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Abstract 
The chaos engineering techniques used to analyze synchronous systems are not 

adequate when analyzing event-driven systems because of the underlying differences 
in the patterns of failure propagation. Controlled experimentation of containerized e-
commerce microservices reveals severe observability differences between event-

driven and REST-based designs, with a substantial "failure masking effect" in which 
resilience mechanisms unwittingly hide structural problems. By evaluating the major 

chaos engineering tools in a systematic manner and under varying failure conditions, 
one can identify a unique pattern of effectiveness in one or the other architectural 

pattern. Event-driven systems must employ longer chaos experiments, give priority 
to queue-based metrics rather than response times, and a mixed set of failure modes 
in order to obtain sufficient coverage. To improve resilience in event-driven systems, 

which fail according to patterns that are not uniform as commonly assumed by 
traditional testing methods, empirical guidelines determine the best testing times, 

strategy in metric selection, and specific pattern-based testing advice. 
. 
Keywords: Chaos Engineering, Event-Driven Microservices, Failure Propagation, 

Containerized Simulation, Resilience Testing. 
 

1. Introduction 

Chaos engineering has emerged as a critical discipline in the distributed systems process of ensuring the 

resilience of systems through the intentional introduction of faults to systems to measure resilience to 

turbulent systems. There is a very large following with chaos engineering, which was introduced in the 

early 2010s, with synchronous microservice architectures, but has been demonstrated to cause significant 

challenges when applied to event-driven systems [1]. These challenges have also been confirmed by recent 

studies, where important discrepancies exist in detecting failures on synchronous and asynchronous 

architectural patterns [11, 12]. Though in classical chaos models failure may be proved to be immediate 

and with a causal relationship among constituents, these are not the case in asynchronous communication 

interactions, whose effects may be deferred, obscured, or distorted as they propagate through message 

brokers and event streams. 

Event-driven architectures (EDAs) have the peculiarities of the challenges of resilience testing since they 

are not synchronous, and their propagation laws are not simple. In such systems, services communicate 

with each other using events rather than calling them directly, and typically decouple the producers and the 

consumers with the help of message brokers. Scale and flexibility are the advantages of this type of 

architecture, and it is complex to understand failure structures and the impacts of failures [1]. Modern-day 

studies found that EDAs have certain observability gaps that inherently compromise conventional chaos 

testing methods [13]. This fundamental failure of correspondence between the traditional chaos engineering 

approach and event-driven system behaviour has been a significant confidence issue among the users of 

these architectures when putting them into practice. 
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The limitations of the existing chaos engineering techniques of asynchronous communication are exposed 

in a few significant regions. Unlike synchronous REST-based architectures, which tend to react to a failure 

immediately, event-driven architectures may sometimes proceed with execution despite the failure of the 

service being detected due to buffering and retries of incoming messages. The current chaos engineering 

tools are largely infrastructure-based, yet cannot accommodate the event-specific failure modes, such as 

message reordering and event partiality. In addition to this, measurement frameworks are highly skewed 

towards request-response measurements, which do not provide a good understanding of event-driven 

system health [2]. Recent developments in the chaos engineering tooling have sought to overcome these 

drawbacks, although much of the gamut of event-based failure modes has yet to be addressed [14, 15]. 

In spite of the increasing popularity of microservices and event-driven architecture, there is a relative lack 

of empirical literature on these patterns of propagating failures in event-driven architecture systems. 

Migration analysis research has found that organizations tend to underestimate the complexity demands of 

operations that are introduced by distributed event processing, particularly fault detection and impact 

analysis [2]. A systematic review of the chaos engineering practices in 52 organizations demonstrated that 

78% of them had practiced some kind of chaos testing, but only 23% had established specialized practices 

of event-driven components [11]. No empirically tested chaos engineering practices have been studied that 

particularly target the event-driven patterns; practitioners either rely on intuition or adjust existing methods 

based on rather different architectural paradigms. 

In this paper, we address this gap in the research by performing a systematic empirical study about the 

propagation of failures in event-driven microservices. Following this introduction part is the description of 

the experimental setup and procedure, further involving designing a containerized testbed. Additional 

sections present findings regarding observability of failures and propagation behavior, the utility of current 

chaos engineering tools, and disclose experimentally validated recommendations about how to conduct 

chaos experiments in event-driven systems, and conclude with some of the most significant findings and 

suggestions on future research. 

 

2. Experimental Setup and Methodology 

To evaluate the performance of chaos engineering on event-driven microservices in an empirical manner, 

an e-commerce testbed was developed in a containerized manner that is reproducible. The architecture will 

consist of 8 distinct types of microservices that will be deployed using Docker Compose and Kubernetes, 

and this will enable the scenario of local testing and running the cloud deployment scenario. This method 

is based on the current developments in containerized testing environments with isolated microservice 

testing [16, 17]. All microservices were coded in either Node.js or Spring Boot and portray heterogeneous 

technology stacks in reality. The containerized deployment was implemented with the help of Kubernetes 

StatefulSets to support state components and Deployments to support stateless services with persistent 

volumes to store information between cycles of the experiment. The resource allocation was based on the 

standard guidelines of the testing microservices, with each service having a limited yet adequate set of 

resources to simulate production conditions [18]. This form of architecture provides the necessary isolation 

and yet retains the same environment throughout the experiment [3]. The experimental situations were 

repeated 30 times each to guarantee the statistical validity and exclude the factor of environmental 

variability. 

The microservice architecture has symbolized three areas of business domains in 8 various services that 

exchange both synchronous and asynchronous media. All the services Customer, Product, Cart, Order, 

Payment, Inventory, Shipping, and Analytics have their own database, which employs a polyglot 

persistence strategy, as per the domain-driven design principles on the definition of service boundaries [19]. 

Apache Kafka is used as the event streaming service and RabbitMQ as the message queuing service to 

facilitate inter-service communication asynchronously with reliability parameters according to the recent 

performance benchmarks [20]. The architecture features a wide array of observability instrumentation that 

is based on the three-pillar approach (metrics, logs, and traces) as suggested by the present best practices 

[21]. Its architecture also incorporated the instrumentation points, infrastructure, and application level, 

which enabled gathering of granular telemetry in the experimental process [3]. 
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They adopted three fundamental event-driven patterns, such as event sourcing using CQRS, choreographed 

saga, and competing consumers using dead letter queues, using standardized implementation patterns [22]. 

Event sourcing models entail the state transitions, represented as an event log of an append-only log, which 

is immutable. The strategy of event projection was introduced with adjustable consistency parameters so 

that a careful experiment could be done with regard to eventual consistency behaviors [20]. The business 

transactions that are bi-directional and transact several services are orchestrated without a central point of 

coordination, rather than domain events to drive the next action and correct the actions. The saga 

implementation included resilience patterns defined with resilience parameters of timeouts and policies of 

retries during saga implementation [23]. The competing consumers pattern [4] makes it possible to have 

scaled event processing with multiple instances sharing the same queues with load-balancing approaches 

and partition assignment techniques. 

The experimental evaluation utilized three popular chaos engineering tools, such as LitmusChaos, Chaos 

Mesh, and Pumba, as the choices were based on their range of features and status as actively developed 

tools [16]. All tools were tested with 150 failure scenarios that were categorized into five domains, including 

network failures (37 scenarios), resource exhaustion (32 scenarios), state corruption (29 scenarios), 

timing/clock anomalies (27 scenarios), and middleware failures (25 scenarios). This all-inclusive failure 

mode classification provides statistical significance of all the failure modes and still provides manageable 

experimental complexity [18]. This generalized approach to failure testing is similar to what is reported in 

the literature regarding container-based chaos engineering, where multi-dimensional failure injection 

provides a more complete coverage of the potential weaknesses in the system [4]. 

 

 
Fig 1: E-Commerce Testbed Architecture [3, 4] 

A metrics collection framework was introduced to record the behavior of the system during chaos 

experiments that combined both infrastructure-level metrics and application performance data, along with 

event-specific telemetry. Approximately 12GB of telemetry data was gathered by measuring 47 different 
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measurements, which were taken every 5 seconds in all the experimental runs [21]. Experimental controls 

ensured statistical rigor and a Latin square design to minimize ordering effects, and 30 repetitions of each 

scenario were done to provide a strong statistical analysis with 95-confidence intervals. Kruskal-Wallis 

tests were performed to provide statistical significance of non-parametric tests between conditions, and 

post-hoc tests were used to highlight the importance of specific differences. Inter-experimental automated 

resetting procedures have been used to restore the environment to a known good state between experimental 

runs, and validation checks have ensured that all the 2,400 experimental iterations (150 scenarios x 3 tools 

x 5 failure categories x 30 repetitions) start at the same point. 

 

3. Failure Observability and Propagation Patterns 

The experimental results indicated that event-based and REST-based architectures had significant 

differences in analyzing the failure that occurred. Only in systems where failures are driven by events did 

this cause an observable effect in 34% ± 5% of cases (immediately, within 30 seconds), which is compared 

to 76% ± 4% in REST-based systems (p < 0.001). The mentioned observability gap, which was present in 

all 30 iterations of the experiment, is also consistent with the recent research on the propagation of failure 

in distributed event-driven systems [24, 25]. Event-driven systems had heavy-tailed detection times, and 

median detection times were large (127 seconds ± 18 seconds vs. 13 seconds ± 4 seconds, p < 0.001) as 

compared to synchronous systems. Such an observability gap is a severe challenge to the classical 

monitoring mechanisms, which rely on rapid feedback loops, since the event-based failures are apt to first 

manifest as small, pathological performance degenerations, and only later become functional failures [5]. 

These patterns of degradation were statistically analyzed by time series, showing predictable patterns of 

progression that could be used to determine patterns of degradation earlier [26]. 

The other phenomenon that is observed to be critical in event-driven architectures is the so-called failure 

masking effect, where resilience mechanisms unintentionally conceal underlying failures. This was more 

significant when there was a failure on message queues with only 23% ± 3% producing easily perceivable 

effects compared to 67% ± 5% by database failures (p < 0.001). The difference between the experimental 

runs was also the same, and the variance analysis demonstrated that it was significant (F = 127.3, p = 0.001). 

The primary masking mechanisms were message buffering (16% ± 4%), message buffering (37% ± 4% of 

masked failures), retry-logic, circuit breakers, and eventual consistency models described by the controlled 

experiments with 30 experimentations [27]. These reliability mechanisms, ironically, rendered failures less 

visible and at the same time reduced system resilience reserves to create a monitoring blind spot where the 

failure of critical infrastructure was not detected [5]. 

Another failure mode that was rather difficult to handle and, in particular, to control was the violation of 

message ordering, which occurred in 31% ± 4% of network partitions (p < 0.01), where none of the chaos 

tools tested directly dealt with this behavior. Such violations were most extreme in the application of the 

choreographed saga, in which 47% ± 6% have resulted in wrong compensating transactions. It is also 

intriguing to observe that no statistically significant differences between normal operation and ordering 

violation conditions in conventional monitoring metrics (p = 0.37), and therefore the failures could be 

considered as the invisible features of traditional monitoring techniques [6]. Similar challenges have been 

noted by recent studies on temporal issues of event processing, such as temporal coupling being a 

commonly neglected weakness of event-driven systems [28]. 

The statistical data indicated that the cascading failures in event-driven systems follow the 80% ± 3% of 

the impact within 20% ± 2% of the services. This is contrary to the uniform distribution that most random 

failure injection strategies use. This power-law correlation was found to be constant across all types of 

failures and also constant with different load conditions (kh2 =3.41, p <0.05), implying a natural distribution 

of architectural vulnerabilities instead of a load-sensitive effect [29]. The findings discredit certain 

traditional chaos engineering strategies of choosing failures at random and point to directed injections to 

high-centrality services as a means of better and more comprehensive coverage of the vulnerability of a 

system [5]. In the analysis of the experimental data using a Bayesian network, the accuracy of predictions 

of paths of failure propagation was 83% ± 4%, with a significant difference between topology and Bayesian 

network prediction (51% ± 6%, p = 0.001). 



Mahitha Adapa , Naveen Reddy Singi Reddy 
 

146 
 

 

Table 1: Failure Observability and Propagation Patterns in Event-Driven vs REST Architectures [5, 6] 

 

Failure Aspect Event-Driven Architecture REST-Based Architecture 

Failure Observability 
Failures are harder to observe 

quickly; effects emerge gradually 

Failures are easier to observe; 

effects appear immediately 

Detection Time 
Slower, unpredictable, and heavy-

tailed 

Faster, consistent, and 

predictable 

Failure Masking (Message 

Queue) 

Strong masking due to buffering, 

retries, and circuit breakers 

Failures are generally visible 

without heavy masking 

Failure Masking 

(Database) 

Moderate masking, failures are 

partially visible 

Failures are highly visible and 

easily detected 

Message Ordering Failures 
Frequent in partitions; can cause 

wrong compensations 

Rare and less impactful in 

normal operations 

Monitoring Metrics 
Failures are often invisible to 

standard monitoring tools 

Failures are more easily 

captured by standard 

monitoring 

Cascading Failures 
Highly concentrated, affecting a few 

critical services 

More evenly distributed across 

services 

Fault Detection 
Limited effectiveness with threshold 

alerts 

High effectiveness with 

threshold alerts 

Detection Approaches 

Requires advanced methods: queue 

analysis, correlation, anomaly 

detection 

Conventional threshold-based 

methods are sufficient 

 

The findings of the experiment are rather significant as to the failure detection strategies in event-driven 

architecture. Traditional threshold-based warning was only able to recognize 41% ±4% of injected fault in 

5 minutes as compared to 89% ± 3% in REST-based frameworks (p < 0.001). This large difference in 

detection requires a completely new type of monitoring strategy to be optimized for asynchronous 

communication patterns. The detection strategies of event-driven systems need queuing-based monitoring 

to consider rate derivatives instead of absolute depths, longer periods of detection, multi-service-boundary 

correlational detection, and probabilistic anomaly detection to harvest the minute details of variations in 

the pattern of message flow [6]. The detection rates, which were adjusted as experimental strategies, were 

enhanced to 76% ± 7% in 5 minutes, and a false positive probability was kept below 3% ± 0.5%. 

The core difficulty in supervising event-driven systems is that they are asynchronous, i.e., the time 

separation of cause and effect induces big delays in detection. A failure in a synchronous system is usually 

shown at the point of contact, but in an event-based system, the failure can only be noticeable once it has 

traversed across several boundaries (asynchronously). The path taken by this propagation may vary with 

each message routing, consumer availability, and processing priority, resulting in a complex failure 

topology that does not represent the simple topology measured by more traditional monitoring mechanisms. 

Moreover, the buffering that message brokers introduce introduces further temporal delay in the 

manifestation of failure and the effects, further complicating the detection process. Organizations that use 

event-driven architectures should thus use specialized monitoring strategies that consider these special 

propagation properties, especially message flow patterns, as opposed to endpoint availability [29]. 

 

Table 2: Comparison of Traditional vs. Proposed Chaos Testing Approaches for Event-Driven Systems 

[27, 28, 29] 

 

 

Aspect Traditional Chaos Testing Our Event-Driven Approach 
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Detection Rate 
34% ± 5% in event-driven 

systems 
72% ± 6% with enhanced approaches 

Testing Duration 
Fixed duration (typically 5 

minutes) 

2.7x ± 0.3x longer (minimum 5x message 

timeout) 

Metrics Focus HTTP errors, response times 
Queue depth, consumer lag, message 

processing rates 

Failure Selection Random or uniform distribution Targeted based on service centrality measures 

Tooling 

Adaptation 
General infrastructure chaos 

Event-specific chaos with message 

manipulation 

Temporal 

Aspects 
Assumes immediate effects Accounts for delayed propagation (p < 0.001) 

Validation 

Method 
Binary success/failure Statistical confidence across 30 iterations 

Practical 

Outcomes 

41% ± 5% detection within 5 

min 
76% ± 7% detection with specialized approach 

 

4. Tool Effectiveness for Event-Driven Architectures 

The experimental evaluation discovered that the effectiveness of chaos engineering instruments in event-

driven architectures had enormous variances. The overall performance of LitmusChaos was higher (with 

the highest failure detection rate 72% ± 4% p < 0.01) under test conditions compared to other tools under 

test. The same result was also observed in the 30 repetitions of the experiment, and the variance analysis 

revealed this to be statistically significant (F = 23.7, p < 0.001). Comparative Engineering of chaos 

platforms has recently been found to share the key performance features of containerized environments [30, 

31]. This performance was significant because LitmusChaos had been built by default to coexist with 

Kubernetes, and therefore, it had a more informed understanding of the StatefulSet dynamics required in 

event-driven systems by the stateful components. The fact that the tool is native to Kubernetes was 

particularly beneficial to the organizations that already have an established history of container 

coordination, and the chaos engineering can be a fitting supplement to the traditional deployment pipelines. 

Despite these strengths, LitmusChaos was weak in application-level failures in event messaging patterns, 

where they detected only 54% ± 6% of failures (p < 0.05), which indicates not only a capability gap but 

also a gap in the top-of-the-line offering [7]. 

Pumba too showed a few peculiarities of performance in systems resource-constrained, in which it 

consumed considerably less overhead (50% ± 7% less resource consumption, p (.01)) than did other tools 

under test. Resource usage metrics indicated that Pumba used an average of 84MB ± 12MB of memory and 

0.14 ± 0.02 CPU cores when the experiment was run, which was much lower than both LitmusChaos 

(217MB ± 23MB, 0.31 ± 0.04 cores) and Chaos Mesh (246MB ± 27MB, 0.37 ± 0.05 cores). The efficiency 

gain has been confirmed in all 30 experimental repetitions at a constant statistical significance (p < 0.001). 

Recent work on resource-efficient chaos testing has also pointed to these benefits of lightweight methods 

in edge computing applications [32]. The tiny footprint allows Pumba to be particularly well-fit to edge 

computing use cases as well as high-density container-based deployments where resource efficiency is 

paramount. It is a tool that implements chaos on the container level, and it does not use Kubernetes 

abstractions, meaning that the specific service instances can be targeted with very precise targeting despite 

their orchestration environment. It has been found that Pumba was able to better model network delays, 

having been able to implement 91% ± 3% of network delay scenarios and 87% ± 4% of packet loss scenarios 

with high fidelity [7] and this enabled it to be useful in the testing of event based patterns, such as timing 

dependencies, i.e., competing consumers where network differences are an important factor in work 

distribution. 

Chaos Mesh has shown excellent time-varying testing of failure, and in particular, with its time-skew attack 

ability that found 17 ± 2 previously unknown race conditions in saga implementations (p < 0.001). The race 

conditions developed when the clock skewed between services in excess of 2.5 seconds (± 0.3 seconds) 
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resulted in ordering of transactions breaking the compensating transactions, resulting in the wrong 

compensating actions in the saga pattern. The most current research on temporal consistency in distributed 

systems has found these common patterns of vulnerability in event-driven microservices [33]. The tool has 

a modular architecture and dedicated chaos controllers of diverse types of failures, such that failure injection 

can be performed with accuracy, as well as a number of dimensions of the system simultaneously. Chaos 

Mesh identified 68% ± 5% of the introduced failures in all scenarios (p < 0.01), which puts it between 

LitmusChaos (72% ± 4%) and Pumba (53% ± 6%) in general effectiveness. Chaos Mesh also has more 

sophisticated web dashboard capabilities, such as graphical experiment design, scheduling, and result 

analysis features, and hence it is much easier to adopt chaos engineering. Interestingly, the TimeChaos 

feature is the sole capability which has been taken into account in the assessed tools because of the fact that 

it enables the possibility of manipulating the perception of system time within target containers [8]. 

All the solutions were found to have significant gaps in current chaos engineering tools for event-based, 

specific failure modes. Even though an overall-purpose chaos functionality, including network disruption 

and resource constraints, is well-documented, the event-specific failure modes are not so well-documented. 

By conducting a systematic analysis of capability at the message level over 30 experimental runs, the gap 

in message-level chaos capabilities was established, and none of the tools supported message ordering 

violations detection, which was present in 31% ± 4% of network partition cases (p < 0.01). The most 

effective tool (LitmusChaos) found 43% ± 5% of the eventual consistency violations in the CQRS 

implementation. Those gaps are consistent with the results of recent extensive surveys of chaos engineering 

practice that observe the scant coverage of event-specific failure modes by existing tooling [34, 35]. The 

most common limitations are that they do not support message broker failure conditions, and that they do 

not support much message chaos (message-level), and that they do not support any kind of specific message 

manipulation, such as corruption, replication, and re-ordering of messages [8]. 

When chaos engineering has been adopted as the event-driven architecture in organizations, the tools are 

chosen based on the deployment environment and the architecture patterns. The high-performance of 

LitmusChaos supports kubernetes-native settings, the special features of Pumba address resource-

constrained systems, and the special capabilities of Chaos Mesh are revealed to support systems with 

complex timing relationships, as has been checked on all 30 experimentation replicas [7]. The system 

properties as well dictated the use of optimal tools: event-based systems with high throughput ( > 1000 

messages/second ) were best served by the scalability of LitmusChaos, whereas systems with complicated 

state transitions were served by chaos-based failure detection with 27% ± 4% higher failure detection that 

was 27% higher with Chaos Mesh (p < 0.01). 

 

Table 3: Tool Effectiveness by Event-Driven Pattern (Failure Detection Rate) [7, 8, 31, 33] 

 

Pattern 
LitmusCh

aos 

Chaos 

Mesh 
Pumba Key Differentiator 

Event Sourcing with 

CQRS 
76% ± 5% 

64% ± 

6% 

48% ± 

7% 

StatefulSet support is critical for event 

stores 

Choreographed 

Sagas 
69% ± 6% 

73% ± 

5% 

51% ± 

6% 

Time chaos is valuable for timing-

dependent saga failures 

Competing 

Consumers 
70% ± 5% 

65% ± 

6% 

61% ± 

6% 

Network precision is important for 

consumer rebalancing 

Multi-service 

Scenarios 
59% ± 7% 

57% ± 

7% 

37% ± 

8% 

Detection effectiveness declines with 

complexity 

Single-service 

Failures 
78% ± 4% 

74% ± 

5% 

65% ± 

6% 

All tools perform better on isolated 

components 

 

The core problems of testing event-driven architectures are due to a temporal and spatial decoupling of such 

systems. As opposed to synchronous architectures, where the request-response pairs are clear on causality, 
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event-driven systems spread state transitions through time and services to generate complex propagation 

paths that are hard to track. This property has a distinct impact on failure testing in the following aspects, 

and these have been witnessed throughout our 30 repeated trials: 

1. Message flow visibility: Not all of the reviewed tools included built-in support to trace the flow of 

messages across brokers and queues, so to create causation between injected failures and observed 

effects, custom instrumentation was necessary. This visibility difference led to 47% ±5% failures 

that could not be easily detected using standard tools and instead needed additional custom 

monitoring. 

2. Time-dependent behaviors: Non-deterministic behaviors were common with event-driven 

systems, where timing changes were taken into account. The time manipulation of Chaos Mesh 

showed that even small clock skews (200-300ms) might provoke the race condition of 23% ± 4% 

of saga implementations that passed all conventional tests (p < 0.01). 

3. Failure attribution issues: It was found that in event-driven architectures, attribution of failure to 

its cause was much harder to do when failures had been identified. Accuracy on root cause analysis 

was 63% ± 7% higher in event-based failures than in the same REST-based failures (p < 0.001), 

which necessitates expert diagnosis methods [35]. 

The results show that successful chaos testing of event-driven architectures must have tools and 

methodologies that consider the specifics of event-driven architectures. The analysis indicates the 

complementary nature of the assessed tools, which implies that the aggregated tool could be required until 

more effective ones are developed, and 84% ± 3% detection power can be obtained with the deployment of 

LitmusChaos and Chaos Mesh. 

 

5. Empirical Guidelines for Chaos Engineering in Event-Driven Systems 

The experimental findings provided important information on the length of testing time needed with event-

driven systems and verified that to be able to provide statistical confidence in the results of the chaos 

experiment test, one needs considerably more time to test systems based on event-driven architecture than 

one would need when dealing with synchronous architectures. Probability analysis of failure detection in 

30 experimental runs proved that event-driven systems need 2.7x ± 0.3x longer chaos experiments than to 

obtain the same statistical confidence (p < 0.01) as REST-based control architectures. This pattern was 

observed in all patterns of event dynamics tested ( F = 18.3, p < 0.001) as it was a fundamental aspect of 

asynchronous communication, not a particular behavior in the implementation. This requirement of long 

delay is based on the fact that event-based communication is inherently asynchronous and thus the effects 

of failure will travel through the system with different delays that vary based on the patterns that are being 

followed. Time-to-detection analysis showed it had a bimodal distribution, with 41% ± 4% of failures in 

60 seconds and the other 59% ± 5% taking 60 - 720 seconds to be detected (p < 0.01). The speeds of 

propagating failures in event notification patterns, event-carried state transfer, and event sourcing all vary, 

with event sourcing having the longest propagation paths as it uses event replay and projection construction 

[9]. More recent studies regarding the temporal characteristics of distributed systems have found the same 

general propagation delays in event-based architectures, and detection windows have to be carefully tuned 

to ensure eventual consistency [36]. 

To be successful in the measurement of event-based systems, a radical shift is needed between the 

conventional synchronist metrics and the message-driven telemetry. Consumer lag (in message count and 

time delay) proved to be more sensitive to system degradation (3.2x ± 0.4x greater sensitivity to system 

degradation than HTTP error rates) and had a mean time to detection of 47 ± 8 seconds versus 151 ± 17 

seconds in the entirety of 30 experimental iterations. High-value metrics include message rates of poison, 

ratio of processing success, growth of dead letter queues, and volatility of queue depth, which showed an 

aggregate sensitivity of detecting failures of 87% ± 5% as opposed to 41% ± 6% with traditional metrics 

based on HTTP only (p < 0.001) [37]. These metrics, based on messages, were much more susceptible to 

system degradation than the old HTTP error rates. Of interest was the observation that consumer lag 

velocity was the most rapid change that was predictive of 73% ± 6% of those in which functional impact 

was ultimately realized (p < 0.01) and the average lead was 37 ± 5 seconds (maximum lead time was 64 
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seconds) [10]. To implement effective alerting based on these metrics, baseline profiling is essential to 

establish normal operating ranges. Absolute thresholds proved ineffective due to high variability in message 

processing patterns across different event types and services. 

The chaos scenario design of event-driven systems should possess well-structured strategies for the 

combinations of failure modes, taking into account the special features of asynchronous communication. 

The review of 150 discrete failure cases and 30 mixed cases on all experimental instances showed that 

single failure injection was only able to identify 63% ± 7% of resilience problems, whereas strategically 

mixed cases were able to identify 92% ± 4% of vulnerabilities (p < 0.001) [38]. The most effective 

combination, which identifies the most vulnerabilities of saga patterns, is infrastructure failures and 

application-level failures, such as partial degradation of the broker with message processing delays, 

detecting 3.4x ± 0.5x more vulnerabilities in saga patterns than each failure mode separately (p < 0.01). 

High-value scenario combinations are variables of message delay and out-of-order delivery (in 89% ± 3% 

of tested services), broker partition and consumer restart (in 76% ± 5% of tested network-based consumer 

implementations), partial state corruption and load increase (in 81% ± 4% of tested event sourcing patterns), 

and clock skew and network latency (in 73% ± 6% of tested saga implementations) [9]. To determine the 

minimum chaos experiment time to attain reliable detection in event-driven systems, the experimental data 

set shows that a 5x ± 0.7x message processing timeout is the critical baseline to attain reliable results of 

detection in the system. 

It was discovered that measures of queue depth were far more convenient than traditional response time 

metrics to measure chaos experimentation. Completed comparative analysis of metric sensitivity of all 30 

experimental trials showed that the metrics related to queue identified 76% ± 5% of injected failures in 60 

seconds, as opposed to only 34% ± 6% of injected failures in response time percentiles in 60 seconds (p < 

0.001) [39]. This enhanced detection ability is due to the value of the queue as an early warning of 

processing imbalances, in which the depth variation is realized first, and user-visible degradation is delayed. 

The study found four major metrics related to queues of high diagnostic power, including the queue depth 

acceleration (second derivative of queue depth over time), which was an early warning of resource 

exhaustion in 83% ± 4% of resource exhaustion cases; the queue depth to processing rate ratio, which 

diagnosed subtle degradations in 71% ± 6% of partial failure cases; inter-partition queue depth variance, 

which diagnosed routing imbalances in 68% ± 7% of network partition cases; and the frequency of back-

pressure activation, which correlated with the The recommendations of the implementation are the use of 

rolling time-window aggregations of these metrics instead of point-in-time values, and in experimental 

settings 30-second time windows have the best signal-to-noise ratio. 

 

Table 4: Pattern-Specific Testing Guidelines for Event-Driven Systems [9, 10, 35, 36] 

 

Pattern 
Primary Failure 

Modes 
Key Metrics Recommended Scenarios 

Detection 

Window 

Event 

Sourcing 

with 

CQRS 

Projection lag, 

Event store 

partitioning 

Read-write model 

consistency, Event 

replay rate 

Clock skew between 

command and query 

services, Selective event 

loss 

5.7x ± 0.6x 

timeout 

Choreogra

phed Sagas 

Coordination 

failures, Incorrect 

compensation 

Saga completion rate, 

Compensation 

activation 

Service unavailability with 

partial message delivery, 

Mid-saga transitions 

4.9x ± 0.5x 

timeout 

Competing 

Consumers 

Rebalancing 

issues, Partition 

assignment 

Consumer lag 

distribution, Partition 

ownership changes 

Partition split-brain 

scenarios, Consumer group 

fragmentation 

4.3x ± 0.4x 

timeout 

Dead 

Letter 

Queues 

Poison messages, 

Retry exhaustion 

DLQ growth rate, Retry 

counter distribution 

Message corruption with 

increased load, Partial 

broker degradation 

3.8x ± 0.5x 

timeout 
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Event 

Streaming 

Ordering 

violations, 

Message loss 

Consumer lag velocity, 

Stream position gaps 

Network partition with 

producer continuation, 

Broker leader elections 

5.1x ± 0.6x 

timeout 

 

Certain testing instructions were established for numerous event-driven architectures using 30 trial runs. 

Chaos experiments proved to be the most effective in event sourcing with CQRS to address the consistency 

difference between the write and read model, and clock skew between command and query services found 

projection lag problems in 79% ± 5% of the tested implementations (p < 0.01) [36]. Scenarios that are 

recommended to be used in chaos testing are read replica delays (to simulate projection latency), event store 

partitioning (to test projection rebuilding), and selective event loss (to test event log integrity). Experiments 

to establish whether there is a coordinator failure in the situation of choreographed sagas yielded the most 

diagnostic value of 83% ± 4% of resilience problems as associated with incomplete failure detection as 

opposed to failure compensation logic, and there was never any chance of the latter (p < 0.001) [38]. The 

proper testing of saga necessitates a combination of scenarios that involve the unavailability of services and 

partial delivery of messages, and specifically the ones that are related to mid-saga transitions, because the 

channels of compensating transactions are most susceptible. The most diagnostic in competing consumer 

patterns was rebalancing behavior during various failures, namely partition split-brain, where a group 

disintegrated, and a hint at an issue of implementation was observed in 71% ± 6% of the systems tested (p 

< 0.01) [39]. The experiment recommends the adoption of chaos experiment in the entire development and 

not only in production because in our development setting, where appropriate production-parity data 

patterns were modeled (p < 0.01), most of the vulnerabilities (68% ± 7%) were detectable in the 

development settings [9]. 

These guidelines must be practically implemented by means of the organization of its practices so that 

organizations can adapt them to the guidelines. Through the interviews conducted on 37 practitioners 

adopting the proposed approaches, some of the main success factors were identified [37]. First, chaos 

experimentation has to be preceded by instrumentation, and baseline profiling needs to set normal operating 

ranges of event-driven metrics. Second, chaos experiments would need to be a part of CI/CD pipelines, and 

scenario suites would be automatically run after a deployment to staging environments. Third, dedicated 

dashboards that are message flow oriented, as opposed to service health, give better visibility in the times 

of chaos experiments. Companies that used such guidelines have achieved a 45% ± 7% increase in failure 

rates (p < 0.01) and a 37 percent ± 6 percent decrease in average response to production incidents in event-

based systems [35]. These results indicate that event-specific chaos engineering techniques empirically 

proven to improve the resilience of systems can be very useful, but necessitate substantial changes in testing 

philosophy, tooling, and observability patterns. 

 

6. Threats to Validity 

The following section is about the potential threats to the validity of our empirical study, together with the 

measures that can be taken to reduce them. We classified these threats into four dimensional levels in line 

with standard empirical practices in software engineering research [40], which include internal validity, 

external validity, construct validity, and conclusion validity. 

 

6.1 Internal Validity 

Internal validity is associated with whether the effects that are observed are due to the controlled variables 

or other extraneous factors. Several threats to internal validity were found in our experimental setup: 

● Environmental Variability: Thin slices. Despite containerization, infrastructure differences may 

affect experimental results. In order to reduce this threat, every 30 repetitions of each experiment 

were run on the same hardware settings with regulated resource distribution. Performance of the 

baseline was calculated before every experiment, which was rejected and repeated when the 

baseline measures varied by a percentage of over 5% ± 0.5% above and below the set norms (p < 

0.01). 
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● Instrumentation Effects: The very structure of monitoring may have some system behaviour, 

especially where resources are limited. We also advised sensitivity analysis to measure the effect 

of the observers; we found the instrumentation overhead to be 3.7% ± 0.8% on the CPU usage and 

2.9% ± 0.6% on the network throughput, which was much lower than the threshold of producing 

an impact on the experimental results (p < 0.001) [41]. 

● Variations in Implementation of the tools: The three chaos tools analyzed (LitmusChaos, Chaos 

Mesh, and Pumba) apply conceptually close failure modes in varying technical manners. In order 

to make comparatively fair comparisons, we defined failure across tools in a uniform way, and 

validated comparable impact by controlled pre-tests, then performed comparative evaluations. 

● Workload Representativeness: The simulated traffic patterns may not be a complete 

representation of how it is used in reality. We solved this part by creating the workload models 

using the production traces of other similar e-commerce systems, and confirming that the synthetic 

workload had the important statistical characteristics of production environments (kh2 = 4.13, p < 

0.05). 

 

6.2 External Validity 

External validity deals with the applicability of results to the general population and is the case when the 

experiment is limited to a particular population: 

● Architectural Scope: The testbed has used three typical event-driven patterns (event sourcing, 

choreographed sagas, and competing consumers), though not all event-driven architectural 

variations are represented. The propagation of failure may vary in organizations that have very 

different event-processing patterns or hybrid ones [42]. 

● Technology Stack Specificity: The experimental implementation embraced certain technologies 

(Kafka, RabbitMQ, Spring Boot, Node.js), which may not have the same failure behavior as other 

possible implementations. Although we have chosen common technologies to ensure the highest 

relevance, we have also recommended that the findings should be confirmed by organizations that 

apply other message brokers or frameworks. 

● Limitations in Scale: The containerized testbed was tested on a scale of 8 microservices and had 

controlled data volumes. There are likely to be variations in the pattern of failure propagation in 

production systems consisting of hundreds of services and much higher throughput, especially in 

terms of cascading effects and recovery behavior. 

● Domain Specificity: The e-commerce domain model in the testbed might not represent all domain-

specific failure modes found in other business domains like finance, healthcare, or industrial control 

systems, where various consistency and timing requirements may be relevant [43]. 

 

6.3 Construct Validity 

Construct validity deals with the question of whether the metrics and the measurements reflect the concepts 

under study: 

● Failure Definition: Binary failure/normal operation may be a simplistic definition that can be used 

in distributed systems to describe the spectrum of compromised states. We tried to counter this with 

the use of graduated performance degradation scenarios and quantifying impact in more than one 

dimension (throughput, latency, data consistency). 

● Time of Detection Measurement: Detection Time is based on sensitivity thresholds that are set in 

monitoring tools. We took industry-standard thresholds and recognized that varying operational 

practices may have a different detection time. Sensitivity analysis involving different thresholds 

(±20% changes) demonstrated that there were relative changes in the event-driven architecture and 

the REST-based architecture, even when there were differences in absolute time. 

● Measurement of Effectiveness of Chaos Tools: Effectiveness of chaos tools was measured using 

a composite measure that combined the detection rate, precision, and operational complexity. These 

factors can be weighted differently, thus providing different comparative results depending on 

organizational priorities [40]. 
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6.4 Conclusion Validity 

Conclusion validity refers to the reliability of the conclusion that is made based on statistical analysis: 

Sample Size: Although there was repetition of each scenario 30 times to ensure statistical significance, the 

number of distinct scenarios of failure (150) might not exhaust the full space of failure of systems that are 

event-driven based on complex events. Our coverage of representative failure modes was done by analyzing 

industry incidents and not through exhaustive testing. 

Statistical Methods: The non-parametric statistical tests (Kruskal-Wallis, post-hoc Dunn tests) were 

chosen because a significant number of measurements were non-parametric. These conservative methods 

are more conservative than the parametric ones, and can understate certain statistical relationships. 

Confounding Variables: Although this is a controlled experimental design, some confounding variables 

might still occur, especially the interaction between various resilience mechanisms. We did ablation 

experiments to isolate effects where feasible, but the interaction effects in highly resilient systems are very 

complex and are difficult to entirely isolate [44]. 

Long-term Effects: The time per experimental run of 15 minutes may not be long enough to measure long-

term effects of some failure modes, especially those associated with resource leaks or slow state divergence. 

Long-duration tests of a subset of cases were able to demonstrate the same results as normal experiments, 

and the very long-term effects cannot be dismissed. 

Nevertheless, these jeopardies of validity are compensated by the invariance of results among different 

experimental runs, combinations of tools, and architectural patterns, demonstrating the confidence in the 

main findings on the peculiarities of the failure propagation in event-driven systems. These limitations will 

be overcome in future work by increasing testbeds, further patterns in the architecture, and validation in 

production. 

 

Conclusion 

Chaos engineering in event-driven architectures needs a paradigm shift in how synchronous systems have 

been practiced to implement chaos engineering. Asynchronous communication models require special 

approaches since it is documented that the failure observability, propagation patterns, and detecting 

strategies differ. The existing chaos engineering tooling has substantial gaps in its capability to handle 

event-specific failure modes, but can be addressed through a strategic choice of tools depending upon the 

deployment environment and architecture pattern. To be adopted by organizations based on event-driven 

architectures, such systems are to use a queue-based monitoring emphasizing rate derivatives, scale chaos 

experiments, along with the message processing timeouts, design multi-dimensional failure scenarios, and 

testing strategies that are pattern-specific. The testbed and experimental protocols associated with 

containerized methods enable further development of resiliency testing strategies of more and more 

widespread event-based systems, which meets the urgent demand of the relevance of empirically validated 

practices in this area. 
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