ISSN: 2576-0017 2023, VOL 6, NO S12

Physiotherapy for Postural Disorders: A Comprehensive Review of Treatment Modalities

Afrah Nahi Alrowili¹, Khalid Hail Hindi Alanazi², Rawan Jomah Aldowihi³, Salam Mohammed Alsharari⁴, Halah Saad Mohammed Alrajraji⁵, Samiyah Hail Ghazi Alkuwaykibi⁵, Maha Afet Alruwily³, Dalal Nahi Alrowili¹, Abdulaziz Khlowy Alrowily⁶, Mohammed Muhalhil Shajiri⁷

- 1. Specialist-physiotherapy, Healthcare center Qara, Skaka, Saudi Arabia
- Physical Therapist, specialist-physiotherapy, Ministery of health branch, Arar, Saudi Arabia
- 3. Specialist-physiotherapy, King abdulaziz specialist hospital, Skaka, Saudi Arabia
- 4. Specialist-physiotherapy, Al-Mukhatat Healthcare Center, Sakakah, Saudi Arabia
- 5. Specialist-physiotherapy, Sowir General hospital, Skaka, Saudi Arabia
- 6. Senior specialist Physiotherapy, Sowir General Hospital, Skaka, Saudi Arabia
- 7. Specialist-physiotherapy, Healthcare center suwair, Saudi Arabia

ABSTRACT

Postural disorders are increasingly prevalent in today's society, often resulting from sedentary lifestyles, improper ergonomics, or muscle imbalances. Physiotherapy plays a crucial role in diagnosing and managing these disorders by employing a range of treatment modalities aimed at restoring optimal posture and alleviating associated pain and dysfunction. Common techniques include manual therapy, exercise and neuromuscular re-education, which help strengthen the prescription, musculature supporting the spine and improve flexibility. Furthermore, physiotherapists utilize modalities like electrical stimulation and ultrasound to enhance tissue healing and reduce inflammation, promoting better posture and overall musculoskeletal health. In addition to physical interventions, physiotherapy for postural disorders emphasizes education and self-management strategies. Patients are taught proper ergonomic practices in their daily activities, including workspace setup, lifting techniques, and posture awareness during sedentary tasks. Incorporating mindfulness and body awareness techniques, such as Alexander Technique or Feldenkrais Method, can also be beneficial. A multidisciplinary approach, often involving collaboration with occupational therapists, chiropractors, and nutritionists, enhances the effectiveness of treatment. As research evolves, physiotherapists continuously refine their strategies, integrating evidence-based practices to provide comprehensive care tailored to the individual needs of patients suffering from postural disorders.

KEYWORDS: Postural disorders, Physiotherapy, Treatment modalities, Manual therapy, Exercise prescription, Neuromuscular re-education, Electrical stimulation, Ultrasound, Ergonomics, Pain management, Body awareness, Multidisciplinary approach

1. Introduction

Postural disorders have garnered increasing attention within the field of health care, particularly in relation to the rise in sedentary lifestyles associated with modern, technology-driven societies. Poor posture can lead to various musculoskeletal problems, including chronic pain, diminished functional capacity, and overall reduced quality of life. As the prevalence of postural disorders continues to rise, there is an urgent need for effective, evidence-based interventions. Physiotherapy has emerged as a significant treatment modality for addressing postural disorders, offering a wide array of therapeutic strategies aimed at correcting postural malalignments and alleviating associated pain [1].

Physiotherapy encompasses a variety of approaches, ranging from manual therapy to exercise prescription, electrotherapy, and patient education. These strategies are often employed in conjunction with one another, enabling physiotherapists to create individualized treatment plans that cater to the unique needs of each patient. As healthcare professionals trained in human anatomy, physiology, and biomechanics, physiotherapists are well equipped to assess, diagnose, and manage postural disorders through non-invasive means. The significance of physiotherapy in this context lies not only in its ability to treat existing postural disorders but also in its potential to prevent the onset of such conditions through targeted interventions and education [2].

The etiological factors contributing to postural disorders are multifaceted, ranging from anatomical anomalies and previous injuries to psychological attributes such as stress and anxiety. Sedentary behavior, amplified by the ubiquity of electronic devices and remote working conditions, has created an environment conducive to poor postural habits. Common postural disorders include forward head posture, rounded shoulders, and excessive lumbar lordosis, which can lead to a cascade of musculoskeletal imbalances and chronic pain syndromes. The ramifications of these disorders extend beyond physical discomfort; they may also adversely affect psychological well-being, social engagement, and productivity [3].

In recent years, there has been a growing body of research examining the efficacy of various physiotherapeutic modalities for managing postural disorders. Notable approaches include manual therapy, which involves the application of skilled techniques to joints and soft tissues aimed at reducing pain and improving mobility. Exercise therapy, on the other hand, focuses on strengthening and stabilizing weakened musculature, thereby enhancing the body's postural control mechanisms. Additionally, modalities such as biofeedback, proprioceptive training, and ergonomic interventions have gained recognition for their role in promoting better posture and movement patterns [4].

Despite the burgeoning evidence supporting the efficacy of physiotherapy in addressing postural disorders, there remains a need for comprehensive reviews that synthesize findings from diverse studies to guide clinical practice. Current literature often emphasizes isolated treatment modalities rather than exploring the synergistic effects of combined approaches. Furthermore, individual variability in response to treatment necessitates ongoing research to determine the most effective interventions for different populations, including children, adolescents, and older adults, who may

present unique challenges in managing postural disorders [5].

This review aims to fill a significant gap by offering a comprehensive examination of the various treatment modalities employed in physiotherapy for postural disorders. By synthesizing existing research, we will elucidate the mechanisms underlying these interventions, evaluate their efficacy, and provide guidance on best practices for physiotherapists. Furthermore, we will explore implications for future research directions, identifying potential areas for innovation and inquiry. Ultimately, this review seeks to advance the understanding of physiotherapy's role in treating postural disorders, offering valuable insights for clinicians, researchers, and individuals affected by these prevalent conditions [5].

Pathophysiology of Postural Disorders:

Postural disorders represent a significant subset of musculoskeletal conditions that arise from the interplay of muscular, skeletal, and neurological factors. These disorders can manifest in various forms, ranging from hyperkyphosis and hyperlordosis to scoliosis and pelvic tilt abnormalities. Understanding the pathophysiology of postural disorders is crucial to developing effective treatment and preventive measures [6].

Posture refers to the alignment and positioning of the body in space, which is vital for optimal function and overall health. An erect posture is typically associated with physical and psychological well-being, aiding in efficient movement and respiration while minimizing the risk of injury. Proper posture relies on the equilibrium of muscle strength, flexibility, and coordination among various anatomical structures, including bones, joints, ligaments, and muscles [7].

Classification of Postural Disorders

Postural disorders can be broadly classified into two categories: static and dynamic. Static postural disorders refer to the alignment of the body in a stationary position, while dynamic disorders pertain to alignment during movement. Common types of static posture disorders include:

- 1. Hyperkyphosis: Also known as "hunchback," this condition is characterized by excessive curvature of the thoracic spine, often resulting in a rounded upper back [8].
- 2. Hyperlordosis: Defined as an exaggerated inward curvature of the lumbar spine, hyperlordosis can lead to anterior pelvic tilt, resulting in discomfort and altered biomechanics.
- 3. Scoliosis: A three-dimensional deformity of the spine that results in lateral curvature, which can affect thoracic and lumbar facets, leading to asymmetrical body alignment.
- 4. Flat Back Syndrome: A decrease in the normal lordotic curve of the lumbar spine, resulting in a flat appearance which can lead to compensatory changes in other spinal segments.
- 5. Anterior/Pelvic Tilt: An alteration in the angle of the pelvis that often leads

Afrah Nahi Alrowili, Khalid Hail Hindi Alanazi, Rawan Jomah Aldowihi, Salam Mohammed Alsharari, Halah Saad Mohammed Alrajraji, Samiyah Hail Ghazi Alkuwaykibi, Maha Afet Alruwily, Dalal Nahi Alrowili, Abdulaziz Khlowy Alrowily, Mohammed Muhalhil Shajiri to associated changes in lumbar posture, muscle imbalances, and potential pain syndromes [8].

Dynamic postural disorders may include various movement-related issues such as running gait abnormalities and poor athletic postures [9].

Etiology of Postural Disorders

Several interrelated factors contribute to the development of postural disorders:

- 1. Muscle Imbalance: Muscle imbalances occur when opposing muscle groups exhibit unequal strength or flexibility. For instance, tight hip flexors and weak glutes may lead to anterior pelvic tilt. Such imbalances can result from a sedentary lifestyle, repetitive strain, or inadequate conditioning [9].
- 2. Skeletal Abnormalities: Congenital or developmental conditions can predispose individuals to postural disorders. For example, scoliosis can result from abnormal vertebral development in utero, while conditions like Scheuermann's disease can contribute to kyphotic postures [10].
- 3. Environmental Factors: Work habits, such as prolonged sitting, improper ergonomics, or carrying heavy loads can lead to postural deformities. The rise of technology and sedentary entertainment often exacerbates these issues [11].
- 4. Neurological Deficits: Neurological conditions such as cerebral palsy, stroke, or multiple sclerosis can lead to muscular weakness, spasticity, or poor coordination, resulting in postural changes [11].
- 5. Age-Related Changes: As individuals age, they may experience degenerative changes in their spine and associated structures, leading to altered posture and increased risk of injury [12].

Pathophysiological Mechanisms

The pathophysiology of postural disorders is complex, involving a cascade of neuromuscular and biomechanical responses. At the neuromuscular level, proprioception, the body's ability to perceive its position in space, becomes compromised in postural disorders. This impairment can lead to dysfunctional movement patterns and compensatory strategies aimed at maintaining balance and stability [13].

Musculature typically plays a pivotal role in supporting the spine and pelvis. An imbalance in muscle tone and length can result in altered vertebral alignment and joint function. For instance, overactive muscles, such as the hip flexors, can lead to lumbar hyperlordosis and associated back pain. Conversely, underactive muscles, such as the gluteus maximus, fail to provide adequate stability during movement, further exacerbating postural issues [14].

Additionally, the continuous stress placed on the musculoskeletal system can lead to structural changes over time. For example, a sustained poor posture may result in adaptive shortening of certain muscle groups and lengthening of antagonistic ones, creating a vicious cycle of dysfunction. Over time, chronic pain conditions, reduced mobility, and degeneration of spinal structures, such as discs and facets, may arise

[15].

Recognizing the pathophysiology of postural disorders is crucial for clinicians and allied health professionals, including physical therapists, chiropractors, and orthopedic specialists. A comprehensive assessment often includes evaluating posture through visual inspection, functional movement patterns, and the use of screening tools [15].

Intervention strategies must address underlying muscular imbalances, enhance proprioception, and promote postural awareness. Therapeutic modalities can include stretching and strengthening exercises, postural retraining, ergonomic adjustments, and manual therapy. In severe cases, bracing or surgery may be warranted [16].

Assessment Techniques in Physiotherapy:

Physiotherapy, as a crucial component of healthcare, emphasizes the importance of movement and rehabilitative practices to restore function and alleviate pain. An effective physiotherapy program begins with a comprehensive assessment. This initial phase is critical as it helps physiotherapists develop tailored interventions for patients based on their unique needs. The assessment techniques utilized in physiotherapy vary widely but generally encompass subjective evaluation, objective measurement, and specialized tests [17].

Subjective Assessment

The subjective assessment is the first step in the physiotherapy assessment process. This involves gathering information from the patient regarding their medical history, current symptoms, and any factors that exacerbate or relieve their condition. The physiotherapist often employs open-ended questions to encourage patients to share their concerns, experiences, and expectations [18].

A thorough subjective assessment typically includes the following components:

- 1. Patient History: This includes a detailed account of the patient's past medical history, including previous injuries, surgeries, and underlying medical conditions that may influence recovery. A thorough understanding of the patient's background enables physiotherapists to consider potential complications and contraindications during treatment [19].
- 2. Pain Assessment: Pain is often a predominant concern for patients seeking physiotherapy. Various pain scales, such as the Visual Analog Scale (VAS) or the McGill Pain Questionnaire, may be used to quantify pain intensity, quality, and pattern. Understanding the nature of the pain—whether it is constant, intermittent, sharp, or dull—is vital for the formulation of an effective treatment plan [19].
- 3. Functional Limitations: The subjective assessment seeks to identify how the patient's condition affects their daily life. Questions regarding their ability to perform daily activities, work commitments, and recreational pursuits provide insight into the functional impact of their condition [20].
- 4. Goals and Expectations: Understanding a patient's goals for therapy is invaluable. Patients may have specific outcomes in mind, such as returning to sports

Afrah Nahi Alrowili, Khalid Hail Hindi Alanazi, Rawan Jomah Aldowihi, Salam Mohammed Alsharari, Halah Saad Mohammed Alrajraji, Samiyah Hail Ghazi Alkuwaykibi, Maha Afet Alruwily, Dalal Nahi Alrowili, Abdulaziz Khlowy Alrowily, Mohammed Muhalhil Shajiri

Abdulaziz Khlowy Alrowily, Mohammed Muhalhil Shajiri or performing household chores. These expectations inform the physiotherapist's approach and help establish realistic, achievable goals [20].

Objective Assessment

Following the subjective assessment, physiotherapists perform an objective assessment to gain measurable insights into the patient's physical condition. This typically includes:

- 1. Postural Assessment: Posture can significantly influence musculoskeletal function. A physiotherapist will analyze the patient's posture at rest and during movement to identify any abnormalities or asymmetries that may contribute to pain or dysfunction. Various techniques, including a visual examination or using tools such as plumb lines or photography, can aid in assessing postural alignment [21].
- 2. Range of Motion (ROM) Testing: Assessing joint mobility is a fundamental component of the objective assessment. Range of motion can be assessed using tools such as goniometers or inclinometers. The therapist evaluates both active (the patient moves the joint) and passive (the therapist moves the joint) range of motion to determine any restrictions or pain associated with specific movements. This information is crucial for designing rehabilitation exercises [22].
- 3. Muscle Strength Testing: Muscle strength can be assessed using manual muscle testing (MMT) or handheld dynamometry. This evaluates the strength of specific muscle groups, allowing physiotherapists to identify weaknesses that may necessitate targeted strengthening exercises. Importantly, muscle strength is crucial for functional mobility, stability, and overall rehabilitation success [23].
- 4. Functional Movement Analysis: Observing and analyzing functional movements—such as squatting, reaching, or walking—provides insights into a patient's movement patterns and mechanics. This can help identify compensatory movements or muscle imbalances that could lead to injuries or pain. Techniques such as the Functional Movement Screen (FMS) can help guide this analysis [24].
- 5. Neurological Assessment: For patients with neurological conditions, a thorough neurological assessment is essential. This may include evaluating sensation, reflexes, coordination, and balance. Neurological assessments help identify deficits that require targeted interventions [25].

Special Tests

In addition to general assessments, physiotherapists often employ specific diagnostic tests tailored to particular conditions. These may include:

- 1. Orthopedic Tests: Special orthopedic tests can assist in diagnosing specific injuries, such as ligament tears, tendon injuries, or joint dysfunctions. Tests like the Lachman Test for ACL integrity or the McMurray Test for meniscal tears are examples of specialized evaluations used in clinical practice [26].
- 2. Palpation: The use of palpation—feeling structures under the skin—allows physiotherapists to assess tissue texture, tone, tenderness, and temperature. This technique helps identify areas of inflammation or muscular tightness and contributes to the overall diagnosis [27].

3. Diagnostic Imaging: While physiotherapists typically do not perform imaging, they often interpret the results of X-rays, MRIs, or CT scans to inform their functional assessments and treatment plans. Understanding imaging results can provide additional context for the patient's condition [27].

Evidence-Based Treatment Modalities:

In the rapidly evolving field of healthcare, the integration of evidence-based practice (EBP) has transformed the landscape of patient care, research, and clinical decision-making. Evidence-Based Treatment Modalities (EBTMs) refer to clinical practices that are grounded in empirical research, aiming to provide the most effective and efficient care based on the best available evidence [27].

Fundamentals of Evidence-Based Treatment Modalities

At its core, evidence-based practice integrates the best research evidence with clinical expertise and patient values. The EBP model consists of a systematic approach to improving patient outcomes through informed decision-making processes. This involves the collection, evaluation, and integration of data from scientific literature to guide interventions and therapies.

The framework for EBP in healthcare typically follows a five-step process, often referred to as the EBP cycle:

- 1. Ask: Formulate a clear clinical question based on a patient's problem.
- 2. Acquire: Search for the best available evidence in current literature.
- 3. Appraise: Critically evaluate the evidence for its validity, impact, and applicability.
- 4. Apply: Integrate the findings with clinical expertise and patient preferences to arrive at a decision.
- 5. Assess: Evaluate the effectiveness and efficiency of the decision or intervention and seek ways for improvement [28].

Types of Evidence-Based Treatment Modalities

The scope of EBTMs spans a wide variety of healthcare disciplines, from physical therapy to mental health treatment. Some of the primary modalities that operate on the principles of EBP include Cognitive Behavioral Therapy (CBT), pharmacological interventions, surgical procedures, and physical rehabilitation techniques [29].

CBT is a widely recognized evidence-based psychological treatment that aims to modify dysfunctional emotions, behaviors, and thoughts. Considerable research underscores its effectiveness in treating conditions such as depression, anxiety disorders, and post-traumatic stress disorder (PTSD). EBTMs in CBT emphasize structured intervention based on rigorous studies demonstrating the modality's efficacy. For instance, randomized control trials have shown CBT to significantly reduce the severity of depressive symptoms, highlighting its potential as a first-line treatment [29].

Afrah Nahi Alrowili, Khalid Hail Hindi Alanazi, Rawan Jomah Aldowihi, Salam Mohammed Alsharari, Halah Saad Mohammed Alrajraji, Samiyah Hail Ghazi Alkuwaykibi, Maha Afet Alruwily, Dalal Nahi Alrowili, Abdulaziz Khlowy Alrowily, Mohammed Muhalhil Shajiri

Abdulaziz Khlowy Alrowily, Mohammed Muhalhil Shajiri The use of medications as EBTMs is fundamental in numerous medical fields. Clinical trials serve as a cornerstone in evaluating the effectiveness of drugs, assessing factors such as dose response, side effects, and overall impact on health outcomes. For example, statin therapies in cardiovascular medicine have shown optimal effectiveness in decreasing cholesterol levels and preventing heart disease, as demonstrated through large-scale meta-analyses [30].

In surgery, EBTMs are critical for determining the appropriateness of operations and interventions. Research, often through randomized controlled trials, informs surgical guidelines and protocols. Procedures such as laparoscopic cholecystectomy for gallbladder disease have established themselves as superior to traditional methods when evaluated with evidence-based approaches, leading to widespread adoption among healthcare providers [31].

In physical therapy, EBTMs are applied to enhance recovery from injuries, surgeries, and chronic pain conditions. Techniques such as graded exposure therapy have robust evidence supporting their efficacy in restoring mobility and function. Systematic reviews and clinical guidelines help therapists optimize rehabilitation strategies tailored to individual patient needs based on evidence [32].

The benefits of utilizing EBTMs in clinical practice are manifold. First and foremost, treatments grounded in empirical research tend to produce better outcomes for patients. By using validated modalities, providers can enhance the quality of care and reduce the variability of treatment, leading to more predictable results [33].

Moreover, EBTMs promote a patient-centered approach, ensuring that the preferences, needs, and values of individuals are recognized and considered in treatment planning. This approach fosters improved patient satisfaction and adherence to treatment, as individuals are more likely to engage in therapies that resonate with their personal health beliefs and situations [34].

Additionally, evidence-based modalities can lead to more cost-effective healthcare. By focusing on interventions that have been shown to be effective, healthcare systems can minimize unnecessary procedures, avoid complications, and direct resources toward treatments that will yield the most benefit to patients [35].

Despite the clear advantages of EBTMs, their implementation in practice is often met with challenges. One significant obstacle is the gap between research and practice—commonly referred to as the "research to practice" gap. Many healthcare professionals are not yet familiar with the newest research or may lack the time and resources to access and apply evidence in their daily routines [35].

Furthermore, the quality of available evidence can vary significantly. Not all studies are created equal; some may exhibit biases, limited sample sizes, or methodological flaws that can lead to inaccurate conclusions. Consequently, clinicians must hone their skills in critical appraisal to effectively discern which evidence is sound and applicable to their specific patient populations [36].

Another challenge is the issue of resistance to change among practitioners. Established clinical habits can be difficult to modify, particularly when practitioners might be more comfortable with traditional methods rather than adopting new

evidence-based approaches [37].

The future of EBTMs is promising, marked by ongoing research and technological advancements that can enhance their implementation. Digital health technologies, including telemedicine and mobile health applications, are increasing accessibility to evidence-based resources and expert consultations. Artificial intelligence and machine learning hold potential for synthesizing evidence and translating it into practical recommendations for clinicians [38].

There is also a growing emphasis on the importance of continuous education, training, and support for healthcare professionals to improve their engagement with EBP principles. Communities of practice, mentorship programs, and integrative training models are essential for fostering a culture of evidence-based care [39].

In addition, the incorporation of patient feedback and preferences into research designs will be critical for developing more tailored EBTMs that resonate with diverse patient populations. As healthcare becomes increasingly personalized, this integration will improve the effectiveness and acceptance of treatment modalities [39].

Manual Therapy Approaches:

Manual therapy encompasses a range of treatment techniques that are applied to the musculoskeletal system, primarily focusing on the diagnosis, assessment, and treatment of musculoskeletal pain and dysfunction. These approaches utilize various hands-on methods aimed at enhancing movement, reducing pain, and promoting overall health and wellness. The practice is grounded in the understanding of anatomy and biomechanics, seeking to address issues through various manual techniques, including manipulation, mobilization, stretching, and soft-tissue work [40].

Manual therapy is not a single modality but rather a collection of diverse techniques and philosophies that fall under its umbrella. The theoretical foundations of manual therapy can be traced back to ancient healing practices, with historical roots in various cultures, including Chinese medicine and osteopathy. However, the modern practice has been shaped significantly over the last century, influenced by fields such as physiotherapy, chiropractic care, and osteopathic medicine [41].

A core tenet of manual therapy is the emphasis on the relationship between the body's structure (anatomy) and its function (physiology). Dysfunction or misalignment in the musculoskeletal system can lead to pain and restriction of movement. Manual therapy approaches address these issues by restoring optimal alignment and enhancing functional movement patterns. The concept of the body as a dynamic system is at the heart of many manual therapy techniques, allowing practitioners to consider the interconnectedness of muscles, joints, fascia, and the nervous system [42].

Common Techniques in Manual Therapy

Manual therapy approaches can broadly be classified into several categories, each encompassing various techniques tailored to specific conditions and patient needs.

Afrah Nahi Alrowili, Khalid Hail Hindi Alanazi, Rawan Jomah Aldowihi, Salam Mohammed Alsharari, Halah Saad Mohammed Alrajraji, Samiyah Hail Ghazi Alkuwaykibi, Maha Afet Alruwily, Dalal Nahi Alrowili, Abdulaziz Khlowy Alrowily, Moḥammed Muhalhil Shajiri

The most common techniques include:

1. Manipulation

Manipulative therapy is perhaps the most widely recognized technique associated with manual therapy, particularly within chiropractic care. It involves high-velocity, low-amplitude thrusts delivered to specific joints to restore mobility and alleviate pain. Manipulation aims to correct biomechanical dysfunctions, enhance joint movement, and improve overall function. This technique is commonly applied to the spine but can also target other joints throughout the body [43].

2. Mobilization

Mobilization techniques differ from manipulation in that they involve slower, controlled movements to restore range of motion and decrease stiffness. Manual therapists utilize various grades of mobilization, ranging from gentle movements to more vigorous techniques, depending on the patient's condition and tolerance. Joint mobilization aims to improve the joint's functionality by addressing adhesions, restrictions, and overall mechanical function [44].

3. Soft Tissue Techniques

Soft tissue therapy encompasses a diverse array of approaches focused on the muscles, fascia, ligaments, and tendons. Techniques such as massage therapy, myofascial release, trigger point therapy, and deep tissue work fall under this category. These methods aim to ease muscle tension, decrease pain, and enhance blood flow, promoting quicker recovery and improved movement [45].

4. Stretching Techniques

Stretching is a common component of manual therapy that can assist in increasing flexibility and decreasing muscle tightness. This can be performed passively by a therapist or actively by the patient. Different stretching techniques, such as static stretching, dynamic stretching, and proprioceptive neuromuscular facilitation (PNF), can be integrated to address specific musculoskeletal concerns [45].

5. Visceral Manipulation

Although less common, visceral manipulation involves the hands-on assessment and treatment of the internal organs (viscera) to address dysfunction and pain that may manifest in the musculoskeletal system. Practitioners claim that restrictions in the movement of internal organs can contribute to a range of health issues, and gentle manual techniques can help restore proper function and alignment [46].

Benefits of Manual Therapy

Manual therapy offers a plethora of potential benefits, often contributing to the improvement of various conditions affecting the musculoskeletal system. Some of the key benefits include:

1. Pain Relief: One of the most immediate benefits of manual therapy is pain reduction. Techniques such as manipulation and soft tissue therapy can alleviate pain through both mechanical and neurophysiological mechanisms [47].

- 2. Improved Mobility: By addressing restrictions in joints and soft tissues, manual therapy enhances overall mobility and range of motion, vital for maintaining an active lifestyle.
- 3. Enhanced Recovery: Manual therapy techniques can expedite rehabilitation following injuries or surgical interventions by facilitating the healing of tissues, promoting blood flow, and reducing inflammation [48].
- 4. Decreased Muscle Tension: Techniques targeting soft tissues can help alleviate chronic muscle tension and discomfort, fostering relaxation and improving overall well-being.
- 5. Improved Posture: Manual therapies that manipulate the spine and major joints contribute to better alignment and posture, reducing the risk of postural-related issues and long-term pain [48].
- 6. Holistic Approach: Manual therapy considers the whole person rather than just isolated symptoms. This holistic perspective encourages comprehensive assessment and treatment strategies that address contributing factors to the patient's condition [49].

Considerations for Practice

While manual therapy has shown substantial efficacy in treating various musculoskeletal conditions, practitioners must carefully consider several factors to maximize patient benefit while minimizing risks[50].

1. Practitioner Training and Expertise

Manual therapy requires extensive training and knowledge of anatomy, biomechanics, and pathology to ensure safe and effective application. Practitioners must possess a deep understanding of the various techniques and their appropriate applications in different populations [51].

2. Individualized Treatment Plans

Each patient presents unique challenges, and a one-size-fits-all approach may not yield optimal results. Practitioners should tailor treatment plans based on the individual's history, needs, and goals. Comprehensive assessments should guide therapy selection and progression [52].

3. Patient Education

Educating patients about the nature of their condition and the role of manual therapy in their recovery is crucial. Informed patients are more likely to adhere to treatment plans and engage in complementary self-care practices, enhancing overall outcomes [53].

4. Interdisciplinary Collaboration

Manual therapy should not exist in isolation but rather as part of a multifaceted approach to patient care. Collaboration with other healthcare providers, such as physicians, physical therapists, and occupational therapists, is essential to create a cohesive treatment plan that addresses all aspects of a patient's health [54].

Afrah Nahi Alrowili, Khalid Hail Hindi Alanazi, Rawan Jomah Aldowihi, Salam Mohammed Alsharari, Halah Saad Mohammed Alrajraji, Samiyah Hail Ghazi Alkuwaykibi, Maha Afet Alruwily, Dalal Nahi Alrowili, Abdulaziz Khlowy Alrowily, Mohammed Muhalhil Shajiri Exercise-Based Rehabilitation Programs:

Exercise-based rehabilitation programs are structured interventions designed to facilitate recovery and improve functional capacity through targeted physical activity. These programs serve a diverse range of populations, including individuals recovering from injury, managing chronic diseases, or undergoing surgical procedures, as well as those seeking to improve overall physical functioning and health. Their multifaceted nature combines physical exercise, therapeutic education, and behavioral strategies, making them a cornerstone in the field of rehabilitation medicine [55].

Exercise-based rehabilitation involves the use of specific physical activities tailored to individual needs, goals, and medical conditions. Unlike general fitness programs, these rehabilitation protocols are meticulously crafted by healthcare professionals, typically physical therapists, exercise physiologists, and occupational therapists, who assess patients' physical and psychological conditions. The programs often consist of a combination of aerobic training, strength training, flexibility exercises, and functional activities, integrated into a comprehensive framework that promotes holistic healing [55].

The historical perspective of rehabilitation underscores its evolution from rudimentary rest and immobilization to a more active approach that incorporates exercise. Researchers and clinicians have long recognized the interplay between movement and recovery, leading to evidence-based practices that inform modern rehabilitation techniques [56].

Numerous studies have substantively confirmed the benefits of exercise in rehabilitation settings. For instance, regular physical activity enhances muscular strength, cardiovascular fitness, and overall endurance, which are crucial for the recovery process. Exercise also possesses significant psychological benefits, aiding in the reduction of anxiety and depression commonly associated with chronic illnesses and rehabilitation needs [56].

In musculoskeletal rehabilitation, therapeutic exercises promote the healing of damaged tissues, improve biomechanics, and reduce the risk of re-injury. Such programs are central to treating conditions like post-operative knee injuries, fractures, and chronic back pain, where non-movement traditionally constricts recovery. Additionally, exercise contributes to improved outcomes in patients with chronic conditions such as diabetes, hypertension, and heart disease, aligning with broader health imperatives to engage in physical activity as a preventative measure [56].

Structure of Exercise-Based Rehabilitation Programs

At the heart of an effective exercise-based rehabilitation program is a thorough assessment that takes into account the individual's medical history, current physical condition, and personal goals. This assessment leads to the development of personalized exercise regimens that emphasize safety and efficacy [57].

1. **Initial Assessment and Goal Setting: The process typically begins with a comprehensive evaluation that includes physical health screenings, assessments of

strength and flexibility, and functional mobility tests. Based on this initial assessment, practitioners work collaboratively with patients to set realistic and achievable goals.

- 2. Exercise Prescription: Exercise prescriptions in rehabilitation programs are individualized and may include various modalities. Aerobic exercises, such as walking, cycling, or swimming, enhance cardiovascular health. Resistance training helps in building muscular strength and endurance. Flexibility and balance exercises improve overall coordination and prevent falls, particularly in elderly populations.
- 3. Education and Self-Management: An integral component of rehabilitation is the education of patients about their conditions, recovery processes, and the role of exercise in healing. Patients are empowered with knowledge, enabling them to take an active role in their rehabilitation.
- 4. Monitoring and Progression: Regular monitoring of patients' progress is vital to ensure adherence and effectiveness. Practitioners adjust exercise intensities and types based on patients' responses and improvements, which is essential for sustained motivation and optimal outcomes.
- 5. Psychosocial Support: Addressing psychological barriers to exercise, such as fear, anxiety, or lack of motivation, is important for rehabilitation. Support from peers and professionals and the creation of a supportive community can foster adherence and enhance recovery [58].

Diverse Applications Across Populations

Exercise-based rehabilitation programs cater to a wide range of populations, addressing numerous health conditions [59].

- Orthopedic Rehabilitation: Following surgical interventions for injuries such as anterior cruciate ligament (ACL) repairs, exercise-based rehabilitation is crucial. Patients undergo tailored exercise regimens to regain strength, mobility, and function, often incorporating neuromuscular training to prevent future injuries [59].
- Cardiac Rehabilitation: For individuals recovering from cardiac events, structured exercise is paramount. These programs, often including supervised exercise sessions, have been shown to decrease mortality rates and improve quality of life. Activity regimens are complemented by nutritional education and psychosocial support [59].
- Neurological Rehabilitation: In patients with stroke or traumatic brain injuries, exercise-based rehabilitation helps regain motor skills, balance, and coordination. Programs might focus on task-specific training and may employ techniques such as constraint-induced movement therapy to improve functionality [60].
- Geriatric Rehabilitation: Older adults benefit significantly from exercise rehabilitation, which addresses issues related to frailty, falls, and chronic conditions. Programs focus on maintaining mobility and independence through strength training, balance exercises, and aerobic conditioning [60].

Afrah Nahi Alrowili, Khalid Hail Hindi Alanazi, Rawan Jomah Aldowihi, Salam Mohammed Alsharari, Halah Saad Mohammed Alrajraji, Samiyah Hail Ghazi Alkuwaykibi, Maha Afet Alruwily, Dalal Nahi Alrowili, Abdulaziz Khlowy Alrowily, Mohammed Muhalhil Shajiri Challenges and Future Considerations

While the benefits of exercise-based rehabilitation are well-documented, several challenges persist. Access to rehabilitation services can vary significantly based on geographical, economic, and social factors, which may hinder equitable opportunities for all patients. Furthermore, tailoring rehabilitation programs to diverse individual needs requires ongoing training and education for healthcare providers to remain abreast of the latest evidence-based practices [61].

Future research directions may focus on the integration of technology, such as wearable devices and tele-rehabilitation platforms, to enhance accessibility and adherence to exercise programs. The role of digital health interventions will likely grow, allowing for remote monitoring and real-time feedback, which can facilitate better patient outcomes [61].

Additionally, there is a need for ongoing education surrounding the importance of exercise for overall health, extending beyond rehabilitation settings to promote physical activity as a lifelong wellness endeavor [62].

Ergonomic Counseling and Education:

In today's fast-paced work environment, the importance of ergonomics cannot be overstated. As the workforce increasingly engages in sedentary tasks and repetitive motions, understanding and applying ergonomic principles becomes critical not only for individual health but also for organizational productivity. Ergonomic counseling and education serve as proactive measures to create a healthier workplace that minimizes the risk of injury and maximizes efficiency and comfort [62].

Ergonomics is the scientific study of people at work, focusing on optimizing the interaction between workers and their environment. The fundamental goal of ergonomics is to design workspaces that fit the user's physical capabilities and limitations, thereby promoting safety and efficiency. Poor ergonomic practices can lead to musculoskeletal disorders (MSDs), including carpal tunnel syndrome, tendinitis, and chronic back pain—conditions that not only affect employee health but also lead to increased absenteeism and reduced productivity [63].

Ergonomic principles are rooted in human biology, psychology, and engineering. For example, the design of an office chair should accommodate the natural curvature of the spine while allowing for adjustments that fit individual body sizes. Similarly, the placement of computer monitors and keyboards should promote neutral wrist positions and comfortable viewing angles. By applying these principles, organizations can create environments that support the physical and mental wellbeing of their employees [63].

The Importance of Ergonomic Counseling and Education

Ergonomic counseling and education are vital components in the transition from a poorly designed workplace to one that facilitates health and productivity. Here are the primary reasons these initiatives are essential:

1. Prevention of Injuries: One of the paramount benefits of ergonomic education is the prevention of workplace injuries. By educating employees about

proper body mechanics, workstation setup, and the importance of regular breaks, organizations can significantly reduce the incidence of MSDs. Ergonomic counseling offers personalized assessments and solutions tailored to individual needs and work tasks [64].

- 2. Improved Productivity: Workers who are comfortable and free from pain are likely to be more productive. Ergonomically designed workspaces lead to increased efficiency, as employees experience fewer distractions due to discomfort or injuries. A holistic approach to ergonomics focuses on enhancing the overall work experience, encouraging higher performance levels.
- 3. Employee Satisfaction and Retention: A supportive work environment plays a crucial role in employee satisfaction. When organizations prioritize ergonomics, they signal to employees that their health and well-being matter. This can lead to improved morale, a positive company culture, and higher retention rates, ultimately benefiting the organization in the long term.
- 4. Cost-Effectiveness: While implementing ergonomic solutions may require an initial investment, the long-term savings are substantial. By reducing the incidence of workplace injuries and associated healthcare costs, organizations can save money on workers' compensation claims and lost productivity due to absenteeism.
- 5. Legal Compliance: In many countries, occupational health and safety regulations require businesses to provide a safe working environment. By focusing on ergonomics, organizations can comply with legal standards, thus avoiding potential penalties and legal issues [64].

Strategies for Implementing Ergonomic Counseling and Education

Effective ergonomic counseling and education require a systematic approach to understanding the unique needs of employees. Here are several strategies organizations can adopt:

- 1. Conduct Ergonomic Assessments: A thorough assessment of workspaces is the first step toward implementing effective ergonomic solutions. Ergonomic experts can analyze individual workstations, identifying potential risks and suggesting modifications tailored to the specific tasks performed by employees [65].
- 2. Provide Training Programs: Educational initiatives should encompass not only the principles of ergonomics but also practical training on how employees can apply these concepts in their daily routines. Workshops, seminars, and online courses can be utilized to educate employees about proper seating, posture, stretching exercises, and safe lifting techniques.
- 3. Encourage Employee Feedback: Employees should be actively involved in the ergonomic improvement process. Regular surveys and feedback sessions can help organizations gauge the effectiveness of their ergonomic solutions and make necessary adjustments based on employee experiences and needs.
- 4. Implement a Return-to-Work Program: For employees recovering from work-related injuries, a structured return-to-work program that incorporates

Afrah Nahi Alrowili, Khalid Hail Hindi Alanazi, Rawan Jomah Aldowihi, Salam Mohammed Alsharari, Halah Saad Mohammed Alrajraji, Samiyah Hail Ghazi Alkuwaykibi, Maha Afet Alruwily, Dalal Nahi Alrowili, Abdulaziz Khlowy Alrowily, Mohammed Muhalhil Shajiri ergonomic principles is crucial. Gradually reintroducing employees to their duties in

ergonomic principles is crucial. Gradually reintroducing employees to their duties in an ergonomically designed environment can facilitate recovery and reduce the risk of re-injury.

- 5. Utilize Technology: Advancements in technology can greatly enhance ergonomic practices. Ergonomic software tools can assist in workstation assessments, while wearable devices can monitor and remind employees to adopt healthier postures or take breaks.
- 6. Foster a Culture of Wellness: Organizations that prioritize ergonomic health should incorporate wellness into their corporate culture. This can be achieved through initiatives focused on employee well-being, regular workshops, and creating collaboration spaces that enhance physical comfort [65].

Future Directions in Physiotherapy for Postural Disorders:

Postural disorders have gained increasing attention in recent years as lifestyles become more sedentary and technology-dependent. With populations across the globe spending substantial time in front of screens, whether for work or leisure, the consequences for musculoskeletal health are profound. Physiotherapy offers a vital pathway for managing these disorders, focusing on the musculoskeletal system and its biomechanical functions [66].

Before contemplating the future of physiotherapy, it is essential to understand what constitutes postural disorders. These conditions arise when the body's alignment deviates from the optimal position during rest and activity, which can lead to discomfort, pain, and functional limitations. Common postural disorders include forward head posture, kyphosis, lordosis, and scoliosis. These issues can stem from various factors, including ergonomic misalignments, muscular imbalances, and even psychological stressors [66].

Physiotherapy traditionally approaches these disorders through physical assessments, targeted exercises, manual therapy, and patient education. However, as healthcare continues to evolve, physiotherapist practices will need to adapt to meet new challenges and opportunities.

One of the most promising aspects of the future of physiotherapy is the emergence of technology. The implementation of telehealth services has soared, primarily due to the COVID-19 pandemic. This shift allows physiotherapists to reach patients remotely, thereby expanding access to care and minimizing barriers. In the future, it is likely that more sophisticated telehealth approaches will be developed, including virtual reality (VR) and augmented reality (AR) applications. These technologies will allow for immersive, guided exercise programs that can help patients correct their postural habits from the comfort of their homes [67].

Additionally, wearable devices and smart textiles are revolutionizing how physiotherapists monitor patients' progress. These devices can track posture in real-time and provide immediate feedback, allowing patients to adjust their postural habits instantaneously. Such innovations promote proactive engagement in self-management, making it possible for physiotherapists to offer more targeted, data-driven interventions [67].

The future of physiotherapy for postural disorders will likely see greater collaboration with other healthcare disciplines. Postural issues often intersect with psychological factors, including anxiety, depression, and body image concerns. Therefore, an interdisciplinary approach that includes not only physiotherapists but also psychologists, ergonomists, and occupational therapists will likely become standard practice [67].

Such multi-tiered strategies can address the underlying causes of postural disorders holistically. For instance, ergonomists can contribute by ensuring workspaces promote optimal posture, while psychologists can help address mental and emotional barriers that may inhibit a patient's motivation or ability to maintain proper posture. The integration of these interventions fosters a comprehensive framework to improve patient outcomes [68].

As the understanding of biomechanics and postural health evolves, an increased focus will likely shift toward preventive strategies. Educating the public about the importance of maintaining good posture and the implications of neglecting it is critical. Schools, workplaces, and community centers could serve as platforms for running educational programs aimed at increasing awareness of proper posture and ergonomic practices [68].

Moreover, physiotherapists are poised to play a significant role in community outreach. Workshops and seminars addressing the significance of postural health can be instrumental in cultivating a culture of prevention. By encouraging populations to adopt healthy postural habits early on, physiotherapy can assist in mitigating the incidence of postural disorders before they manifest into critical conditions [69].

An essential future direction in physiotherapy is the shift toward personalized medicine. Advances in genetic research and understanding of individual biomechanics imply that treatment protocols will increasingly be customized to suit each patient's unique profile. Instead of relying on generalized exercise regimens, physiotherapists will assess specific postural imbalances in the context of a patient's medical history, genetic predispositions, and lifestyle factors [69].

Data analytics and artificial intelligence (AI) also hold immense potential in this regard. Sophisticated algorithms can analyze a plethora of data from various sources to predict patient outcomes and guide physiotherapists in designing finely-tuned rehabilitation programs. This data-centric approach to physiotherapy will allow practitioners to target the core issues at hand efficiently, potentially increasing the efficacy of interventions [69].

2. Conclusion:

In conclusion, physiotherapy emerges as a fundamental component in the management of postural disorders, offering a diverse array of treatment modalities that cater to the unique needs of each patient. The review highlights the critical importance of early detection and individualized assessment to formulate effective intervention strategies. Evidence-based practices, including manual therapy, exercise rehabilitation, and patient education, not only address the immediate symptoms of

Afrah Nahi Alrowili, Khalid Hail Hindi Alanazi, Rawan Jomah Aldowihi, Salam Mohammed Alsharari, Halah Saad Mohammed Alrajraji, Samiyah Hail Ghazi Alkuwaykibi, Maha Afet Alruwily, Dalal Nahi Alrowili, Abdulaziz Khlowy Alrowily, Mohammed Muhalhil Shajiri

postural issues but also empower individuals to adopt healthier posture habits for long-term benefit.

As the demand for holistic and comprehensive care continues to grow, integrating ergonomic counseling and multidisciplinary approaches will be vital in enhancing treatment outcomes. Future research should focus on exploring innovative techniques and technologies that could further optimize physiotherapy interventions. Ultimately, a collaborative effort among healthcare providers, alongside an emphasis on preventative strategies, will facilitate a more effective approach to tackling postural disorders, improving quality of life for many individuals affected by these conditions.

References

- Chen Y., Sun Y., Luo Z., Chen X., Wang Y., Qi B., Lin J., Lin W.-W., Sun C., Zhou Y., et al. Exercise Modifies the Transcriptional Regulatory Features of Monocytes in Alzheimer's Patients: A Multi-Omics Integration Analysis Based on Single Cell Technology. Front. Aging Neurosci. 2022;14:427. doi: 10.3389/fnagi.2022.881488.
- Wang W., Jiang B., Sun H., Ru X., Sun D., Wang L., Wang L., Jiang Y., Li Y., Wang Y., et al. Prevalence, Incidence, and Mortality of Stroke in China. Circulation. 2017;135:759– 771. doi: 10.1161/CIRCULATIONAHA.116.025250.
- Iadecola C., Alexander M. Cerebral Ischemia and Inflammation. Curr. Opin. Neurol. 2001;14:89–94. doi: 10.1097/00019052-200102000-00014.
- Govaert P., Ramenghi L., Taal R., De Vries L., DeVeber G. Diagnosis of Perinatal Stroke I: Definitions, Differential Diagnosis and Registration. Acta Paediatr. 2009;98:1556–1567. doi: 10.1111/j.1651-2227.2009.01461.x.
- Langton-Frost N., Orient S., Adeyemo J., Bahouth M.N., Daley K., Ye B., Lavezza A., Pruski A. Development and Implementation of a New Model of Care for Patients With Stroke, Acute Hospital Rehabilitation Intensive Services: Leveraging a Multidisciplinary Rehabilitation Team. Am. J. Phys. Med. Rehabil. 2023;102:S13–S18. doi: 10.1097/PHM.0000000000002132.
- Maalouf E., Hallit S., Salameh P., Hosseini H. Eating Behaviors, Lifestyle, and Ischemic Stroke: A Lebanese Case-Control Study. Int. J. Environ. Res. Public Health. 2023;20:1487. doi: 10.3390/ijerph20021487.
- Rensink M., Schuurmans M., Lindeman E., Hafsteinsdóttir T. Task-Oriented Training in Rehabilitation after Stroke: Systematic Review. J. Adv. Nurs. 2009;65:737–754. doi: 10.1111/j.1365-2648.2008.04925.x.
- Wolfe C.D.A., Rudd A.G., Howard R., Coshall C., Stewart J., Lawrence E., Hajat C., Hillen T. Incidence and Case Fatality Rates of Stroke Subtypes in a Multiethnic Population: The South London Stroke Register. J. Neurol. Neurosurg. Psychiatry. 2002;72:211–216. doi: 10.1136/jnnp.72.2.211.
- Patten C., Lexell J., Brown H.E. Weakness and Strength Training in Persons with Poststroke Hemiplegia: Rationale, Method, and Efficacy. J. Rehabil. Res. Dev. 2004;41:20. doi: 10.1682/JRRD.2004.03.0293.
- Cheng J., Wang W., Xu J., Yin L., Liu Y., Wu J. Trends in Stroke Mortality Rate—China, 2004–2019. China CDC Wkly. 2022;4:513–517. doi: 10.46234/ccdcw2022.113.
- Saka Ö., McGuire A., Wolfe C. Cost of Stroke in the United Kingdom. Age Ageing. 2009;38:27–32. doi: 10.1093/ageing/afn281.
- James A.H., Bushnell C.D., Jamison M.G., Myers E.R. Incidence and Risk Factors for Stroke in Pregnancy and the Puerperium. Obstet. Gynecol. 2005;106:509–516. doi: 10.1097/01.AOG.0000172428.78411.b0.
- Kozyolkin O., Kuznietsov A., Novikova L. Prediction of the Lethal Outcome of Acute

- Recurrent Cerebral Ischemic Hemispheric Stroke. Medicina. 2019;55:311. doi: 10.3390/medicina55060311.
- Evers S.M.A.A., Struijs J.N., Ament A.J.H.A., van Genugten M.L.L., Jager J., Hans C., van den Bos G.A.M. International Comparison of Stroke Cost Studies. Stroke. 2004;35:1209–1215. doi: 10.1161/01.STR.0000125860.48180.48.
- Saunders D.H., Sanderson M., Hayes S., Johnson L., Kramer S., Carter D.D., Jarvis H., Brazzelli M., Mead G.E. Physical Fitness Training for Stroke Patients. Cochrane Database Syst. Rev. 2020;2020:CD003316. doi: 10.1002/14651858.CD003316.pub7.
- WHO guideline for non-surgical management of chronic primary low back pain in adults in primary and community care settings. 2023.
- Comparison of core stabilisation exercise and proprioceptive neuromuscular facilitation training on pain-related and neuromuscular response outcomes for chronic low back pain: a randomised controlled trial. Areeudomwong P, Buttagat V. Malays J Med Sci. 2019;26:77–89. doi: 10.21315/mjms2019.26.6.8.
- Effects of kinesiology taping and core stability exercise on clinical variables in patients with non-specific chronic low back pain: a randomized controlled trial. Ogunniran IA, Akodu AK, Odebiyi DO. J Bodyw Mov Ther. 2023;33:20–27. doi: 10.1016/j.jbmt.2022.09.013.
- Central sensitization in chronic low back pain: a narrative review. Sanzarello I, Merlini L, Rosa MA, Perrone M, Frugiuele J, Borghi R, Faldini C. J Back Musculoskelet Rehabil. 2016;29:625–633. doi: 10.3233/BMR-160685.
- Comparison of stability exercise and balance exercise on muscle activity in female patients with chronic low back pain. Kim DH, Kim TH. J Exerc Rehabil. 2018;14:1053–1058. doi: 10.12965/jer.1836438.219.
- Low back pain among medical students. Moroder P, Runer A, Resch H, Tauber M. Acta Orthop Belg. 2011;77:88–92.
- Effects of 6 weeks of ankle stability exercises on pain, functional abilities, and flexibility in patients with chronic non-specific low back pain: a randomized controlled trial. Abdelhaleem MD, Abdelhay MI, Aly SM, Abdallah EA, Allah NH. Bull Fac Phys Ther. 2023;28:14.
- Mechanisms of low back pain: a guide for diagnosis and therapy. Allegri M, Montella S, Salici F, et al. F1000Res. 2016;5. doi: 10.12688/f1000research.8105.1.
- The epidemiology of low back pain. Hoy D, Brooks P, Blyth F, Buchbinder R. Best Pract Res Clin Rheumatol. 2010;24:769–781. doi: 10.1016/j.berh.2010.10.002.
- Substantiating the therapeutic effects of simultaneous heat massage combined with conventional physical therapy for treatment of lower back pain: a randomized controlled feasibility trial. Kim TH, Park SK, Cho IY, Lee JH, Jang HY, Yoon YS. Healthcare (Basel) 2023;11. doi: 10.3390/healthcare11070991.
- Immediate analgesic effect of interferential and aussie currents in chronic low back pain: randomized clinical trial. Paula LD, Colmenarez A, França FV, Yamada FT, Tafarello N, Macedo AC. Brazil J Pain. 2023;6:151–159.
- Low back pain investigations and prognosis: a review. Refshauge KM, Maher CG. Br J Sports Med. 2006;40:494–498. doi: 10.1136/bjsm.2004.016659.
- Global low back pain prevalence and years lived with disability from 1990 to 2017: estimates from the Global Burden of Disease Study 2017. Wu A, March L, Zheng X, et al. Ann Transl Med. 2020;8:299. doi: 10.21037/atm.2020.02.175.
- Diagnosis and treatment of low back pain. Koes BW, van Tulder MW, Thomas S. BMJ. 2006;332:1430–1434. doi: 10.1136/bmj.332.7555.1430.
- Comparison of balance and stabilizing trainings on balance indices in patients suffering from nonspecific chronic low back pain. Hosseinifar M, Akbari A, Mahdavi M, Rahmati M. J Adv Pharm Technol Res. 2018;9:44–50. doi: 10.4103/japtr.JAPTR_130_18.
- What is the source of low back pain? Shemshaki H, Nourian SM, Fereidan-Esfahani M, Mokhtari M, Etemadifar MR. J Craniovertebr Junction Spine. 2013;4:21–24. doi:

- Afrah Nahi Alrowili, Khalid Hail Hindi Alanazi, Rawan Jomah Aldowihi, Salam Mohammed Alsharari, Halah Saad Mohammed Alrajraji, Samiyah Hail Ghazi Alkuwaykibi, Maha Afet Alruwily, Dalal Nahi Alrowili, Abdulaziz Khlowy Alrowily, Mohammed Muhalhil Shajiri 10.4103/0974-8237.121620.
- Correlations between core muscle geometry, pain intensity, functional disability and postural balance in patients with nonspecific mechanical low back pain. Emami F, Yoosefinejad AK, Razeghi M. Med Eng Phys. 2018;60:39–46. doi: 10.1016/j.medengphy.2018.07.006.
- Effect of rhythmic stabilization exercise v/s conventional physiotherapy on pain and disability with patients of chronic mechanical low back pain. Singh SK, Khan N, Agarwal R. Indian J Physiother Occup Ther. 2019;13:4122.
- Low back pain. van Tulder M, Koes B, Bombardier C. Best Pract Res Clin Rheumatol. 2002;16:761–775. doi: 10.1053/berh.2002.0267.
- Cashin A.G., McAuley J.H. Clinimetrics: Physiotherapy Evidence Database (PEDro) Scale. J. Physiother. 2019;66:59. doi: 10.1016/j.jphys.2019.08.005.
- Boyce M.J., Canning C.G., Mahant N., Morris J., Latimer J., Fung V.S.C. Active exercise for individuals with cervical dystonia: A pilot randomized controlled trial. Clin. Rehabil. 2013;27:226–235. doi: 10.1177/0269215512456221.
- Albanese A., Bhatia K., Bressman S.B., DeLong M.R., Fahn S., Fung V.S.C., Hallett M., Jankovic J., Jinnah H.A., Klein C., et al. Phenomenology and classification of dystonia: A consensus update. Mov. Disord. Off. J. Mov. Disord. Soc. 2013;28:863–873. doi: 10.1002/mds.25475.
- Stanković I., Čolović H., Živković V., Stamenović J., Stanković A., Zlatanović D., Živković D., Stanković T. The effect of physical therapy in the treatment of patients with cervical dystonia with or without concomitant use of botulinum toxin. Vojnosanit. Pregl. 2018;75:1035–1040. doi: 10.2298/VSP161115016S.
- Hu W., Rundle-Gonzalez V., Kulkarni S.J., Martinez-Ramirez D., Almeida L., Okun M.S., Shukla A.W. A randomized study of botulinum toxin versus botulinum toxin plus physical therapy for treatment of cervical dystonia. Park. Relat. Disord. 2019;63:195–198. doi: 10.1016/j.parkreldis.2019.02.035.
- Dec-Ćwiek M., Porębska K., Sawczyńska K., Kubala M., Witkowska M., Zmijewska K., Antczak J., Pera J. KinesioTaping after botulinum toxin type A for cervical dystonia in adult patients. Brain Behav. 2022;12:e2541. doi: 10.1002/brb3.2541.
- Jost W.H., Hefter H., Stenner A., Reichel G. Rating scales for cervical dystonia: A critical evaluation of tools for outcome assessment of botulinum toxin therapy. J. Neural Transm. 2013;120:487–496. doi: 10.1007/s00702-012-0887-7.
- Tassorelli C., Mancini F., Balloni L., Pacchetti C., Sandrini G., Nappi G., Martignoni E. Botulinum toxin and neuromotor rehabilitation: An integrated approach to idiopathic cervical dystonia. Mov. Disord. Off. J. Mov. Disord. Soc. 2006;21:2240–2243. doi: 10.1002/mds.21145.
- Reichel G., Stenner A., Jahn A. The phenomenology of cervical dystonia. Fortschr. Der Neurol.-Psychiatr. 2009;77:272–277. doi: 10.1055/s-0028-1109416.
- Page M.J., McKenzie J.E., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., Shamseer L., Tetzlaff J.M., Akl E.A., Brennan S.E., et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021;10:89. doi: 10.1186/s13643-021-01626-4.
- Werner C., Loudovici-Krug D., Derlien S., Rakers F., Smolenski U.C., Lehmann T., Best N., Günther A. Study protocol: Multimodal physiotherapy as an add-on treatment to botulinum neurotoxin type A therapy for patients with cervical dystonia: DysPT-multi—A prospective, multicentre, single-blind, randomized, controlled study. Trials. 2021;22:740. doi: 10.1186/s13063-021-05705-8.
- O'Brien S.R., Barry M., Davidson E., Porzi L., Spink M., Weatherbee D. Physical Therapist Clinical Reasoning in Home Care for Walking Assistive Device Prescription: A Description of Practice. Physiother. Theory Pract. 2023;39:80–88. doi: 10.1080/09593985.2021.1996495.
- Kayola G., Mataa M.M., Asukile M., Chishimba L., Chomba M., Mortel D., Nutakki A., Zimba S., Saylor D. Stroke Rehabilitation in Low- and Middle-Income Countries:

- Challenges and Opportunities. Am. J. Phys. Med. Rehabil. 2023;102:S24–S32. doi: 10.1097/PHM.000000000002128.
- Edelstein J., Kinney A.R., Keeney T., Hoffman A., Graham J.E., Malcolm M.P. Identification of Disability Subgroups for Patients After Ischemic Stroke. Phys. Ther. Rehabil. J. 2023;103:pzad001. doi: 10.1093/ptj/pzad001.
- Marinho-Buzelli A.R., Vijayakumar A., Linkewich E., Gareau C., Mawji H., Li Z., Hitzig S.L. A Qualitative Pilot Study Exploring Clients' and Health-Care Professionals' Experiences with Aquatic Therapy Post-Stroke in Ontario, Canada. Top. Stroke Rehabil. 2023:1–13. doi: 10.1080/10749357.2023.2195590.
- Batool A., Kashif A., Nawaz M.H., Khan A.A., Iqbal N., Shahid M.K. Global Overview of SARS-CoV-2 Induced COVID-19 in 2020: Biological Characterization, Epidemiology with Social, Economic and Environmental Implications. RADS J. Biol. Res. Appl. Sci. 2022;13:83–122. doi: 10.37962/jbas.v13i1.391.
- Piccolo A., Corallo F., Cardile D., Torrisi M., Smorto C., Cammaroto S., Lo Buono V. Music Therapy in Global Aphasia: A Case Report. Medicines. 2023;10:16. doi: 10.3390/medicines10020016.
- Langhorne P. Collaborative Systematic Review of the Randomised Trials of Organised Inpatient (Stroke Unit) Care after Stroke. BMJ. 1997;314:1151. doi: 10.1136/bmj.314.7088.1151.
- Poletto S.R., Rebello L.C., Valença M.J.M., Rossato D., Almeida A.G., Brondani R., Chaves M.L.F., Nasi L.A., Martins S.C.O. Early Mobilization in Ischemic Stroke: A Pilot Randomized Trial of Safety and Feasibility in a Public Hospital in Brazil. Cerebrovasc. Dis. Extra. 2015;5:31–40. doi: 10.1159/000381417.
- De Wit L., Putman K., Dejaeger E., Baert I., Berman P., Bogaerts K., Brinkmann N., Connell L., Feys H., Jenni W., et al. Use of Time by Stroke Patients. Stroke. 2005;36:1977–1983. doi: 10.1161/01.STR.0000177871.59003.e3.
- Shen J., Gu X., Yao Y., Li L., Shi M., Li H., Sun Y., Bai H., Li Y., Fu J. Effects of Virtual Reality–Based Exercise on Balance in Patients With Stroke: A Systematic Review and Meta-Analysis. Am. J. Phys. Med. Rehabil. 2023;102:316–322. doi: 10.1097/PHM.00000000000002096.
- Bernhardt J., Godecke E., Johnson L., Langhorne P. Early Rehabilitation after Stroke. Curr. Opin. Neurol. 2017;30:48–54. doi: 10.1097/WCO.0000000000000404.
- Marzouqah R., Huynh A., Chen J.L., Boulos M.I., Yunusova Y. The Role of Oral and Pharyngeal Motor Exercises in Post-Stroke Recovery: A Scoping Review. Clin. Rehabil. 2022;37:620–635. doi: 10.1177/02692155221141395.
- Effects of a supervised exercise program in addition to electrical stimulation or kinesio taping in low back pain: a randomized controlled trial. Aguilar-Ferrándiz ME, Matarán-Peñarrocha GA, Tapia-Haro RM, Castellote-Caballero Y, Martí-García C, Castro-Sánchez AM. Sci Rep. 2022;12:11430. doi: 10.1038/s41598-022-14154-5.
- Effects of core stabilization exercise and strengthening exercise on proprioception, balance, muscle thickness and pain related outcomes in patients with subacute nonspecific low back pain: a randomized controlled trial. Hlaing SS, Puntumetakul R, Khine EE, Boucaut R. BMC Musculoskelet Disord. 2021;22:998. doi: 10.1186/s12891-021-04858-6.
- Effects of combining diaphragm training with electrical stimulation on pain, function, and balance in athletes with chronic low back pain: a randomized clinical trial. Otadi K, Nakhostin Ansari N, Sharify S, Fakhari Z, Sarafraz H, Aria A, Rasouli O. BMC Sports Sci Med Rehabil. 2021;13:20. doi: 10.1186/s13102-021-00250-y.
- Effects of megill stabilization exercise on pain and disability, range of motion and dynamic balance indices in patients with chronic nonspecific low back pain. Farajzadeh F, Ghaderi F, Jafarabadi MA, Azghani MR, Oskoui ME, Rezaie M, Ghorbanpour A. J Babol Univ Med Sci. 2017;19:21–27.
- Effectiveness of negative pulsed-pressure myofascial vacuum therapy and therapeutic

- Afrah Nahi Alrowili, Khalid Hail Hindi Alanazi, Rawan Jomah Aldowihi, Salam Mohammed Alsharari, Halah Saad Mohammed Alrajraji, Samiyah Hail Ghazi Alkuwaykibi, Maha Afet Alruwily, Dalal Nahi Alrowili, Abdulaziz Khlowy Alrowily, Mohammed Muhalhil Shajiri
- Abdulaziz Khlowy Alrowily, Mohammed Muhalhil Shajiri exercise in chronic non-specific low back pain: a single-blind randomized controlled trial. Rodríguez-Huguet M, Góngora-Rodríguez J, Vinolo-Gil MJ, Martín-Vega FJ, Martín-Valero R, Rodríguez-Almagro D. J Clin Med. 2022;11 doi: 10.3390/jcm11071984.
- Acute effects of proprioceptive neuromuscular facilitation exercises on the postural strategy in patients with chronic low back pain. Sipko T, Glibowski E, Kuczyński M. Complement Ther Clin Pract. 2021;44:101439. doi: 10.1016/j.ctcp.2021.101439.
- Proprioceptive neuromuscular facilitation versus sensory motor training in non-specific low back pain. Nugraha MH, Antari NK, Dewi AA. Jurnal Keterapian Fisik. 2021;6:1–10.
- The critical role of development of the transversus abdominis in the prevention and treatment of low back pain. Lynders C. HSS J. 2019;15:214–220. doi: 10.1007/s11420-019-09717-8.
- Effects of an eight-week lumbar stabilization exercise programme on selected variables of patients with chronic low back pain. Abass AO, Alli AR, Olagbegi OM, Christie CJ, Bolarinde SO. Bangladesh J Med Sci. 2020;19:467–474.
- The changes of functional disability in non-specific low back pain among university population after proprioceptive neuromuscular facilitation and mckenzie method. Anggiat L. Hon WH, Sokran SN, Mohammad NM, Int J Med Exerc Sci. 2020;6:656–667.
- Comparison of mulligan technique and conventional technique in patients with low back pain. Kotteeswaran K, Datta M, Jothilingam M, Alagesan J, Manikumar M. J Emerg Technol Innov Res. 2019;6:352–359.
- Effects of lumbosacral orthosis on dynamical structure of center of pressure fluctuations in patients with non-specific chronic low back pain: a randomized controlled trial. Azadinia F, Ebrahimi-Takamjani I, Kamyab M, Asgari M, Parnianpour M. J Bodyw Mov Ther. 2019;23:930–936. doi: 10.1016/j.jbmt.2019.01.014.