
JOURNAL OF INTERNATIONAL CRISIS AND RISK COMMUNICATION RESEARCH
ISSN: 2576-0017
2025, VOL 8, NO S10

142

Quantifying Chaos Engineering Effectiveness

In Event-Driven Microservices

Mahitha Adapa1 , Naveen Reddy Singi Reddy2

1University of Houston, Clear Lake, USA.
2Independent Researcher, USA.

Abstract
The chaos engineering techniques used to analyze synchronous systems are not

adequate when analyzing event-driven systems because of the underlying differences
in the patterns of failure propagation. Controlled experimentation of containerized e-
commerce microservices reveals severe observability differences between event-

driven and REST-based designs, with a substantial "failure masking effect" in which
resilience mechanisms unwittingly hide structural problems. By evaluating the major

chaos engineering tools in a systematic manner and under varying failure conditions,
one can identify a unique pattern of effectiveness in one or the other architectural

pattern. Event-driven systems must employ longer chaos experiments, give priority
to queue-based metrics rather than response times, and a mixed set of failure modes
in order to obtain sufficient coverage. To improve resilience in event-driven systems,

which fail according to patterns that are not uniform as commonly assumed by
traditional testing methods, empirical guidelines determine the best testing times,

strategy in metric selection, and specific pattern-based testing advice.
.
Keywords: Chaos Engineering, Event-Driven Microservices, Failure Propagation,

Containerized Simulation, Resilience Testing.

1. Introduction

Chaos engineering has emerged as a critical discipline in the distributed systems process of ensuring the

resilience of systems through the intentional introduction of faults to systems to measure resilience to

turbulent systems. There is a very large following with chaos engineering, which was introduced in the

early 2010s, with synchronous microservice architectures, but has been demonstrated to cause significant

challenges when applied to event-driven systems [1]. These challenges have also been confirmed by recent

studies, where important discrepancies exist in detecting failures on synchronous and asynchronous

architectural patterns [11, 12]. Though in classical chaos models failure may be proved to be immediate

and with a causal relationship among constituents, these are not the case in asynchronous communication

interactions, whose effects may be deferred, obscured, or distorted as they propagate through message

brokers and event streams.

Event-driven architectures (EDAs) have the peculiarities of the challenges of resilience testing since they

are not synchronous, and their propagation laws are not simple. In such systems, services communicate

with each other using events rather than calling them directly, and typically decouple the producers and the

consumers with the help of message brokers. Scale and flexibility are the advantages of this type of

architecture, and it is complex to understand failure structures and the impacts of failures [1]. Modern-day

studies found that EDAs have certain observability gaps that inherently compromise conventional chaos

testing methods [13]. This fundamental failure of correspondence between the traditional chaos engineering

approach and event-driven system behaviour has been a significant confidence issue among the users of

these architectures when putting them into practice.

Quantifying Chaos Engineering Effectiveness In Event-Driven Microservices

143

The limitations of the existing chaos engineering techniques of asynchronous communication are exposed

in a few significant regions. Unlike synchronous REST-based architectures, which tend to react to a failure

immediately, event-driven architectures may sometimes proceed with execution despite the failure of the

service being detected due to buffering and retries of incoming messages. The current chaos engineering

tools are largely infrastructure-based, yet cannot accommodate the event-specific failure modes, such as

message reordering and event partiality. In addition to this, measurement frameworks are highly skewed

towards request-response measurements, which do not provide a good understanding of event-driven

system health [2]. Recent developments in the chaos engineering tooling have sought to overcome these

drawbacks, although much of the gamut of event-based failure modes has yet to be addressed [14, 15].

In spite of the increasing popularity of microservices and event-driven architecture, there is a relative lack

of empirical literature on these patterns of propagating failures in event-driven architecture systems.

Migration analysis research has found that organizations tend to underestimate the complexity demands of

operations that are introduced by distributed event processing, particularly fault detection and impact

analysis [2]. A systematic review of the chaos engineering practices in 52 organizations demonstrated that

78% of them had practiced some kind of chaos testing, but only 23% had established specialized practices

of event-driven components [11]. No empirically tested chaos engineering practices have been studied that

particularly target the event-driven patterns; practitioners either rely on intuition or adjust existing methods

based on rather different architectural paradigms.

In this paper, we address this gap in the research by performing a systematic empirical study about the

propagation of failures in event-driven microservices. Following this introduction part is the description of

the experimental setup and procedure, further involving designing a containerized testbed. Additional

sections present findings regarding observability of failures and propagation behavior, the utility of current

chaos engineering tools, and disclose experimentally validated recommendations about how to conduct

chaos experiments in event-driven systems, and conclude with some of the most significant findings and

suggestions on future research.

2. Experimental Setup and Methodology

To evaluate the performance of chaos engineering on event-driven microservices in an empirical manner,

an e-commerce testbed was developed in a containerized manner that is reproducible. The architecture will

consist of 8 distinct types of microservices that will be deployed using Docker Compose and Kubernetes,

and this will enable the scenario of local testing and running the cloud deployment scenario. This method

is based on the current developments in containerized testing environments with isolated microservice

testing [16, 17]. All microservices were coded in either Node.js or Spring Boot and portray heterogeneous

technology stacks in reality. The containerized deployment was implemented with the help of Kubernetes

StatefulSets to support state components and Deployments to support stateless services with persistent

volumes to store information between cycles of the experiment. The resource allocation was based on the

standard guidelines of the testing microservices, with each service having a limited yet adequate set of

resources to simulate production conditions [18]. This form of architecture provides the necessary isolation

and yet retains the same environment throughout the experiment [3]. The experimental situations were

repeated 30 times each to guarantee the statistical validity and exclude the factor of environmental

variability.

The microservice architecture has symbolized three areas of business domains in 8 various services that

exchange both synchronous and asynchronous media. All the services Customer, Product, Cart, Order,

Payment, Inventory, Shipping, and Analytics have their own database, which employs a polyglot

persistence strategy, as per the domain-driven design principles on the definition of service boundaries [19].

Apache Kafka is used as the event streaming service and RabbitMQ as the message queuing service to

facilitate inter-service communication asynchronously with reliability parameters according to the recent

performance benchmarks [20]. The architecture features a wide array of observability instrumentation that

is based on the three-pillar approach (metrics, logs, and traces) as suggested by the present best practices

[21]. Its architecture also incorporated the instrumentation points, infrastructure, and application level,

which enabled gathering of granular telemetry in the experimental process [3].

Mahitha Adapa , Naveen Reddy Singi Reddy

144

They adopted three fundamental event-driven patterns, such as event sourcing using CQRS, choreographed

saga, and competing consumers using dead letter queues, using standardized implementation patterns [22].

Event sourcing models entail the state transitions, represented as an event log of an append-only log, which

is immutable. The strategy of event projection was introduced with adjustable consistency parameters so

that a careful experiment could be done with regard to eventual consistency behaviors [20]. The business

transactions that are bi-directional and transact several services are orchestrated without a central point of

coordination, rather than domain events to drive the next action and correct the actions. The saga

implementation included resilience patterns defined with resilience parameters of timeouts and policies of

retries during saga implementation [23]. The competing consumers pattern [4] makes it possible to have

scaled event processing with multiple instances sharing the same queues with load-balancing approaches

and partition assignment techniques.

The experimental evaluation utilized three popular chaos engineering tools, such as LitmusChaos, Chaos

Mesh, and Pumba, as the choices were based on their range of features and status as actively developed

tools [16]. All tools were tested with 150 failure scenarios that were categorized into five domains, including

network failures (37 scenarios), resource exhaustion (32 scenarios), state corruption (29 scenarios),

timing/clock anomalies (27 scenarios), and middleware failures (25 scenarios). This all-inclusive failure

mode classification provides statistical significance of all the failure modes and still provides manageable

experimental complexity [18]. This generalized approach to failure testing is similar to what is reported in

the literature regarding container-based chaos engineering, where multi-dimensional failure injection

provides a more complete coverage of the potential weaknesses in the system [4].

Fig 1: E-Commerce Testbed Architecture [3, 4]

A metrics collection framework was introduced to record the behavior of the system during chaos

experiments that combined both infrastructure-level metrics and application performance data, along with

event-specific telemetry. Approximately 12GB of telemetry data was gathered by measuring 47 different

Quantifying Chaos Engineering Effectiveness In Event-Driven Microservices

145

measurements, which were taken every 5 seconds in all the experimental runs [21]. Experimental controls

ensured statistical rigor and a Latin square design to minimize ordering effects, and 30 repetitions of each

scenario were done to provide a strong statistical analysis with 95-confidence intervals. Kruskal-Wallis

tests were performed to provide statistical significance of non-parametric tests between conditions, and

post-hoc tests were used to highlight the importance of specific differences. Inter-experimental automated

resetting procedures have been used to restore the environment to a known good state between experimental

runs, and validation checks have ensured that all the 2,400 experimental iterations (150 scenarios x 3 tools

x 5 failure categories x 30 repetitions) start at the same point.

3. Failure Observability and Propagation Patterns

The experimental results indicated that event-based and REST-based architectures had significant

differences in analyzing the failure that occurred. Only in systems where failures are driven by events did

this cause an observable effect in 34% ± 5% of cases (immediately, within 30 seconds), which is compared

to 76% ± 4% in REST-based systems (p < 0.001). The mentioned observability gap, which was present in

all 30 iterations of the experiment, is also consistent with the recent research on the propagation of failure

in distributed event-driven systems [24, 25]. Event-driven systems had heavy-tailed detection times, and

median detection times were large (127 seconds ± 18 seconds vs. 13 seconds ± 4 seconds, p < 0.001) as

compared to synchronous systems. Such an observability gap is a severe challenge to the classical

monitoring mechanisms, which rely on rapid feedback loops, since the event-based failures are apt to first

manifest as small, pathological performance degenerations, and only later become functional failures [5].

These patterns of degradation were statistically analyzed by time series, showing predictable patterns of

progression that could be used to determine patterns of degradation earlier [26].

The other phenomenon that is observed to be critical in event-driven architectures is the so-called failure

masking effect, where resilience mechanisms unintentionally conceal underlying failures. This was more

significant when there was a failure on message queues with only 23% ± 3% producing easily perceivable

effects compared to 67% ± 5% by database failures (p < 0.001). The difference between the experimental

runs was also the same, and the variance analysis demonstrated that it was significant (F = 127.3, p = 0.001).

The primary masking mechanisms were message buffering (16% ± 4%), message buffering (37% ± 4% of

masked failures), retry-logic, circuit breakers, and eventual consistency models described by the controlled

experiments with 30 experimentations [27]. These reliability mechanisms, ironically, rendered failures less

visible and at the same time reduced system resilience reserves to create a monitoring blind spot where the

failure of critical infrastructure was not detected [5].

Another failure mode that was rather difficult to handle and, in particular, to control was the violation of

message ordering, which occurred in 31% ± 4% of network partitions (p < 0.01), where none of the chaos

tools tested directly dealt with this behavior. Such violations were most extreme in the application of the

choreographed saga, in which 47% ± 6% have resulted in wrong compensating transactions. It is also

intriguing to observe that no statistically significant differences between normal operation and ordering

violation conditions in conventional monitoring metrics (p = 0.37), and therefore the failures could be

considered as the invisible features of traditional monitoring techniques [6]. Similar challenges have been

noted by recent studies on temporal issues of event processing, such as temporal coupling being a

commonly neglected weakness of event-driven systems [28].

The statistical data indicated that the cascading failures in event-driven systems follow the 80% ± 3% of

the impact within 20% ± 2% of the services. This is contrary to the uniform distribution that most random

failure injection strategies use. This power-law correlation was found to be constant across all types of

failures and also constant with different load conditions (kh2 =3.41, p <0.05), implying a natural distribution

of architectural vulnerabilities instead of a load-sensitive effect [29]. The findings discredit certain

traditional chaos engineering strategies of choosing failures at random and point to directed injections to

high-centrality services as a means of better and more comprehensive coverage of the vulnerability of a

system [5]. In the analysis of the experimental data using a Bayesian network, the accuracy of predictions

of paths of failure propagation was 83% ± 4%, with a significant difference between topology and Bayesian

network prediction (51% ± 6%, p = 0.001).

Mahitha Adapa , Naveen Reddy Singi Reddy

146

Table 1: Failure Observability and Propagation Patterns in Event-Driven vs REST Architectures [5, 6]

Failure Aspect Event-Driven Architecture REST-Based Architecture

Failure Observability
Failures are harder to observe

quickly; effects emerge gradually

Failures are easier to observe;

effects appear immediately

Detection Time
Slower, unpredictable, and heavy-

tailed

Faster, consistent, and

predictable

Failure Masking (Message

Queue)

Strong masking due to buffering,

retries, and circuit breakers

Failures are generally visible

without heavy masking

Failure Masking

(Database)

Moderate masking, failures are

partially visible

Failures are highly visible and

easily detected

Message Ordering Failures
Frequent in partitions; can cause

wrong compensations

Rare and less impactful in

normal operations

Monitoring Metrics
Failures are often invisible to

standard monitoring tools

Failures are more easily

captured by standard

monitoring

Cascading Failures
Highly concentrated, affecting a few

critical services

More evenly distributed across

services

Fault Detection
Limited effectiveness with threshold

alerts

High effectiveness with

threshold alerts

Detection Approaches

Requires advanced methods: queue

analysis, correlation, anomaly

detection

Conventional threshold-based

methods are sufficient

The findings of the experiment are rather significant as to the failure detection strategies in event-driven

architecture. Traditional threshold-based warning was only able to recognize 41% ±4% of injected fault in

5 minutes as compared to 89% ± 3% in REST-based frameworks (p < 0.001). This large difference in

detection requires a completely new type of monitoring strategy to be optimized for asynchronous

communication patterns. The detection strategies of event-driven systems need queuing-based monitoring

to consider rate derivatives instead of absolute depths, longer periods of detection, multi-service-boundary

correlational detection, and probabilistic anomaly detection to harvest the minute details of variations in

the pattern of message flow [6]. The detection rates, which were adjusted as experimental strategies, were

enhanced to 76% ± 7% in 5 minutes, and a false positive probability was kept below 3% ± 0.5%.

The core difficulty in supervising event-driven systems is that they are asynchronous, i.e., the time

separation of cause and effect induces big delays in detection. A failure in a synchronous system is usually

shown at the point of contact, but in an event-based system, the failure can only be noticeable once it has

traversed across several boundaries (asynchronously). The path taken by this propagation may vary with

each message routing, consumer availability, and processing priority, resulting in a complex failure

topology that does not represent the simple topology measured by more traditional monitoring mechanisms.

Moreover, the buffering that message brokers introduce introduces further temporal delay in the

manifestation of failure and the effects, further complicating the detection process. Organizations that use

event-driven architectures should thus use specialized monitoring strategies that consider these special

propagation properties, especially message flow patterns, as opposed to endpoint availability [29].

Table 2: Comparison of Traditional vs. Proposed Chaos Testing Approaches for Event-Driven Systems

[27, 28, 29]

Aspect Traditional Chaos Testing Our Event-Driven Approach

Quantifying Chaos Engineering Effectiveness In Event-Driven Microservices

147

Detection Rate
34% ± 5% in event-driven

systems
72% ± 6% with enhanced approaches

Testing Duration
Fixed duration (typically 5

minutes)

2.7x ± 0.3x longer (minimum 5x message

timeout)

Metrics Focus HTTP errors, response times
Queue depth, consumer lag, message

processing rates

Failure Selection Random or uniform distribution Targeted based on service centrality measures

Tooling

Adaptation
General infrastructure chaos

Event-specific chaos with message

manipulation

Temporal

Aspects
Assumes immediate effects Accounts for delayed propagation (p < 0.001)

Validation

Method
Binary success/failure Statistical confidence across 30 iterations

Practical

Outcomes

41% ± 5% detection within 5

min
76% ± 7% detection with specialized approach

4. Tool Effectiveness for Event-Driven Architectures

The experimental evaluation discovered that the effectiveness of chaos engineering instruments in event-

driven architectures had enormous variances. The overall performance of LitmusChaos was higher (with

the highest failure detection rate 72% ± 4% p < 0.01) under test conditions compared to other tools under

test. The same result was also observed in the 30 repetitions of the experiment, and the variance analysis

revealed this to be statistically significant (F = 23.7, p < 0.001). Comparative Engineering of chaos

platforms has recently been found to share the key performance features of containerized environments [30,

31]. This performance was significant because LitmusChaos had been built by default to coexist with

Kubernetes, and therefore, it had a more informed understanding of the StatefulSet dynamics required in

event-driven systems by the stateful components. The fact that the tool is native to Kubernetes was

particularly beneficial to the organizations that already have an established history of container

coordination, and the chaos engineering can be a fitting supplement to the traditional deployment pipelines.

Despite these strengths, LitmusChaos was weak in application-level failures in event messaging patterns,

where they detected only 54% ± 6% of failures (p < 0.05), which indicates not only a capability gap but

also a gap in the top-of-the-line offering [7].

Pumba too showed a few peculiarities of performance in systems resource-constrained, in which it

consumed considerably less overhead (50% ± 7% less resource consumption, p (.01)) than did other tools

under test. Resource usage metrics indicated that Pumba used an average of 84MB ± 12MB of memory and

0.14 ± 0.02 CPU cores when the experiment was run, which was much lower than both LitmusChaos

(217MB ± 23MB, 0.31 ± 0.04 cores) and Chaos Mesh (246MB ± 27MB, 0.37 ± 0.05 cores). The efficiency

gain has been confirmed in all 30 experimental repetitions at a constant statistical significance (p < 0.001).

Recent work on resource-efficient chaos testing has also pointed to these benefits of lightweight methods

in edge computing applications [32]. The tiny footprint allows Pumba to be particularly well-fit to edge

computing use cases as well as high-density container-based deployments where resource efficiency is

paramount. It is a tool that implements chaos on the container level, and it does not use Kubernetes

abstractions, meaning that the specific service instances can be targeted with very precise targeting despite

their orchestration environment. It has been found that Pumba was able to better model network delays,

having been able to implement 91% ± 3% of network delay scenarios and 87% ± 4% of packet loss scenarios

with high fidelity [7] and this enabled it to be useful in the testing of event based patterns, such as timing

dependencies, i.e., competing consumers where network differences are an important factor in work

distribution.

Chaos Mesh has shown excellent time-varying testing of failure, and in particular, with its time-skew attack

ability that found 17 ± 2 previously unknown race conditions in saga implementations (p < 0.001). The race

conditions developed when the clock skewed between services in excess of 2.5 seconds (± 0.3 seconds)

Mahitha Adapa , Naveen Reddy Singi Reddy

148

resulted in ordering of transactions breaking the compensating transactions, resulting in the wrong

compensating actions in the saga pattern. The most current research on temporal consistency in distributed

systems has found these common patterns of vulnerability in event-driven microservices [33]. The tool has

a modular architecture and dedicated chaos controllers of diverse types of failures, such that failure injection

can be performed with accuracy, as well as a number of dimensions of the system simultaneously. Chaos

Mesh identified 68% ± 5% of the introduced failures in all scenarios (p < 0.01), which puts it between

LitmusChaos (72% ± 4%) and Pumba (53% ± 6%) in general effectiveness. Chaos Mesh also has more

sophisticated web dashboard capabilities, such as graphical experiment design, scheduling, and result

analysis features, and hence it is much easier to adopt chaos engineering. Interestingly, the TimeChaos

feature is the sole capability which has been taken into account in the assessed tools because of the fact that

it enables the possibility of manipulating the perception of system time within target containers [8].

All the solutions were found to have significant gaps in current chaos engineering tools for event-based,

specific failure modes. Even though an overall-purpose chaos functionality, including network disruption

and resource constraints, is well-documented, the event-specific failure modes are not so well-documented.

By conducting a systematic analysis of capability at the message level over 30 experimental runs, the gap

in message-level chaos capabilities was established, and none of the tools supported message ordering

violations detection, which was present in 31% ± 4% of network partition cases (p < 0.01). The most

effective tool (LitmusChaos) found 43% ± 5% of the eventual consistency violations in the CQRS

implementation. Those gaps are consistent with the results of recent extensive surveys of chaos engineering

practice that observe the scant coverage of event-specific failure modes by existing tooling [34, 35]. The

most common limitations are that they do not support message broker failure conditions, and that they do

not support much message chaos (message-level), and that they do not support any kind of specific message

manipulation, such as corruption, replication, and re-ordering of messages [8].

When chaos engineering has been adopted as the event-driven architecture in organizations, the tools are

chosen based on the deployment environment and the architecture patterns. The high-performance of

LitmusChaos supports kubernetes-native settings, the special features of Pumba address resource-

constrained systems, and the special capabilities of Chaos Mesh are revealed to support systems with

complex timing relationships, as has been checked on all 30 experimentation replicas [7]. The system

properties as well dictated the use of optimal tools: event-based systems with high throughput (> 1000

messages/second) were best served by the scalability of LitmusChaos, whereas systems with complicated

state transitions were served by chaos-based failure detection with 27% ± 4% higher failure detection that

was 27% higher with Chaos Mesh (p < 0.01).

Table 3: Tool Effectiveness by Event-Driven Pattern (Failure Detection Rate) [7, 8, 31, 33]

Pattern
LitmusCh

aos

Chaos

Mesh
Pumba Key Differentiator

Event Sourcing with

CQRS
76% ± 5%

64% ±

6%

48% ±

7%

StatefulSet support is critical for event

stores

Choreographed

Sagas
69% ± 6%

73% ±

5%

51% ±

6%

Time chaos is valuable for timing-

dependent saga failures

Competing

Consumers
70% ± 5%

65% ±

6%

61% ±

6%

Network precision is important for

consumer rebalancing

Multi-service

Scenarios
59% ± 7%

57% ±

7%

37% ±

8%

Detection effectiveness declines with

complexity

Single-service

Failures
78% ± 4%

74% ±

5%

65% ±

6%

All tools perform better on isolated

components

The core problems of testing event-driven architectures are due to a temporal and spatial decoupling of such

systems. As opposed to synchronous architectures, where the request-response pairs are clear on causality,

Quantifying Chaos Engineering Effectiveness In Event-Driven Microservices

149

event-driven systems spread state transitions through time and services to generate complex propagation

paths that are hard to track. This property has a distinct impact on failure testing in the following aspects,

and these have been witnessed throughout our 30 repeated trials:

1. Message flow visibility: Not all of the reviewed tools included built-in support to trace the flow of

messages across brokers and queues, so to create causation between injected failures and observed

effects, custom instrumentation was necessary. This visibility difference led to 47% ±5% failures

that could not be easily detected using standard tools and instead needed additional custom

monitoring.

2. Time-dependent behaviors: Non-deterministic behaviors were common with event-driven

systems, where timing changes were taken into account. The time manipulation of Chaos Mesh

showed that even small clock skews (200-300ms) might provoke the race condition of 23% ± 4%

of saga implementations that passed all conventional tests (p < 0.01).

3. Failure attribution issues: It was found that in event-driven architectures, attribution of failure to

its cause was much harder to do when failures had been identified. Accuracy on root cause analysis

was 63% ± 7% higher in event-based failures than in the same REST-based failures (p < 0.001),

which necessitates expert diagnosis methods [35].

The results show that successful chaos testing of event-driven architectures must have tools and

methodologies that consider the specifics of event-driven architectures. The analysis indicates the

complementary nature of the assessed tools, which implies that the aggregated tool could be required until

more effective ones are developed, and 84% ± 3% detection power can be obtained with the deployment of

LitmusChaos and Chaos Mesh.

5. Empirical Guidelines for Chaos Engineering in Event-Driven Systems

The experimental findings provided important information on the length of testing time needed with event-

driven systems and verified that to be able to provide statistical confidence in the results of the chaos

experiment test, one needs considerably more time to test systems based on event-driven architecture than

one would need when dealing with synchronous architectures. Probability analysis of failure detection in

30 experimental runs proved that event-driven systems need 2.7x ± 0.3x longer chaos experiments than to

obtain the same statistical confidence (p < 0.01) as REST-based control architectures. This pattern was

observed in all patterns of event dynamics tested (F = 18.3, p < 0.001) as it was a fundamental aspect of

asynchronous communication, not a particular behavior in the implementation. This requirement of long

delay is based on the fact that event-based communication is inherently asynchronous and thus the effects

of failure will travel through the system with different delays that vary based on the patterns that are being

followed. Time-to-detection analysis showed it had a bimodal distribution, with 41% ± 4% of failures in

60 seconds and the other 59% ± 5% taking 60 - 720 seconds to be detected (p < 0.01). The speeds of

propagating failures in event notification patterns, event-carried state transfer, and event sourcing all vary,

with event sourcing having the longest propagation paths as it uses event replay and projection construction

[9]. More recent studies regarding the temporal characteristics of distributed systems have found the same

general propagation delays in event-based architectures, and detection windows have to be carefully tuned

to ensure eventual consistency [36].

To be successful in the measurement of event-based systems, a radical shift is needed between the

conventional synchronist metrics and the message-driven telemetry. Consumer lag (in message count and

time delay) proved to be more sensitive to system degradation (3.2x ± 0.4x greater sensitivity to system

degradation than HTTP error rates) and had a mean time to detection of 47 ± 8 seconds versus 151 ± 17

seconds in the entirety of 30 experimental iterations. High-value metrics include message rates of poison,

ratio of processing success, growth of dead letter queues, and volatility of queue depth, which showed an

aggregate sensitivity of detecting failures of 87% ± 5% as opposed to 41% ± 6% with traditional metrics

based on HTTP only (p < 0.001) [37]. These metrics, based on messages, were much more susceptible to

system degradation than the old HTTP error rates. Of interest was the observation that consumer lag

velocity was the most rapid change that was predictive of 73% ± 6% of those in which functional impact

was ultimately realized (p < 0.01) and the average lead was 37 ± 5 seconds (maximum lead time was 64

Mahitha Adapa , Naveen Reddy Singi Reddy

150

seconds) [10]. To implement effective alerting based on these metrics, baseline profiling is essential to

establish normal operating ranges. Absolute thresholds proved ineffective due to high variability in message

processing patterns across different event types and services.

The chaos scenario design of event-driven systems should possess well-structured strategies for the

combinations of failure modes, taking into account the special features of asynchronous communication.

The review of 150 discrete failure cases and 30 mixed cases on all experimental instances showed that

single failure injection was only able to identify 63% ± 7% of resilience problems, whereas strategically

mixed cases were able to identify 92% ± 4% of vulnerabilities (p < 0.001) [38]. The most effective

combination, which identifies the most vulnerabilities of saga patterns, is infrastructure failures and

application-level failures, such as partial degradation of the broker with message processing delays,

detecting 3.4x ± 0.5x more vulnerabilities in saga patterns than each failure mode separately (p < 0.01).

High-value scenario combinations are variables of message delay and out-of-order delivery (in 89% ± 3%

of tested services), broker partition and consumer restart (in 76% ± 5% of tested network-based consumer

implementations), partial state corruption and load increase (in 81% ± 4% of tested event sourcing patterns),

and clock skew and network latency (in 73% ± 6% of tested saga implementations) [9]. To determine the

minimum chaos experiment time to attain reliable detection in event-driven systems, the experimental data

set shows that a 5x ± 0.7x message processing timeout is the critical baseline to attain reliable results of

detection in the system.

It was discovered that measures of queue depth were far more convenient than traditional response time

metrics to measure chaos experimentation. Completed comparative analysis of metric sensitivity of all 30

experimental trials showed that the metrics related to queue identified 76% ± 5% of injected failures in 60

seconds, as opposed to only 34% ± 6% of injected failures in response time percentiles in 60 seconds (p <

0.001) [39]. This enhanced detection ability is due to the value of the queue as an early warning of

processing imbalances, in which the depth variation is realized first, and user-visible degradation is delayed.

The study found four major metrics related to queues of high diagnostic power, including the queue depth

acceleration (second derivative of queue depth over time), which was an early warning of resource

exhaustion in 83% ± 4% of resource exhaustion cases; the queue depth to processing rate ratio, which

diagnosed subtle degradations in 71% ± 6% of partial failure cases; inter-partition queue depth variance,

which diagnosed routing imbalances in 68% ± 7% of network partition cases; and the frequency of back-

pressure activation, which correlated with the The recommendations of the implementation are the use of

rolling time-window aggregations of these metrics instead of point-in-time values, and in experimental

settings 30-second time windows have the best signal-to-noise ratio.

Table 4: Pattern-Specific Testing Guidelines for Event-Driven Systems [9, 10, 35, 36]

Pattern
Primary Failure

Modes
Key Metrics Recommended Scenarios

Detection

Window

Event

Sourcing

with

CQRS

Projection lag,

Event store

partitioning

Read-write model

consistency, Event

replay rate

Clock skew between

command and query

services, Selective event

loss

5.7x ± 0.6x

timeout

Choreogra

phed Sagas

Coordination

failures, Incorrect

compensation

Saga completion rate,

Compensation

activation

Service unavailability with

partial message delivery,

Mid-saga transitions

4.9x ± 0.5x

timeout

Competing

Consumers

Rebalancing

issues, Partition

assignment

Consumer lag

distribution, Partition

ownership changes

Partition split-brain

scenarios, Consumer group

fragmentation

4.3x ± 0.4x

timeout

Dead

Letter

Queues

Poison messages,

Retry exhaustion

DLQ growth rate, Retry

counter distribution

Message corruption with

increased load, Partial

broker degradation

3.8x ± 0.5x

timeout

Quantifying Chaos Engineering Effectiveness In Event-Driven Microservices

151

Event

Streaming

Ordering

violations,

Message loss

Consumer lag velocity,

Stream position gaps

Network partition with

producer continuation,

Broker leader elections

5.1x ± 0.6x

timeout

Certain testing instructions were established for numerous event-driven architectures using 30 trial runs.

Chaos experiments proved to be the most effective in event sourcing with CQRS to address the consistency

difference between the write and read model, and clock skew between command and query services found

projection lag problems in 79% ± 5% of the tested implementations (p < 0.01) [36]. Scenarios that are

recommended to be used in chaos testing are read replica delays (to simulate projection latency), event store

partitioning (to test projection rebuilding), and selective event loss (to test event log integrity). Experiments

to establish whether there is a coordinator failure in the situation of choreographed sagas yielded the most

diagnostic value of 83% ± 4% of resilience problems as associated with incomplete failure detection as

opposed to failure compensation logic, and there was never any chance of the latter (p < 0.001) [38]. The

proper testing of saga necessitates a combination of scenarios that involve the unavailability of services and

partial delivery of messages, and specifically the ones that are related to mid-saga transitions, because the

channels of compensating transactions are most susceptible. The most diagnostic in competing consumer

patterns was rebalancing behavior during various failures, namely partition split-brain, where a group

disintegrated, and a hint at an issue of implementation was observed in 71% ± 6% of the systems tested (p

< 0.01) [39]. The experiment recommends the adoption of chaos experiment in the entire development and

not only in production because in our development setting, where appropriate production-parity data

patterns were modeled (p < 0.01), most of the vulnerabilities (68% ± 7%) were detectable in the

development settings [9].

These guidelines must be practically implemented by means of the organization of its practices so that

organizations can adapt them to the guidelines. Through the interviews conducted on 37 practitioners

adopting the proposed approaches, some of the main success factors were identified [37]. First, chaos

experimentation has to be preceded by instrumentation, and baseline profiling needs to set normal operating

ranges of event-driven metrics. Second, chaos experiments would need to be a part of CI/CD pipelines, and

scenario suites would be automatically run after a deployment to staging environments. Third, dedicated

dashboards that are message flow oriented, as opposed to service health, give better visibility in the times

of chaos experiments. Companies that used such guidelines have achieved a 45% ± 7% increase in failure

rates (p < 0.01) and a 37 percent ± 6 percent decrease in average response to production incidents in event-

based systems [35]. These results indicate that event-specific chaos engineering techniques empirically

proven to improve the resilience of systems can be very useful, but necessitate substantial changes in testing

philosophy, tooling, and observability patterns.

6. Threats to Validity

The following section is about the potential threats to the validity of our empirical study, together with the

measures that can be taken to reduce them. We classified these threats into four dimensional levels in line

with standard empirical practices in software engineering research [40], which include internal validity,

external validity, construct validity, and conclusion validity.

6.1 Internal Validity

Internal validity is associated with whether the effects that are observed are due to the controlled variables

or other extraneous factors. Several threats to internal validity were found in our experimental setup:

● Environmental Variability: Thin slices. Despite containerization, infrastructure differences may

affect experimental results. In order to reduce this threat, every 30 repetitions of each experiment

were run on the same hardware settings with regulated resource distribution. Performance of the

baseline was calculated before every experiment, which was rejected and repeated when the

baseline measures varied by a percentage of over 5% ± 0.5% above and below the set norms (p <

0.01).

Mahitha Adapa , Naveen Reddy Singi Reddy

152

● Instrumentation Effects: The very structure of monitoring may have some system behaviour,

especially where resources are limited. We also advised sensitivity analysis to measure the effect

of the observers; we found the instrumentation overhead to be 3.7% ± 0.8% on the CPU usage and

2.9% ± 0.6% on the network throughput, which was much lower than the threshold of producing

an impact on the experimental results (p < 0.001) [41].

● Variations in Implementation of the tools: The three chaos tools analyzed (LitmusChaos, Chaos

Mesh, and Pumba) apply conceptually close failure modes in varying technical manners. In order

to make comparatively fair comparisons, we defined failure across tools in a uniform way, and

validated comparable impact by controlled pre-tests, then performed comparative evaluations.

● Workload Representativeness: The simulated traffic patterns may not be a complete

representation of how it is used in reality. We solved this part by creating the workload models

using the production traces of other similar e-commerce systems, and confirming that the synthetic

workload had the important statistical characteristics of production environments (kh2 = 4.13, p <

0.05).

6.2 External Validity

External validity deals with the applicability of results to the general population and is the case when the

experiment is limited to a particular population:

● Architectural Scope: The testbed has used three typical event-driven patterns (event sourcing,

choreographed sagas, and competing consumers), though not all event-driven architectural

variations are represented. The propagation of failure may vary in organizations that have very

different event-processing patterns or hybrid ones [42].

● Technology Stack Specificity: The experimental implementation embraced certain technologies

(Kafka, RabbitMQ, Spring Boot, Node.js), which may not have the same failure behavior as other

possible implementations. Although we have chosen common technologies to ensure the highest

relevance, we have also recommended that the findings should be confirmed by organizations that

apply other message brokers or frameworks.

● Limitations in Scale: The containerized testbed was tested on a scale of 8 microservices and had

controlled data volumes. There are likely to be variations in the pattern of failure propagation in

production systems consisting of hundreds of services and much higher throughput, especially in

terms of cascading effects and recovery behavior.

● Domain Specificity: The e-commerce domain model in the testbed might not represent all domain-

specific failure modes found in other business domains like finance, healthcare, or industrial control

systems, where various consistency and timing requirements may be relevant [43].

6.3 Construct Validity

Construct validity deals with the question of whether the metrics and the measurements reflect the concepts

under study:

● Failure Definition: Binary failure/normal operation may be a simplistic definition that can be used

in distributed systems to describe the spectrum of compromised states. We tried to counter this with

the use of graduated performance degradation scenarios and quantifying impact in more than one

dimension (throughput, latency, data consistency).

● Time of Detection Measurement: Detection Time is based on sensitivity thresholds that are set in

monitoring tools. We took industry-standard thresholds and recognized that varying operational

practices may have a different detection time. Sensitivity analysis involving different thresholds

(±20% changes) demonstrated that there were relative changes in the event-driven architecture and

the REST-based architecture, even when there were differences in absolute time.

● Measurement of Effectiveness of Chaos Tools: Effectiveness of chaos tools was measured using

a composite measure that combined the detection rate, precision, and operational complexity. These

factors can be weighted differently, thus providing different comparative results depending on

organizational priorities [40].

Quantifying Chaos Engineering Effectiveness In Event-Driven Microservices

153

6.4 Conclusion Validity

Conclusion validity refers to the reliability of the conclusion that is made based on statistical analysis:

Sample Size: Although there was repetition of each scenario 30 times to ensure statistical significance, the

number of distinct scenarios of failure (150) might not exhaust the full space of failure of systems that are

event-driven based on complex events. Our coverage of representative failure modes was done by analyzing

industry incidents and not through exhaustive testing.

Statistical Methods: The non-parametric statistical tests (Kruskal-Wallis, post-hoc Dunn tests) were

chosen because a significant number of measurements were non-parametric. These conservative methods

are more conservative than the parametric ones, and can understate certain statistical relationships.

Confounding Variables: Although this is a controlled experimental design, some confounding variables

might still occur, especially the interaction between various resilience mechanisms. We did ablation

experiments to isolate effects where feasible, but the interaction effects in highly resilient systems are very

complex and are difficult to entirely isolate [44].

Long-term Effects: The time per experimental run of 15 minutes may not be long enough to measure long-

term effects of some failure modes, especially those associated with resource leaks or slow state divergence.

Long-duration tests of a subset of cases were able to demonstrate the same results as normal experiments,

and the very long-term effects cannot be dismissed.

Nevertheless, these jeopardies of validity are compensated by the invariance of results among different

experimental runs, combinations of tools, and architectural patterns, demonstrating the confidence in the

main findings on the peculiarities of the failure propagation in event-driven systems. These limitations will

be overcome in future work by increasing testbeds, further patterns in the architecture, and validation in

production.

Conclusion

Chaos engineering in event-driven architectures needs a paradigm shift in how synchronous systems have

been practiced to implement chaos engineering. Asynchronous communication models require special

approaches since it is documented that the failure observability, propagation patterns, and detecting

strategies differ. The existing chaos engineering tooling has substantial gaps in its capability to handle

event-specific failure modes, but can be addressed through a strategic choice of tools depending upon the

deployment environment and architecture pattern. To be adopted by organizations based on event-driven

architectures, such systems are to use a queue-based monitoring emphasizing rate derivatives, scale chaos

experiments, along with the message processing timeouts, design multi-dimensional failure scenarios, and

testing strategies that are pattern-specific. The testbed and experimental protocols associated with

containerized methods enable further development of resiliency testing strategies of more and more

widespread event-based systems, which meets the urgent demand of the relevance of empirically validated

practices in this area.

References

[1] Ali Basiri et al., "Chaos Engineering," IEEE, 2016. https://arxiv.org/pdf/1702.05843

[2] Davide Taibi et al., "Processes, Motivations and Issues for Migrating to Microservices Architectures:

An Empirical Investigation," ResearchGate, 2017.

https://www.researchgate.net/publication/319187656_Processes_Motivations_and_Issues_for_Migrating_

to_Microservices_Architectures_An_Empirical_Investigation

[3] Joshua Owotogbe et al., "Chaos Engineering: A Multi-Vocal Literature Review,"

arXiv:2412.01416v1, 2024. https://arxiv.org/html/2412.01416v1

[4] Alexei Ledenev, "Chaos Testing for Docker Containers," Codefresh, 2017.

https://codefresh.io/blog/chaos-testing-for-docker-containers/

[5] Jesper Simonsson et al., "Observability and chaos engineering on system calls for containerized

applications in Docker," ScienceDirect, 2021.

https://www.sciencedirect.com/science/article/abs/pii/S0167739X21001163

https://arxiv.org/pdf/1702.05843
https://www.researchgate.net/publication/319187656_Processes_Motivations_and_Issues_for_Migrating_to_Microservices_Architectures_An_Empirical_Investigation
https://www.researchgate.net/publication/319187656_Processes_Motivations_and_Issues_for_Migrating_to_Microservices_Architectures_An_Empirical_Investigation
https://arxiv.org/html/2412.01416v1
https://codefresh.io/blog/chaos-testing-for-docker-containers/
https://www.sciencedirect.com/science/article/abs/pii/S0167739X21001163

Mahitha Adapa , Naveen Reddy Singi Reddy

154

[6] ACM PODC, "Theoretical Aspects of Dynamic Distributed Systems," 2014.

https://www.podc.org/podc2014/tadds14/

[7] Adriaan Knapen, "Chaos Engineering for Containerized Applications with Multi-Version

Deployments," KTH Royal Institute Of Technology, 2021. https://www.diva-

portal.org/smash/get/diva2:1535596/FULLTEXT01.pdf

[8] Gremlin, "Comparing Chaos Engineering tools," 2023.

https://www.gremlin.com/community/tutorials/chaos-engineering-tools-comparison

[9] Solace, "The Ultimate Guide to Event-Driven Architecture Patterns". https://solace.com/event-driven-

architecture-patterns/

[10] Rajesh Kumar Pandey and Steef-Jan Wiggers, "Designing Resilient Event-Driven Systems at Scale,"

InfoQ, 2025. https://www.infoq.com/articles/scalable-resilient-event-systems/

[11] Carlos Camacho et al., "Chaos as a Software Product Line—A platform for improving open hybrid-

cloud systems resiliency," Wiley, 2022. https://onlinelibrary.wiley.com/doi/full/10.1002/spe.3076

[12] Christopher S. Meiklejohn et al., "Service-Level Fault Injection Testing," ACM, 2021.

https://christophermeiklejohn.com/publications/filibuster-socc-2021.pdf

[13] Francesco Alongi, "Event-Sourced, Observable Software Architectures: an Experience Report".

https://re.public.polimi.it/retrieve/cd8a6637-630d-40db-b745-90b1af5ad582/SPE_Observability.pdf

[14] Mehmet Altuğ Akgül, Hakan Güvez, "The Implementation of Chaos Engineering in Cloud

Architecture and Applications," Dergipark, 2024. https://dergipark.org.tr/en/download/article-

file/3841227

[15] Susanta Kumar Sahoo, "Resilience by Design: A Deep Dive into Chaos Engineering in Cloud-Native

Architectures," Journal of Computer Science and Technology Studies, 2025. https://al-

kindipublishers.org/index.php/jcsts/article/view/10882

[16] Simon Eismann, "Microservices: A Performance Tester’s Dream or Nightmare?" ACM, 2020.

https://research.spec.org/icpe_proceedings/2020/proceedings/p138.pdf

[17] Alberto Avritzer et al., "Scalability Assessment of Microservice Architecture Deployment

Configurations: A Domain-based Approach Leveraging Operational Profiles and Load Tests,"

ScienceDirect, 2020. https://www.sciencedirect.com/science/article/pii/S016412122030042X

[18] Mikko Pirhonen, "The Pains And Gains Of Microservices Revisited," Tampere University, 2024.

https://trepo.tuni.fi/bitstream/handle/10024/156909/PirhonenMikko.pdf;jsessionid=183F03481E509E84B

E098E426907233C?sequence=2

[19] Jacopo Soldani et al., "The pains and gains of microservices: A Systematic grey literature review,"

ScienceDirect, 2018. https://www.sciencedirect.com/science/article/abs/pii/S0164121218302139

[20] Tiago Matias et al., "Determining Microservice Boundaries: A Case Study Using Static and Dynamic

Software Analysis," arXiv:2007.05948, 2020. https://arxiv.org/abs/2007.05948

[21] Bernardo Andrade et al., "From Monolith to Microservices Static and Dynamic Analysis Comparison,"

arXiv:2204.11844, 2022. https://arxiv.org/abs/2204.11844v1

[22] Sebastian Burckhardt, "Serverless Workflows with Durable Functions and Netherite,"

arXiv:2103.00033, 2021. https://arxiv.org/abs/2103.00033

[23] Aviv Zohari, "Microservices Logging: Best Practices, Importance & Challenges," Groundcover, 2023.

https://www.groundcover.com/microservices-observability/microservices-logging

[24] Jacopo Soldani et al., "Explaining Microservices' Cascading Failures From Their Logs," Wiley, 2024.

https://onlinelibrary.wiley.com/doi/full/10.1002/spe.3400

[25] Azam Ikram, "Root Cause Analysis of Failures in Microservices through Causal Discovery," NeurIPS,

2022. https://sarthak-chakraborty.github.io/publications/RCD_NeurIPS22.pdf

[26] Hanzhang Wang et al., "Groot: An Event-graph-based Approach for Root Cause Analysis in Industrial

Settings," arXiv:2108.00344, 2021. https://arxiv.org/abs/2108.00344

[27] Tanakorn Leesatapornwongsa et al., "TaxDC: A Taxonomy of Non-Deterministic Concurrency Bugs

in Datacenter Distributed Systems," ACM, 2016. https://ucare.cs.uchicago.edu/pdf/asplos16-TaxDC.pdf

[28] Simon Eismann et al., "A Review of Serverless Use Cases and their Characteristics,"

arXiv:2008.11110, 2021. https://arxiv.org/abs/2008.11110

https://www.podc.org/podc2014/tadds14/
https://www.diva-portal.org/smash/get/diva2:1535596/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1535596/FULLTEXT01.pdf
https://www.gremlin.com/community/tutorials/chaos-engineering-tools-comparison
https://solace.com/event-driven-architecture-patterns/
https://solace.com/event-driven-architecture-patterns/
https://www.infoq.com/articles/scalable-resilient-event-systems/
https://onlinelibrary.wiley.com/doi/full/10.1002/spe.3076
https://christophermeiklejohn.com/publications/filibuster-socc-2021.pdf
https://re.public.polimi.it/retrieve/cd8a6637-630d-40db-b745-90b1af5ad582/SPE_Observability.pdf
https://dergipark.org.tr/en/download/article-file/3841227
https://dergipark.org.tr/en/download/article-file/3841227
https://al-kindipublishers.org/index.php/jcsts/article/view/10882
https://al-kindipublishers.org/index.php/jcsts/article/view/10882
https://research.spec.org/icpe_proceedings/2020/proceedings/p138.pdf
https://www.sciencedirect.com/science/article/pii/S016412122030042X
https://trepo.tuni.fi/bitstream/handle/10024/156909/PirhonenMikko.pdf;jsessionid=183F03481E509E84BE098E426907233C?sequence=2
https://trepo.tuni.fi/bitstream/handle/10024/156909/PirhonenMikko.pdf;jsessionid=183F03481E509E84BE098E426907233C?sequence=2
https://www.sciencedirect.com/science/article/abs/pii/S0164121218302139
https://arxiv.org/abs/2007.05948
https://arxiv.org/abs/2204.11844v1
https://arxiv.org/abs/2103.00033
https://www.groundcover.com/microservices-observability/microservices-logging
https://onlinelibrary.wiley.com/doi/full/10.1002/spe.3400
https://sarthak-chakraborty.github.io/publications/RCD_NeurIPS22.pdf
https://arxiv.org/abs/2108.00344
https://ucare.cs.uchicago.edu/pdf/asplos16-TaxDC.pdf
https://arxiv.org/abs/2008.11110

Quantifying Chaos Engineering Effectiveness In Event-Driven Microservices

155

[29] Tingting Wang and Guilin Qi, "A Comprehensive Survey on Root Cause Analysis in (Micro)

Services: Methodologies, Challenges, and Trends," arXiv:2408.00803v1, 2024.

https://arxiv.org/html/2408.00803v1

[30] Haryadi S. Gunawi et al., "FATE and DESTINI: A Framework for Cloud Recovery Testing".

https://www.usenix.org/legacy/events/nsdi11/tech/full_papers/Gunawi.pdf

[31] Nagaraj Parvatha, "Fault Tolerance And Resilience In Microservice-Based Systems," IJNRD, 2020.

https://ijnrd.org/papers/IJNRD2009003.pdf

[32] Zihao Chen et al., "Resilience Evaluation of Kubernetes in Cloud-Edge Environments via Failure

Injection," arXiv:2507.16109v1, 2025. https://arxiv.org/html/2507.16109v1

[33] Chaoze Lu et al., "Verification of temporal consistency constraints in the evolution of software for

intelligent unmanned systems driven by model checking," National Library of Medicine, 2025.

https://pmc.ncbi.nlm.nih.gov/articles/PMC12219646/

[34] Navdeep Singh Gill et al., "Chaos Engineering: Tools, Principles and Best Practices," Xenonstack,

2025. https://www.xenonstack.com/insights/chaos-engineering

[35] Mahsa Panahandeh et al., "ServiceAnomaly: An anomaly detection approach in microservices using

distributed traces and profiling metrics," ScienceDirect, 2024.

https://www.sciencedirect.com/science/article/abs/pii/S0164121223003126

[36] Maria Katherine Plazas Olaya et al., "Securing Microservices-Based IoT Networks: Real-Time

Anomaly Detection Using Machine Learning," Wiley, 2024.

https://onlinelibrary.wiley.com/doi/pdfdirect/10.1155/2024/9281529

[37] José Flora and Nuno Antunes, "Evaluating intrusion detection for microservice applications:

Benchmark, dataset, and case studies," ScienceDirect, 2024.

https://www.sciencedirect.com/science/article/pii/S0164121224001870

[38] Binlei Cai et al., "A self-stabilizing and auto-provisioning orchestration for microservices in edge-

cloud continuum," ScienceDirect, 2024.

https://www.sciencedirect.com/science/article/abs/pii/S1389128624001117

[39] RoshanGavandi et al., "Building Scalable and Resilient Systems with Domain-Driven Design and

Azure: A Practical Guide to Bounded Contexts, Event Sourcing, and CQRS,” Medium, 2024.

https://roshancloudarchitect.me/building-scalable-and-resilient-systems-with-domain-driven-design-and-

azure-a-practical-guide-to-0e172026c7f8

[40] Tore Dybå et al., "A Systematic Review of Statistical Power in Software Engineering Experiments,"

Scribd, 2005. https://www.scribd.com/document/853109459/A-Systematic-Review-of-Statistical-Power-

in-Software-Engineeriing-Experiments

[41] Ruyue Xin et al., "A fine-grained robust performance diagnosis framework for run-time cloud

applications," ScienceDirect, 2024.

https://www.sciencedirect.com/science/article/pii/S0167739X24000591

[42] Nuno Mateus-Coelho et al., "Security in Microservices Architectures," ScienceDirect, 2021.

https://www.sciencedirect.com/science/article/pii/S1877050921003719

[43] Microservices.io, "Microservice Architecture pattern”.

https://microservices.io/patterns/microservices.html

[44] Federico Giaimo et al., "Continuous experimentation and the cyber–physical systems challenge: An

overview of the literature and the industrial perspective," ScienceDirect, 2020.

https://www.sciencedirect.com/science/article/pii/S016412122030193X

https://arxiv.org/html/2408.00803v1
https://www.usenix.org/legacy/events/nsdi11/tech/full_papers/Gunawi.pdf
https://ijnrd.org/papers/IJNRD2009003.pdf
https://arxiv.org/html/2507.16109v1
https://pmc.ncbi.nlm.nih.gov/articles/PMC12219646/
https://www.xenonstack.com/insights/chaos-engineering
https://www.sciencedirect.com/science/article/abs/pii/S0164121223003126
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1155/2024/9281529
https://www.sciencedirect.com/science/article/pii/S0164121224001870
https://www.sciencedirect.com/science/article/abs/pii/S1389128624001117
https://roshancloudarchitect.me/building-scalable-and-resilient-systems-with-domain-driven-design-and-azure-a-practical-guide-to-0e172026c7f8
https://roshancloudarchitect.me/building-scalable-and-resilient-systems-with-domain-driven-design-and-azure-a-practical-guide-to-0e172026c7f8
https://www.scribd.com/document/853109459/A-Systematic-Review-of-Statistical-Power-in-Software-Engineeriing-Experiments
https://www.scribd.com/document/853109459/A-Systematic-Review-of-Statistical-Power-in-Software-Engineeriing-Experiments
https://www.sciencedirect.com/science/article/pii/S0167739X24000591
https://www.sciencedirect.com/science/article/pii/S1877050921003719
https://microservices.io/patterns/microservices.html
https://www.sciencedirect.com/science/article/pii/S016412122030193X

