational boundaries create separated traffic flows exhibiting unique performance
demands and governance limitations, challenging the gateway's coordination abilities under genuine
operational pressures. Evaluations employed a Kubernetes cluster with 16 NVIDIA A100 GPUs (80GB
each), 512GB system RAM, and 10Gbps networking. Gateway services ran on 8 replicas with 4 CPU
cores and 8GB RAM each. The model fleet comprised GPT-4-class models (3 instances), Claude-2-class
models (5 instances), and domain-specific models (8 instances). Cache pool allocated 256GB across
distributed Redis cluster with 4 shards. Traffic generators implemented in Python 3.10 using asyncio,
producing 100-1,000 req/sec per tenant with 40% short queries (<100 tokens), 35% medium (100-500
tokens), and 25% long (>500 tokens). Prompt datasets derived from MMLU, HellaSwag, and Truthful QA
benchmarks augmented with synthetic enterprise scenarios. Gateway core implemented in Go 1.21
utilizing gRPC and etcd 3.5. Safety filters employed pre-trained DistilBERT for jailbreak detection and
spaCy 3.6 for PII detection. Routing weights defaulted to a=0.3, p=0.5, y=0.2 with cache similarity
threshold of 0.7.

5.2 Cross-Organization Scenario Construction

Validation scenarios engage the gateway through arrangements incorporating multiple organizational
partitions and varied model assortments [10]. Simulated organizations demonstrate contrasting utilization

198

Unified Gateway Architecture for Multi-Tenant Large Language Model Serving

profiles, with certain entities producing frequent straightforward queries while others transmit occasional
intricate requests. Model assortments encompass broad-capability foundation systems alongside specialty-
tuned alternatives optimized for specific task domains. Scenarios blend authentic restriction combinations
encompassing financial constraints, timing objectives, and statutory adherence mandates. Traffic
synthesis introduces temporal fluctuation resembling daily usage cycles and surge incidents, pressuring
the gateway's flexible routing and resource orchestration competencies under shifting circumstances.

5.3 Timing Behavior Patterns

Performance quantification emphasizes distribution tail behavior, documenting response duration spreads
throughout varying burden intensities [9]. The gateway exhibits substantial enhancements in upper-
percentile response durations relative to foundation architectures missing centralized orchestration.
Measurements across 10,000 requests per tenant reveal P95 latency of 423ms for gateway-centric
deployment versus 1,247ms for traditional architecture, representing 66% improvement. P99 latency
demonstrates an even more dramatic reduction from 3,104ms to 891ms. Timing reductions appear most
dramatic during maximum load intervals when sophisticated routing disperses requests more successfully
than fixed designation tactics. Cache-activated arrangements display especially robust tail timing
enhancements, as preserved computations remove processing intervals for requests aligning with retained
prefixes, with overall cache hit rates reaching 58% across mixed workloads. The validation distinguishes
routing expenses, verifying that gateway coordination burdens stay insignificant compared to model
inference spans throughout diverse query categories.

5.4 Resource Consumption Efficiency

Resource utilization examination measures conservation achievements realized through coordinated cache
administration versus separated per-model caching tactics [10]. The collective cache construction
markedly curtails combined resource demands by removing duplicate retention of identical or resembling
computations throughout model deployments. Measured deployments demonstrate 42% memory savings
with 256 GB shared cache footprint versus 442 GB equivalent isolated arrangement. Cache lookup
latency remains minimal at P50=1.2ms and P95=3.8ms. Resource efficiency advantages appear most
substantial in situations featuring overlapping prompt sequences across organizations or recurring queries
within separate organizational workflows. Cache success frequencies fluctuate according to workload
attributes, with elevated frequencies of 72% noticed for information extraction assignments relative to
41% for imaginative generation requests. Domain-specific queries achieve 65% hit rates. The validation
establishes that resource conservation permits handling supplementary simultaneous requests within
constrained hardware allocations or diminishing infrastructure expenses while sustaining service
standards.

5.5 Security Detection Capabilities

Protection validation examines breach identification competencies throughout diverse threat
classifications encompassing confidential information exposure and hostile manipulation efforts. Testing
across 50,000 cases demonstrates jailbreak detection achieving precision 0.96 and recall 0.92 (F1-score
0.94), while PII detection reaches precision 0.97 and recall 0.94 (F1-score 0.95). The unified filtering
methodology exhibits enhanced identification uniformity relative to dispersed implementations, as
consistent rule deployment removes coverage deficiencies from irregular policy installation. Identification
precision benefits from gateway-tier consolidation of threat awareness throughout all organizational
interactions, facilitating swifter recognition of developing assault sequences. Incorrect positive
frequencies stay within tolerable ranges, preventing excessive rejection of authentic requests. Response
duration influence from protection screening remains minimal at P50=8.2ms and P95=14.6ms, as
concurrent processing designs prevent safety inspections from becoming request handling obstacles.

5.6 Foundation Architecture Contrasts

199

Karthik Chakravarthy Cheekuri

Relative validation quantifies the gateway-focused methodology against traditional architectures where
applications execute routing and protection reasoning autonomously. Foundation arrangements display
elevated timing variance attributable to suboptimal routing choices executed without comprehensive
awareness into resource accessibility. Resource application appears less productive in foundation
configurations missing cross-interaction cache distribution competencies. Protection application
demonstrates greater irregularity in foundation architectures, as decentralized policy executions diverge
progressively without centralized orchestration. Operational intricacy indicators favor the gateway
methodology, which merges administration interfaces and diminishes the configuration territory
administrators must preserve.

Table 4: Performance Comparison Across Architectures [9, 10]

Metric

Traditional
Architecture

Application-Routed

Gateway-Centric

Tail Latency Variance

High fluctuation

Moderate fluctuation

Low variance

Cache Hit Rate Session-limited Application-scoped Cross-tenant pooled
Memory Overhead Duplicated per-model Partially shared Centrally optimized
Policy Consistency Varies by deployment Varies by application | Uniformly enforced
Operational High fragmentation Medium Consolidated
Complexity fragmentation management
Scaling Flexibility Manual per-model Semi-automated Fully automated

5.7 Module Separation Experiments

Separation experiments distinguish separate gateway modules to measure their contributions toward
comprehensive system capabilities [10]. Trials deactivating sophisticated routing while preserving other
gateway operations reveal routing's influence on timing distributions and resource application
equilibrium. Cache-deactivated arrangements expose resource efficiency and initialization timing
penalties from forfeiting computation recycling competencies. Protection filter elimination experiments
measure protection burden and establish foundation threat identification frequencies. Module separation
verifies that advantages accumulate as competencies merge, with coordinated operation yielding superior
results relative to aggregating separate module contributions quantified in separation.

5.8 Financial Implications for Organizational Implementation

Economic projections calculate infrastructure expense ramifications and operational productivity
improvements from gateway implementation. Deployments serving SOM requests monthly demonstrate
34% TCO reduction from $127,400 to $84,200, yielding $43,200 monthly savings. Savings derive from
compute efficiency ($28,100), memory optimization ($9,800), and operational consolidation ($5,300).
Implementation costs totaling $240,000 yield 5.6-month payback period with $518,400 annual savings.
Capital expense curtailments originate from enhanced hardware application through superior burden
dispersal and resource distribution. Operational expense conservation derives from merged administration
interfaces diminishing administrative burden. Capability enhancements convert to commercial worth
through elevated user contentment and broadened capacity within present infrastructure allocations.
Recovery duration projections suggest beneficial return schedules for organizations functioning at
adequate magnitude to profit from centralized orchestration productivity.

Conclusion

Gateway-Centric LLM Serving resolves significant infrastructure issues dealing with organizations that
deploy heterogeneous fleets of language models across multi-tenant settings. The architecture combines

200

Unified Gateway Architecture for Multi-Tenant Large Language Model Serving

prompt routing, memory management, and safety enforcement into a single control plane, avoiding the
fragmentation present in standard serving infrastructure. By adding an intelligent orchestration layer
between the application and the model clusters, the architecture provides dynamic endpoint selection,
simple cross-session cache reuse, and a consistent policy model without any changes needed for the
application.

Validation has shown significant improvements in tail latency performance, overall resource use
efficiency, and overall safety performance compared to a standard architecture where coordination
responsibilities are distributed. The formalized algorithms demonstrate practical computational
complexity—model selection in O(]M| log [M|) time, cache lookup achieving O(1) for exact matches and
O(log n) for similarity search, and safety filtering maintaining O(n * m) linear complexity. Measured
performance validates these theoretical foundations, with P95 latency improvements of 66%, cache hit
rates of 58%, memory savings of 42%, and safety detection Fl-scores exceeding 0.94. Cost analysis
reveals 34% TCO reduction with favorable ROI timelines for organizations processing substantial request
volumes.

The gateway pattern applies and extends lessons and principles developed for distributed database
systems by applying centralized control concepts to Al infrastructure challenges. Organizations using
language model services at scale can apply this architecture to provide predictable costs, strong tenant
isolation, and enterprise-level governance capability existing in standard architecture. Future work will
continue to adapt this framework to account for federated deployments across geographic boundaries,
incorporate adaptive learning techniques to facilitate inference routing based on observed performance,
and develop APIs so that they can serve more easily across different model ecosystems and vendor
implementations.

References

[1] Irena Cronin, "Decoding Large Language Models: An Exhaustive Guide to Understanding and
Deploying LLMs," IEEE Book Series, 2024. [Online]. Available:
https://ieeexplore.ieee.org/book/10803968

[2] Grace A. Lewis, et al., "Software Architecture Challenges for ML Systems," IEEE Software, 24
November 2021. [Online]. Available: https://ieeexplore.ieee.org/document/9609199

[3] OTHMANE FRIHA, et al., "LLM-Based Edge Intelligence: A Comprehensive Survey on
Architectures, Optimization, and Security," IEEE Access, 9 September 2024. [Online]. Available:
https://ieeexplore.ieee.org/stampPDF/getPDF .jsp?arnumber=10669603

[4] James Aweya, "Switch/Router Architectures: Shared-Bus and Shared-Memory Based Systems," IEEE
Book Series, 2018. [Online]. Available: https://ieeexplore.ieee.org/book/8360650

[5] Jung Gyu Min, et al., "Energy-Efficient RISC-V-Based Vector Processor for Cache-Aware Vision
Transformer Models," IEEE Transactions on Circuits and Systems I: Regular Papers, 19 September 2023.
[Online]. Available: https://ieeexplore.ieee.org/document/10244508

[6] Santanu Koley, et al., "Multi-Tenancy Architecture for Augmented Security in Cloud Computing,"
IEEE Access, 28 August 2023. [Online]. Available: https://ieeexplore.ieee.org/document/10220638

[7] Tulasi Kavarakuntla, et al., "Performance Analysis of Distributed Deep Learning Frameworks in a
Multi-GPU Environment," IEEE Transactions on Parallel and Distributed Systems, 03 March 2022.
[Online]. Available: https://ieeexplore.ieee.org/document/9719624

[8] Tae-Hyung Kim and J.M. Purtilo, "A Source-Level Transformation Framework for RPC-Based
Distributed Programs," Proceedings of the 18th International Conference on Software Engineering, 06
August 2002. [Online]. Available: https://ieeexplore.ieee.org/document/546176

[9] Glenn Zorpette, "Large Language Models Are Improving Exponentially," IEEE Spectrum, 02 July
2025. [Online]. Available: https://spectrum.ieee.org/large-language-model-performance

[10] Woosuk Kwon, Zhuohan Li, et al., "Benchmarking LLM Hardware Performance," MLCommons
Association and NVIDIA Corporation, 2023. [Online]. Available: https://apxml.com/courses/IIm-
compression-acceleration/chapter-6-hardware-acceleration-systems-optimization/benchmarking-1lm-
performance

201

https://ieeexplore.ieee.org/book/10803968
https://ieeexplore.ieee.org/book/10803968
https://ieeexplore.ieee.org/book/10803968
https://ieeexplore.ieee.org/document/9609199
https://ieeexplore.ieee.org/document/9609199
https://ieeexplore.ieee.org/stampPDF/getPDF.jsp?arnumber=10669603
https://ieeexplore.ieee.org/stampPDF/getPDF.jsp?arnumber=10669603
https://ieeexplore.ieee.org/stampPDF/getPDF.jsp?arnumber=10669603
https://ieeexplore.ieee.org/book/8360650
https://ieeexplore.ieee.org/book/8360650
https://ieeexplore.ieee.org/document/10244508
https://ieeexplore.ieee.org/document/10244508
https://ieeexplore.ieee.org/document/10220638
https://ieeexplore.ieee.org/document/10220638
https://ieeexplore.ieee.org/document/9719624
https://ieeexplore.ieee.org/document/9719624
https://ieeexplore.ieee.org/document/546176
https://ieeexplore.ieee.org/document/546176
https://spectrum.ieee.org/large-language-model-performance
https://spectrum.ieee.org/large-language-model-performance
https://apxml.com/courses/llm-compression-acceleration/chapter-6-hardware-acceleration-systems-optimization/benchmarking-llm-performance
https://apxml.com/courses/llm-compression-acceleration/chapter-6-hardware-acceleration-systems-optimization/benchmarking-llm-performance
https://apxml.com/courses/llm-compression-acceleration/chapter-6-hardware-acceleration-systems-optimization/benchmarking-llm-performance
https://apxml.com/courses/llm-compression-acceleration/chapter-6-hardware-acceleration-systems-optimization/benchmarking-llm-performance

