Quantum Machine Learning For Credit Risk: A Next-Generation Approach To Risk Assessment

Bhaskara Reddy Udaru

Anna University, Chennai, India.

Abstract

Financial sectors are based on credit risk modeling to make decisions on lending and regulatory compliance. Although classical machine learning has been used to increase predictiveness, such models are faced with mounting limitations as complex and high-dimensional financial data is processed. Quantum Machine Learning (QML) is an aspect of quantum computing that has offered a potential resolution to the issues, integrating quantum computing and machine learning to speed up the calculations and extract more insight into the patterns. QML has theoretical benefits in classifying credit risk via Quantum Support Vector Machines, Quantum Neural Networks, and hybrid quantum-classical models, through superposition and entanglement. Initial applications show good performance in portfolio optimization, default forecasting, and simulation of risks with the existing hardware constraints. QML demonstrates specific potential in the context of using non-traditional data sources and finding hidden correlations that could reflect creditworthiness, which may allow inclusionbased lending practices without sacrificing risk assessment. With the development of quantum hardware, the financial services sector will gradually adopt quantum capabilities via realistic hybrid strategies that eventually revolutionize the way credit risk is assessed in the world markets.

Keywords: Quantum Finance, Credit Risk Assessment, Quantum Support Vector Machines, Hybrid Quantum-Classical Algorithms, Alternative Credit Scoring.

1. Introduction

The credit risk assessment is the basis of the contemporary financial decision-making process that has a direct effect on the loan approvals, the portfolio management, and the systemic stability in the global markets. In the face of an ever more complex financial ecosystem, approaches to quantifying the default risk of borrowers have dramatically changed, moving away from subjective assessment to more advanced algorithms [6]. This development is based on the constant desire of the financial sector to identify more precise, effective risk measurement models that can mitigate the loss of institutions and the overall economy against unexpected losses.

Conventional credit scoring systems used only small data sets with simple statistical tools, and they often could not detect subtle borrower behaviors. The shift towards machine learning methods was a breakthrough, as it made financial institutions able to handle a wide range of data and find the less visible correlations that enhance predictive quality [14]. These traditional machine learning methods, such as decision trees, support vector machines, and neural networks, have shown quantifiable performance over the traditional methods, improving risk discrimination as well as the efficiency of operations.

In spite of these developments, classical models of machine learning have been increasingly challenged by scalability issues as they are used to work with modern financial data sets. Contemporary risk assessment needs to handle large volumes of high-dimensional data sets that involve thousands of features on millions of entities, generating exponential computational loads [6]. These data sets often incorporate conventional

financial measures and non-traditional data, such as transactional patterns, online footprints, and real-time economic data. The resultant computational complexity imposes important bottlenecks to restrict the sophistication of models and the speed with which they can be deployed, especially in modeling complex, non-linear relationships between variables.

Quantum computing comes in as one of the solutions to these barriers in computing. Quantum processors can be useful theoretically in particular computing tasks central to risk modeling by exploiting principles of quantum mechanics, including superposition and entanglement [14]. The peculiarities of quantum systems seem to be especially appropriate to high-dimensional classification problems, optimization tasks, and Monte Carlo simulations that result in complete credit risk models. The preliminary studies suggest that the quantum benefits in the portfolio optimization and risk categorizing processes have the possibility of changing the way financial institutions handle the credit evaluation.

In this article, the author discusses Quantum Machine Learning (QML) as a new generation of credit risk estimation and the way quantum-enhanced algorithms may possibly transform the sphere of default prediction and portfolio analysis [6]. Through examining the theoretical background and initial applications, this exploration will be used to give a holistic view of how QML can be used to overcome the shortcomings of the classical applications as well as open new avenues of more precise, efficient credit risk modelling in an ever-complicated financial environment.

2. Foundations of Quantum Machine Learning

Quantum computing has its basis in fundamentally different principles as compared to classical computing, and quantum mechanical phenomena can be used to compute information in new ways. Two principles, entanglement and superposition, lie at the heart of quantum computing. Superposition enables quantum bits (qubits) to exist in more than two states at once, as opposed to classical bits, which can be 0 or 1 only [1]. This property allows quantum computer systems to consider several paths of computation at a time, generating a kind of parallelism that was impossible in classical computer systems. Entanglement, which is also important, introduces correlations between qubits that are beyond classical knowledge, and quantum states are inherently connected despite their physical distance [2]. Such quantum features generate specific computational capabilities that are especially useful in simulating complex financial systems that are highly dimensional and whose variables interact with each other in a highly complicated way.

Quantum algorithms that are machine-learning specific have a theoretical potential that is impressive with respect to credit risk assessment problems. The quantum principal component analysis algorithm provides efficient dimensionality reduction in high-dimensional financial data sets, which may fundamentally change the way credit risk features are selected and processed [1]. Quantum support vector machines make use of quantum kernel machinery that implicitly maps data to exponentially larger spaces of features without actually computing the mapping, allowing more advanced classification frontiers to default prediction [2]. The quantum linear systems algorithm (also called HHL) offers an exponential speedup to the solution of linear equations, and has considerable implications in terms of regression models supporting credit scoring systems [13]. These quantum processes of basic machine learning tasks give a direction for the more potent analytical instruments of financial risk evaluation.

The hypothetical benefits of quantum machine learning go beyond simple incremental improvements and may provide exponential speedups to some computational bottlenecks of financial modeling. As an example, quantum phase estimation algorithms can increase the calculation of eigenvalues essential to the process of covariance matrices in risk modeling at a faster pace [13]. Quantum recommendation systems have proven to have exponential benefits over classical solutions, with significant consequences for the way financial institutions could process the data of their customers to calculate personalized risk [2]. In Monte Carlo simulations that are at the heart of stress testing and value-at-risk calculations, quantum amplitude estimation methods can provide quadratic speed-ups, and perhaps enable more detailed scenario analysis over realistic time-scales [1]. These theoretical benefits specifically accommodate the computational issues that currently constrain the complexity of classical credit risk models.

Table 1: Foundations of Quantum Machine Learning [1, 2, 13]

Quantum Principles	Quantum Algorithms	Theoretical Advantages	Hardware Status
Superposition	Quantum PCA	Eigenvalue Calculations	NISQ Era
Entanglement	Quantum SVMs	Monte Carlo Simulations	Coherence Limitations
Quantum Parallelism	HHL Algorithm	Linear Equation Solving	Architectural Approaches
Quantum States	Quantum Phase Estimation	Feature Processing	Error Mitigation

Existing quantum devices are in the so-called Noisy Intermediate-Scale Quantum (NISQ) regime, with quantum devices of more limited qubit counts and larger error rates [13]. State-of-the-art quantum processors have coherence times of microseconds to milliseconds, necessitating error reduction strategies that limit their usability [2]. Various architectural designs, such as superconducting circuits, trapped ions, and photonic systems, have different trade-offs among scalability, coherence time, and gate fidelity [1]. Although full fault-tolerant quantum computers are still a future, hybrid, quantum-classical solutions are now under development to address financial applications that need quantum computing benefits in certain areas, but classical computing to provide stability to the overall processing.

3. QML Methodologies for Credit Risk Assessment

Quantum Support Vector Machines (QSVMs) constitute a disruptive approach to credit classification through the use of quantum algorithms to compute the classification of high-dimensional financial data in a more efficient way compared to classical computing. The quantum implementation maps credit characteristics to quantum states and estimates quantum phase to compute certain structured problems exponentially faster [5]. This quantum edge is especially applicable in the case of a large feature space that is characteristic of the contemporary credit evaluation, where standard SVMs are computationally constrained. QSVMs show the capacity to discover complex non-linear interactions among credit variables without directionally mapping to higher-dimensional spaces, which is particularly helpful when using alternative data such as transaction patterns and behavior measures that can inform credit decisions more and more [5]. The effectiveness of the algorithm is due to its capability to manage exponentially large matrices of the kernels, which are created when the intricate default patterns of different classes of borrowers are modeled.

While both classical and quantum SVMs seek optimal hyperplanes for classification, they differ significantly in interpretability and scalability characteristics. Classical SVMs typically offer greater interpretability through direct visualization of support vectors and decision boundaries in feature space. However, this interpretability diminishes as dimensionality increases. QSVMs trade some interpretability for potentially exponential speedups, as quantum kernel evaluations occur in high-dimensional Hilbert spaces that lack straightforward visualization methods. In terms of scalability, classical SVMs suffer from the well-documented O(n³) computational complexity when training with n samples, creating computational barriers when analyzing enterprise-wide credit portfolios. QSVMs theoretically reduce this to O(log(n)) for certain well-structured problems, though this advantage currently remains largely theoretical due to hardware constraints and circuit depth limitations [16].

Quantum Neural Networks (QNNs) apply the benefits of quantum processing to the problem of recognizing complex patterns using parameterized quantum circuits, which have similar functionality to classical neural networks. These variational quantum algorithms make use of neural network-style structures that use quantum gates as adjustable parameters that are optimized by classical feedback [10]. QNNs have the potential to model more complex functions more efficiently since quantum systems can require exponentially fewer computational resources in large models (whereas classical neural networks cannot). The quantum circuits conceptually represent natural probabilistic relationships at the core of default prediction, in which quantification of uncertainty is a formidable part of risk measurement [10]. In credit

applications, such networks show specific potential in the ability to capture some hidden interactions between financial predictors that could portend upcoming default phenomena.

Hybrid quantum-classical systems combine the hypothetical quantum benefits with the practical constraints of implementation by providing a strategic calculation distribution between quantum and classical processors. These methods perform computationally intensive subroutines in quantum circuits and the preparation and optimization of data classically [4]. On applications to credit risk, useful hybrid models have variational quantum classifiers that use quantum circuits to compute kernel functions when trained classically. Such a division of labor will enable the financial institutions to start seeking quantum benefits without the need to have fully fault-tolerant quantum computers [4]. The hybrid design is especially applicable in near-term uses in which noise and coherence constraints limit pure quantum implementations.

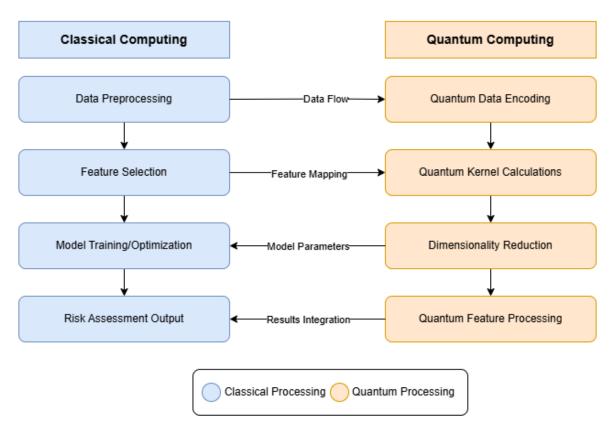


Figure 1: Conceptual architecture of a hybrid quantum-classical system for credit risk assessment. Classical components handle data preprocessing, feature selection, and model optimization, while quantum processors execute kernel calculations and dimensionality reduction tasks. The bidirectional flow enables iterative optimization while leveraging quantum advantages for specific computational bottlenecks.

Table 2: QML Methodologies for Credit Risk Assessment [3, 4, 5, 10]

Method Type	Implementation Approach	Credit Risk Applications
Quantum SVMs	Quantum Phase Estimation	Default Classification
Quantum Neural Networks	Parameterized Circuits	Probability Estimation
Hybrid Frameworks	Task Division Strategies	Near-term Solutions
Quantum Feature Spaces	State Encoding	Alternative Data Processing

	Quantum Kernels	Similarity Measurement	Diverse Credit Indicators
--	-----------------	------------------------	---------------------------

Quantum feature mapping and classical kernel tricks represent different approaches to the same fundamental challenge: enabling linear classifiers to handle nonlinear data. Classical kernel tricks avoid explicit computation of high-dimensional feature maps through kernel functions that calculate inner products directly from original features. While computationally elegant, classical approaches face scalability challenges with large datasets and complex kernels. Quantum feature mapping offers potentially exponential representational advantages through encoding data into quantum states, but introduces significant trade-offs. Most notably, quantum approaches must contend with the fundamental challenge of efficient data loading, transferring classical financial data into quantum states, which can potentially negate quantum speedups if not carefully designed [17].

The encoding of classical credit data into quantum states represents a fundamental challenge in quantum machine learning that significantly impacts potential quantum advantages. This data encoding problem involves several critical considerations that directly affect computational efficiency. First, loading classical data into quantum states typically requires O(n) quantum gates for n features, potentially creating a preprocessing bottleneck that could eliminate subsequent quantum speedups. Additionally, many financial datasets require amplitude encoding to fully leverage quantum advantages, but this encoding method scales poorly with dataset size and often lacks efficient quantum circuits for implementation. Finally, the noise sensitivity of current quantum hardware means encoding errors can propagate throughout computation, potentially degrading model performance [3]. These encoding challenges represent a critical consideration in evaluating the practical viability of quantum approaches to credit risk, as even theoretically optimal quantum algorithms may prove impractical if data loading creates insurmountable computational overhead. Once encoded, quantum feature space and quantum kernel methods present effective methods to improve credit analysis. The encoding of classical credit data into quantum states implicitly scales feature spaces exponentially without the high-dimensional representations being calculated [3]. This allows the simple non-linear borrower behavior patterns that may represent default risk to be captured. The quantum kernel method quantifies the closeness of quantum states of distinct borrowers, in effect quantifying inner products in this enhanced feature space [3]. This methodology has specific potential in integrating non-traditional data into homogeneous credit models, which could lead to better discrimination of risk, as well as encouraging more inclusive credit provision through the identification of less obvious trends than the standard credit metrics.

4. Comparative Performance Analysis

Assessment of the comparative advantages between classical machine learning and quantum machine learning methods of credit risk assessment must be evaluated with a carefully constructed benchmarking framework that would take into account both predictive and computational resource needs. The structured comparative analyses have been designed to analyse quantum advantage in various aspects of credit modeling issues, specifically considering problem size and complexity limits where quantum methods may show any significant gain [18]. Such assessment systems generally include side-by-side executions of similar tasks on both paradigms, where there is the controlled creation of data and standard financial data. More recent work has shown that in some problems of credit classification with special structural properties, quantum implementations can, in theory, reduce computation cost and still achieve or possibly better classification accuracy, but practical implementations currently are limited by the capability of current hardware [18].

Credit risk assessment performance measures cut across various dimensions, where predictive accuracy, computational efficiency, and ability to scale to more complex problems are of special concern. Quantum risk analysis methods on financial portfolios have been shown in theory to be computationally scaled better than classical Monte Carlo methods [8]. Whereas classical simulations typically take computational resources that scale linearly with the desired accuracy, quantum methods for amplitude estimation may have quadratic gains in this scaling relationship. In particular, financial risk computations that require

computation of the prices of complex derivatives and risk exposure accounting, quantum computing enables the theoretically computationally-complex tasks of $O(1/\epsilon^2)$ to be brought down to the $O(1/\epsilon)$ computerscale. This computational power is of special importance in high-precision risk calculations needed by regulatory structures and in-house risk management procedures.

Financial data sets that have high dimensions and are nonlinear in the relationships among the variables are particularly promising for their applications to enjoy the benefits of quantum processing. Exponentially large Hilbert spaces available to quantum systems are a natural way to model the complex correlations among many financial indicators, which may give an indication of default risk [18]. Experimental applications based on quantum feature mapping procedures have been shown to be able to reproduce small effects of interactions among financial variables that are difficult to find efficiently in classical models. Such methods are especially promising in contemporary credit evaluation problems that require a wide range of data, including non-traditional credit histories, where intricate interactions of behavioral patterns, transaction backgrounds, and macroeconomic conditions all contribute to default risk [8].

The path to the realization of the theoretical quantum advantage has been hastened by industry-academic partnerships and prototype implementations. A particularly promising method in near-term use is variational quantum algorithms, which use hybrid quantum-classical systems, assigning particular computational tasks to quantum processors and carrying out other tasks at the classical level [12]. These methods reduce existing hardware constraints by using techniques with error resilience and circuit designs that are optimized. These applications are useful in finance because quantum circuits are tailored to solve portfolio optimization, credit classification, and risk simulation problems [12]. Although full-scale quantum advantage in comprehensive credit risk modeling is in the future, modular designs that address particular computational bottlenecks have shown promising performance profiles even with today's NISQ-scale quantum processors.

	Table 3:	Comparative Performance A	Analysis	[8,	12,	18]
--	----------	---------------------------	----------	-----	-----	-----

Evaluation Framework	Performance Metrics	Dataset Characteristics	Implementation Status
Benchmarking Protocols	Predictive Accuracy	High-dimensionality	Prototype Deployments
Controlled Comparisons	Computational Efficiency	Non-linear Relationships	Academic-Industry Collaboration
Standardized Datasets	Scaling Behavior	Alternative Data Sources	Hardware Constraints
Problem Size Thresholds	Classification Performance	Complex Interactions	Error-resilient Techniques
Structured Problems	Complexity Reduction	Financial Indicators	NISQ-era Applications

Among the performance metrics shown in Table 3, computational efficiency and scaling behavior demonstrate the most significant quantum advantage. Specifically, the quadratic improvement in scaling for quantum amplitude estimation (from $O(1/\epsilon^2)$ to $O(1/\epsilon)$) represents a concrete mathematical advantage that translates to substantial resource savings for high-precision financial calculations. This quantum advantage becomes particularly pronounced when processing high-dimensional datasets with complex interactions, where the exponential representational capacity of quantum systems can potentially overcome the curse of dimensionality that plagues classical approaches. While predictive accuracy improvements remain theoretically possible but practically limited by current hardware constraints, the computational efficiency gains provide the clearest path to near-term quantum advantage in credit risk assessment applications.

5. Industry Applications and Implementation Challenges

The financial institutions have started applying quantum methods to a number of functions in the banking sector, although portfolio optimization has turned out to be one of the most promising functions. To construct a portfolio, quantum computing can take advantage of the inherent capabilities of quantum computing to compute the value of many possible allocations at once, potentially changing the way risk-return tradeoffs are determined across a variety of different assets [9]. The quantum annealers and gate-based quantum systems are best suited to the quadratic optimization problems at the core of the modern portfolio theory. Outside of portfolio management, risk assessment applications also make use of the ability of quantum computing to simulate more complex scenarios that would have overwhelmed classical systems. Quantum machine learning is useful to credit scoring applications because it can extract subtle patterns in varied data sets, and this may improve discrimination between defaulting and non-defaulting borrowers using more complex feature interaction modeling [9]. Such realizations are somewhat experimental yet show promising directions toward the realization of practical quantum benefit in the context of particular financial uses.

Regulatory quantum computer applications are aimed at solving computational problems in systemic risk assessment and financial network analysis. The interdependence of the contemporary financial systems poses modeling challenges that have historically necessitated simplifications in the methods of regulatory oversight [15]. Quantum network analysis provides greater functionality in exploring how distress could spread across financial systems, which could provide additional information about when systemic risks could emerge sooner. This capability to evaluate more holistic risk factors in parallel conforms to regulatory requirements of more holistic methods of assessment that more effectively reflect the complex interdependencies between financial institutions [9]. Initial experimental applications have targeted aspects of systemic risk measurement and show promise of more extensive regulatory applications with the development of quantum hardware.

The quantum computer applications that have drawn the specific attention of financial technology companies include alternative credit scoring schemes that involve non-traditional data in their creation. The computational constraints of scale of handling various behavioral signals, digital trails, and transactional trends form dimensional constraints that quantum algorithms may mitigate well [15]. Quantum machine learning algorithms show promising power in detecting any obscure connections among these disparate data types that could point to creditworthiness even in the face of no or minimal credit histories. The area of application is of particular interest in overcoming the financial inclusion dilemma by classifying trusted borrowers among the groups previously marginalized by standard credit checking methods [9]. These other credit assessment requirements coincide with the natural non-linear relationship capturing capacity of quantum systems in high-dimensional datasets.

Hardware constraints, which relate to the current quantum computing era, are the main problem when it comes to current implementation problems. Modern quantum processors have relatively low counts of qubits and large error rates that limit viable financial uses [11]. Decoherence in quantum systems poses special difficulties to financial algorithms that take a long time to execute; quantum systems lose their quantum properties due to natural interactions with the environment. Although error correction methods theoretically reduce these problems, they would need a large number of extra qubits that are currently out of reach [11]. To obtain credible results out of noisy quantum hardware, special error mitigation methods are needed, which complicate the development of financial algorithms.

Current quantum software frameworks and libraries present additional implementation challenges beyond hardware limitations. Popular quantum development platforms like Qiskit and PennyLane, while offering essential tools for quantum algorithm development, impose significant constraints on financial applications [19]. These frameworks exhibit limited support for the complex financial data structures common in credit risk assessment, often requiring extensive preprocessing to convert financial information into quantum-compatible formats. Circuit depth limitations in these libraries frequently restrict the complexity of implementable quantum algorithms, particularly for algorithms requiring deep circuits for meaningful financial calculations. Additionally, these quantum frameworks still lack fully standardized approaches for error mitigation, requiring financial developers to implement custom error-handling routines that add

substantial development overhead. The relative immaturity of these libraries also means limited optimization capabilities for finance-specific routines, with most libraries optimizing for general-purpose computation rather than the specific requirements of financial risk calculations [19]. These software limitations, combined with the hardware constraints and specialized expertise requirements, create multiple layers of implementation barriers for financial institutions exploring quantum approaches to credit risk. Transition strategies put emphasis on practical strategies that assist a financial institution in developing quantum capabilities, even though hardware constraints currently exist. The so-called hybrid quantumclassical algorithms are especially promising in the near term since they plan the distribution of certain bottlenecks of the computation process among quantum processors and deal with other elements in a classical manner [15]. Quantum services available on the clouds allow financial institutions to access quantum computing services via familiar programming interfaces, eliminating significant barriers to entry without requiring huge hardware investments. Progressive implementation roadmaps often target particular high-value computational problems in current risk processes in which quantum methods could provide benefits despite current hardware limits [9]. This incremental strategy allows financial institutions to gain experience with quantum techniques that can be practical, and to proceed with longer-run plans of more wholesome integration as quantum hardware becomes more and more available.

Table 4: Industry Applications and Implementation Challenges [9, 11, 15]

Application Areas	Regulatory Uses	Current Limitations	Transition Strategies
Portfolio	Systemic Risk	Hardware Constraints Hybrid Algorithms	
Optimization	Assessment	Traidware Constraints	Trybrid Algoridinis
Credit Scoring	Financial Network Analysis	Quantum Decoherence	Cloud-based Services
Risk Simulation	Early Warning Systems	Error Correction Needs	Progressive Implementation
Pattern Recognition	Holistic Assessment	Expertise Requirements	Computational Bottleneck Focus
Alternative Credit Models	Interdependency Modeling	Development Complexity	Experience Building

Conclusion

Quantum Machine Learning is an emerging frontier in credit risk assessment that has the potential to solve the problems of computational barriers that are limiting classical methods today. The peculiarities of quantum systems are consistent with the difficulties of processing high-dimensional financial data and modeling intricate connections between various risk factors. Although the existing hardware limitations require hybrid implementation solutions, initial prototypes show good avenues of attaining realistic quantum benefits for certain credit risk solutions. The modular approaches to quantum-building can be started by financial institutions with the aim of addressing the risk processes that have computational bottlenecks in their existing architecture. With the maturity of quantum hardware, more holistic applications can be developed, which may provide risk assessments that are real-time, explainable, and can be inclusive, taking into account subtle default behavior in different borrower segments. When quantum computing, machine learning, and financial expertise come together, potential opportunities exist to develop radically new methods of approach to credit risk that would be both more analytically sophisticated and more efficient in an ever-more complex financial environment.

References

- [1] M. Schuld et al. "An introduction to quantum machine learning," arXiv:1409.3097, 2014. https://arxiv.org/abs/1409.3097
- [2] Jacob Biamonte et al., "Quantum Machine Learning," ResearchGate, 2016.
- https://www.researchgate.net/publication/311067084 Quantum Machine Learning
- [3] Maria Schuld and Nathan Killoran, "Quantum Machine Learning in Feature Hilbert Spaces," Physical Review Letters, 2019. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.040504
- [4] Vojtěch Havlíček et al., "Supervised learning with quantum-enhanced feature spaces," Nature, 2019. https://www.nature.com/articles/s41586-019-0980-2
- [5] Patrick Rebentrost et al., "Quantum Support Vector Machine for Big Data Classification," APS, 2014. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.130503
- [6] Román Orús et al., "Quantum computing for finance: Overview and prospects," ScienceDirect, 2019. https://www.sciencedirect.com/science/article/pii/S2405428318300571
- [7] Joan Bellier-Millès et al., "Homotopy theory of curved operads and curved algebras," arXiv:2007.03004, 2025. https://arxiv.org/abs/2007.03004
- [8] Xue-Yi Guo et al., "Observation of a Dynamical Quantum Phase Transition by a Superconducting Qubit Simulation," APS, 2019.
- https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.11.044080
- [9] Dylan Herman et al., "Quantum computing for finance," arXiv:2307.11230, 2023. https://arxiv.org/abs/2307.11230v1
- [10] Marcello Benedetti, "Parameterized quantum circuits as machine learning models," IOP Science, 2019. https://iopscience.iop.org/article/10.1088/2058-9565/ab4eb5
- [11] Frank Arute et al., "Quantum supremacy using a programmable superconducting processor," Nature, 2019. https://www.nature.com/articles/s41586-019-1666-5
- [12] Yunchao Liu et al., "A rigorous and robust quantum speed-up in supervised machine learning," Nature, 2021. https://www.nature.com/articles/s41567-021-01287-z
- [13] Ashley Montanaro, "Quantum speedup of Monte Carlo methods," The Royal Society Publishing, 2015. https://royalsocietypublishing.org/doi/full/10.1098/rspa.2015.0301
- [14] Doug Dannemiller et al., "Industry spending on quantum computing will rise dramatically. Will it pay off?" Deloitte, 2023. https://www.deloitte.com/us/en/insights/industry/financial-services/quantum-computing-in-finance.html
- [15] Josh Schneider and Ian Smalley, "What is quantum computing?" IBM, 2025.
- https://www.ibm.com/think/topics/quantum-computing
- [16] Michael Lubasch et al., "Variational quantum algorithms for nonlinear problems,"
- arXiv:1907.09032, 2019. https://arxiv.org/abs/1907.09032
- [17] Christa Zoufal et al., "Quantum Generative Adversarial Networks for Learning and Loading Random Distributions," arXiv:1904.00043, 2019. https://arxiv.org/abs/1904.00043
- [18] Stefan Woerner and Daniel J. Egger, "Quantum Risk Analysis," arXiv:1806.06893, 2018. https://arxiv.org/abs/1806.06893
- [19] Peter Wittek, "Quantum Machine Learning: What Quantum Computing Means to Data Mining," 2014. https://www.researchgate.net/profile/Peter-
- $Wittek/publication/264825604_Quantum_Machine_Learning_What_Quantum_Computing_Means_to_D ata_Mining/links/562aacc208ae04c2aeb1cb64/Quantum-Machine-Learning-What-Quantum-Computing-Means-to-Data-Mining.pdf$