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Abstract

The chaos engineering techniques used to analyze synchronous systems are not
adequate when analyzing event-driven systems because of the underlying differences
in the patterns of failure propagation. Controlled experimentation of containerized e-
commerce microservices reveals severe observability differences between event-
driven and REST-based designs, with a substantial "failure masking effect" in which
resilience mechanisms unwittingly hide structural problems. By evaluating the major
chaos engineering tools in a systematic manner and under varying failure conditions,
one can identify a unique pattern of effectiveness in one or the other architectural
pattern. Event-driven systems must employ longer chaos experiments, give priority
to queue-based metrics rather than response times, and a mixed set of failure modes
in order to obtain sufficient coverage. To improve resilience in event-driven systems,
which fail according to patterns that are not uniform as commonly assumed by
traditional testing methods, empirical guidelines determine the best testing times,
strategy in metric selection, and specific pattern-based testing advice.

Keywords: Chaos Engineering, Event-Driven Microservices, Failure Propagation,
Containerized Simulation, Resilience Testing.

1. Introduction

Chaos engineering has emerged as a critical discipline in the distributed systems process of ensuring the
resilience of systems through the intentional introduction of faults to systems to measure resilience to
turbulent systems. There is a very large following with chaos engineering, which was introduced in the
early 2010s, with synchronous microservice architectures, but has been demonstrated to cause significant
challenges when applied to event-driven systems [1]. These challenges have also been confirmed by recent
studies, where important discrepancies exist in detecting failures on synchronous and asynchronous
architectural patterns [11, 12]. Though in classical chaos models failure may be proved to be immediate
and with a causal relationship among constituents, these are not the case in asynchronous communication
interactions, whose effects may be deferred, obscured, or distorted as they propagate through message
brokers and event streams.

Event-driven architectures (EDAs) have the peculiarities of the challenges of resilience testing since they
are not synchronous, and their propagation laws are not simple. In such systems, services communicate
with each other using events rather than calling them directly, and typically decouple the producers and the
consumers with the help of message brokers. Scale and flexibility are the advantages of this type of
architecture, and it is complex to understand failure structures and the impacts of failures [1]. Modern-day
studies found that EDAs have certain observability gaps that inherently compromise conventional chaos
testing methods [ 13]. This fundamental failure of correspondence between the traditional chaos engineering
approach and event-driven system behaviour has been a significant confidence issue among the users of
these architectures when putting them into practice.
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The limitations of the existing chaos engineering techniques of asynchronous communication are exposed
in a few significant regions. Unlike synchronous REST-based architectures, which tend to react to a failure
immediately, event-driven architectures may sometimes proceed with execution despite the failure of the
service being detected due to buffering and retries of incoming messages. The current chaos engineering
tools are largely infrastructure-based, yet cannot accommodate the event-specific failure modes, such as
message reordering and event partiality. In addition to this, measurement frameworks are highly skewed
towards request-response measurements, which do not provide a good understanding of event-driven
system health [2]. Recent developments in the chaos engineering tooling have sought to overcome these
drawbacks, although much of the gamut of event-based failure modes has yet to be addressed [14, 15].

In spite of the increasing popularity of microservices and event-driven architecture, there is a relative lack
of empirical literature on these patterns of propagating failures in event-driven architecture systems.
Migration analysis research has found that organizations tend to underestimate the complexity demands of
operations that are introduced by distributed event processing, particularly fault detection and impact
analysis [2]. A systematic review of the chaos engineering practices in 52 organizations demonstrated that
78% of them had practiced some kind of chaos testing, but only 23% had established specialized practices
of event-driven components [11]. No empirically tested chaos engineering practices have been studied that
particularly target the event-driven patterns; practitioners either rely on intuition or adjust existing methods
based on rather different architectural paradigms.

In this paper, we address this gap in the research by performing a systematic empirical study about the
propagation of failures in event-driven microservices. Following this introduction part is the description of
the experimental setup and procedure, further involving designing a containerized testbed. Additional
sections present findings regarding observability of failures and propagation behavior, the utility of current
chaos engineering tools, and disclose experimentally validated recommendations about how to conduct
chaos experiments in event-driven systems, and conclude with some of the most significant findings and
suggestions on future research.

2. Experimental Setup and Methodology

To evaluate the performance of chaos engineering on event-driven microservices in an empirical manner,
an e-commerce testbed was developed in a containerized manner that is reproducible. The architecture will
consist of 8 distinct types of microservices that will be deployed using Docker Compose and Kubernetes,
and this will enable the scenario of local testing and running the cloud deployment scenario. This method
is based on the current developments in containerized testing environments with isolated microservice
testing [16, 17]. All microservices were coded in either Node.js or Spring Boot and portray heterogeneous
technology stacks in reality. The containerized deployment was implemented with the help of Kubernetes
StatefulSets to support state components and Deployments to support stateless services with persistent
volumes to store information between cycles of the experiment. The resource allocation was based on the
standard guidelines of the testing microservices, with each service having a limited yet adequate set of
resources to simulate production conditions [18]. This form of architecture provides the necessary isolation
and yet retains the same environment throughout the experiment [3]. The experimental situations were
repeated 30 times each to guarantee the statistical validity and exclude the factor of environmental
variability.

The microservice architecture has symbolized three areas of business domains in 8 various services that
exchange both synchronous and asynchronous media. All the services Customer, Product, Cart, Order,
Payment, Inventory, Shipping, and Analytics have their own database, which employs a polyglot
persistence strategy, as per the domain-driven design principles on the definition of service boundaries [19].
Apache Kafka is used as the event streaming service and RabbitMQ as the message queuing service to
facilitate inter-service communication asynchronously with reliability parameters according to the recent
performance benchmarks [20]. The architecture features a wide array of observability instrumentation that
is based on the three-pillar approach (metrics, logs, and traces) as suggested by the present best practices
[21]. Its architecture also incorporated the instrumentation points, infrastructure, and application level,
which enabled gathering of granular telemetry in the experimental process [3].
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They adopted three fundamental event-driven patterns, such as event sourcing using CQRS, choreographed
saga, and competing consumers using dead letter queues, using standardized implementation patterns [22].
Event sourcing models entail the state transitions, represented as an event log of an append-only log, which
is immutable. The strategy of event projection was introduced with adjustable consistency parameters so
that a careful experiment could be done with regard to eventual consistency behaviors [20]. The business
transactions that are bi-directional and transact several services are orchestrated without a central point of
coordination, rather than domain events to drive the next action and correct the actions. The saga
implementation included resilience patterns defined with resilience parameters of timeouts and policies of
retries during saga implementation [23]. The competing consumers pattern [4] makes it possible to have
scaled event processing with multiple instances sharing the same queues with load-balancing approaches
and partition assignment techniques.

The experimental evaluation utilized three popular chaos engineering tools, such as LitmusChaos, Chaos
Mesh, and Pumba, as the choices were based on their range of features and status as actively developed
tools [16]. All tools were tested with 150 failure scenarios that were categorized into five domains, including
network failures (37 scenarios), resource exhaustion (32 scenarios), state corruption (29 scenarios),
timing/clock anomalies (27 scenarios), and middleware failures (25 scenarios). This all-inclusive failure
mode classification provides statistical significance of all the failure modes and still provides manageable
experimental complexity [18]. This generalized approach to failure testing is similar to what is reported in
the literature regarding container-based chaos engineering, where multi-dimensional failure injection
provides a more complete coverage of the potential weaknesses in the system [4].
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Fig 1: E-Commerce Testbed Architecture [3, 4]

A metrics collection framework was introduced to record the behavior of the system during chaos
experiments that combined both infrastructure-level metrics and application performance data, along with
event-specific telemetry. Approximately 12GB of telemetry data was gathered by measuring 47 different
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measurements, which were taken every 5 seconds in all the experimental runs [21]. Experimental controls
ensured statistical rigor and a Latin square design to minimize ordering effects, and 30 repetitions of each
scenario were done to provide a strong statistical analysis with 95-confidence intervals. Kruskal-Wallis
tests were performed to provide statistical significance of non-parametric tests between conditions, and
post-hoc tests were used to highlight the importance of specific differences. Inter-experimental automated
resetting procedures have been used to restore the environment to a known good state between experimental
runs, and validation checks have ensured that all the 2,400 experimental iterations (150 scenarios x 3 tools
x 5 failure categories x 30 repetitions) start at the same point.

3. Failure Observability and Propagation Patterns

The experimental results indicated that event-based and REST-based architectures had significant
differences in analyzing the failure that occurred. Only in systems where failures are driven by events did
this cause an observable effect in 34% = 5% of cases (immediately, within 30 seconds), which is compared
to 76% = 4% in REST-based systems (p < 0.001). The mentioned observability gap, which was present in
all 30 iterations of the experiment, is also consistent with the recent research on the propagation of failure
in distributed event-driven systems [24, 25]. Event-driven systems had heavy-tailed detection times, and
median detection times were large (127 seconds + 18 seconds vs. 13 seconds = 4 seconds, p < 0.001) as
compared to synchronous systems. Such an observability gap is a severe challenge to the classical
monitoring mechanisms, which rely on rapid feedback loops, since the event-based failures are apt to first
manifest as small, pathological performance degenerations, and only later become functional failures [5].
These patterns of degradation were statistically analyzed by time series, showing predictable patterns of
progression that could be used to determine patterns of degradation earlier [26].

The other phenomenon that is observed to be critical in event-driven architectures is the so-called failure
masking effect, where resilience mechanisms unintentionally conceal underlying failures. This was more
significant when there was a failure on message queues with only 23% + 3% producing easily perceivable
effects compared to 67% + 5% by database failures (p < 0.001). The difference between the experimental
runs was also the same, and the variance analysis demonstrated that it was significant (F =127.3, p=0.001).
The primary masking mechanisms were message buffering (16% + 4%), message buffering (37% =+ 4% of
masked failures), retry-logic, circuit breakers, and eventual consistency models described by the controlled
experiments with 30 experimentations [27]. These reliability mechanisms, ironically, rendered failures less
visible and at the same time reduced system resilience reserves to create a monitoring blind spot where the
failure of critical infrastructure was not detected [5].

Another failure mode that was rather difficult to handle and, in particular, to control was the violation of
message ordering, which occurred in 31% + 4% of network partitions (p < 0.01), where none of the chaos
tools tested directly dealt with this behavior. Such violations were most extreme in the application of the
choreographed saga, in which 47% = 6% have resulted in wrong compensating transactions. It is also
intriguing to observe that no statistically significant differences between normal operation and ordering
violation conditions in conventional monitoring metrics (p = 0.37), and therefore the failures could be
considered as the invisible features of traditional monitoring techniques [6]. Similar challenges have been
noted by recent studies on temporal issues of event processing, such as temporal coupling being a
commonly neglected weakness of event-driven systems [28].

The statistical data indicated that the cascading failures in event-driven systems follow the 80% + 3% of
the impact within 20% % 2% of the services. This is contrary to the uniform distribution that most random
failure injection strategies use. This power-law correlation was found to be constant across all types of
failures and also constant with different load conditions (kh2 =3.41, p <0.05), implying a natural distribution
of architectural vulnerabilities instead of a load-sensitive effect [29]. The findings discredit certain
traditional chaos engineering strategies of choosing failures at random and point to directed injections to
high-centrality services as a means of better and more comprehensive coverage of the vulnerability of a
system [5]. In the analysis of the experimental data using a Bayesian network, the accuracy of predictions
of paths of failure propagation was 83% =+ 4%, with a significant difference between topology and Bayesian
network prediction (51% = 6%, p = 0.001).
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Table 1: Failure Observability and Propagation Patterns in Event-Driven vs REST Architectures [5, 6]

Failure Aspect

Event-Driven Architecture

REST-Based Architecture

Failure Observability

Failures are harder to observe
quickly; effects emerge gradually

Failures are easier to observe;
effects appear immediately

Detection Time

Slower, unpredictable, and heavy-
tailed

Faster, consistent, and
predictable

Failure Masking (Message
Queue)

Strong masking due to buffering,
retries, and circuit breakers

Failures are generally visible
without heavy masking

Failure Masking
(Database)

Moderate masking, failures are
partially visible

Failures are highly visible and
easily detected

Message Ordering Failures

Frequent in partitions; can cause
wrong compensations

Rare and less impactful in
normal operations

Monitoring Metrics

Failures are often invisible to
standard monitoring tools

Failures are more easily
captured by standard
monitoring

Cascading Failures

Highly concentrated, affecting a few
critical services

More evenly distributed across
services

Fault Detection

Limited effectiveness with threshold
alerts

High effectiveness with
threshold alerts

Detection Approaches

Requires advanced methods: queue
analysis, correlation, anomaly

Conventional threshold-based
methods are sufficient

detection

The findings of the experiment are rather significant as to the failure detection strategies in event-driven
architecture. Traditional threshold-based warning was only able to recognize 41% 4% of injected fault in
5 minutes as compared to 89% + 3% in REST-based frameworks (p < 0.001). This large difference in
detection requires a completely new type of monitoring strategy to be optimized for asynchronous
communication patterns. The detection strategies of event-driven systems need queuing-based monitoring
to consider rate derivatives instead of absolute depths, longer periods of detection, multi-service-boundary
correlational detection, and probabilistic anomaly detection to harvest the minute details of variations in
the pattern of message flow [6]. The detection rates, which were adjusted as experimental strategies, were
enhanced to 76% + 7% in 5 minutes, and a false positive probability was kept below 3% =+ 0.5%.

The core difficulty in supervising event-driven systems is that they are asynchronous, i.e., the time
separation of cause and effect induces big delays in detection. A failure in a synchronous system is usually
shown at the point of contact, but in an event-based system, the failure can only be noticeable once it has
traversed across several boundaries (asynchronously). The path taken by this propagation may vary with
each message routing, consumer availability, and processing priority, resulting in a complex failure
topology that does not represent the simple topology measured by more traditional monitoring mechanisms.
Moreover, the buffering that message brokers introduce introduces further temporal delay in the
manifestation of failure and the effects, further complicating the detection process. Organizations that use
event-driven architectures should thus use specialized monitoring strategies that consider these special
propagation properties, especially message flow patterns, as opposed to endpoint availability [29].

Table 2: Comparison of Traditional vs. Proposed Chaos Testing Approaches for Event-Driven Systems
[27, 28, 29]

| Aspect | Traditional Chaos Testing Our Event-Driven Approach
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34% =+ 5% in event-driven

Detection Rate 72% =+ 6% with enhanced approaches
systems

Testing Duration Fl?ced duration (typically 5 2 7x + 0.3x longer (minimum 5x message
minutes) timeout)

Metrics Focus HTTP errors, response times Queue depth, consumer lag, message

processing rates
Failure Selection | Random or uniform distribution | Targeted based on service centrality measures

Toohng. General infrastructure chaos Ever.lt—spe.mﬁc chaos with message
Adaptation manipulation
X:glgt)gal Assumes immediate effects Accounts for delayed propagation (p < 0.001)
Validation . . . . .
Method Binary success/failure Statistical confidence across 30 iterations
- 5 5 . —
Practical 41.A’ + 5% detection within 5 76% = 7% detection with specialized approach
Outcomes min

4. Tool Effectiveness for Event-Driven Architectures

The experimental evaluation discovered that the effectiveness of chaos engineering instruments in event-
driven architectures had enormous variances. The overall performance of LitmusChaos was higher (with
the highest failure detection rate 72% + 4% p < 0.01) under test conditions compared to other tools under
test. The same result was also observed in the 30 repetitions of the experiment, and the variance analysis
revealed this to be statistically significant (F = 23.7, p < 0.001). Comparative Engineering of chaos
platforms has recently been found to share the key performance features of containerized environments [30,
31]. This performance was significant because LitmusChaos had been built by default to coexist with
Kubernetes, and therefore, it had a more informed understanding of the StatefulSet dynamics required in
event-driven systems by the stateful components. The fact that the tool is native to Kubernetes was
particularly beneficial to the organizations that already have an established history of container
coordination, and the chaos engineering can be a fitting supplement to the traditional deployment pipelines.
Despite these strengths, LitmusChaos was weak in application-level failures in event messaging patterns,
where they detected only 54% + 6% of failures (p < 0.05), which indicates not only a capability gap but
also a gap in the top-of-the-line offering [7].

Pumba too showed a few peculiarities of performance in systems resource-constrained, in which it
consumed considerably less overhead (50% =+ 7% less resource consumption, p (.01)) than did other tools
under test. Resource usage metrics indicated that Pumba used an average of 84MB + 12MB of memory and
0.14 + 0.02 CPU cores when the experiment was run, which was much lower than both LitmusChaos
(217MB £ 23MB, 0.31 + 0.04 cores) and Chaos Mesh (246MB = 27MB, 0.37 = 0.05 cores). The efficiency
gain has been confirmed in all 30 experimental repetitions at a constant statistical significance (p < 0.001).
Recent work on resource-efficient chaos testing has also pointed to these benefits of lightweight methods
in edge computing applications [32]. The tiny footprint allows Pumba to be particularly well-fit to edge
computing use cases as well as high-density container-based deployments where resource efficiency is
paramount. It is a tool that implements chaos on the container level, and it does not use Kubernetes
abstractions, meaning that the specific service instances can be targeted with very precise targeting despite
their orchestration environment. It has been found that Pumba was able to better model network delays,
having been able to implement 91% + 3% of network delay scenarios and 87% + 4% of packet loss scenarios
with high fidelity [7] and this enabled it to be useful in the testing of event based patterns, such as timing
dependencies, i.e., competing consumers where network differences are an important factor in work
distribution.

Chaos Mesh has shown excellent time-varying testing of failure, and in particular, with its time-skew attack
ability that found 17 £ 2 previously unknown race conditions in saga implementations (p < 0.001). The race
conditions developed when the clock skewed between services in excess of 2.5 seconds (+ 0.3 seconds)
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resulted in ordering of transactions breaking the compensating transactions, resulting in the wrong
compensating actions in the saga pattern. The most current research on temporal consistency in distributed
systems has found these common patterns of vulnerability in event-driven microservices [33]. The tool has
amodular architecture and dedicated chaos controllers of diverse types of failures, such that failure injection
can be performed with accuracy, as well as a number of dimensions of the system simultaneously. Chaos
Mesh identified 68% + 5% of the introduced failures in all scenarios (p < 0.01), which puts it between
LitmusChaos (72% =+ 4%) and Pumba (53% + 6%) in general effectiveness. Chaos Mesh also has more
sophisticated web dashboard capabilities, such as graphical experiment design, scheduling, and result
analysis features, and hence it is much easier to adopt chaos engineering. Interestingly, the TimeChaos
feature is the sole capability which has been taken into account in the assessed tools because of the fact that
it enables the possibility of manipulating the perception of system time within target containers [8].

All the solutions were found to have significant gaps in current chaos engineering tools for event-based,
specific failure modes. Even though an overall-purpose chaos functionality, including network disruption
and resource constraints, is well-documented, the event-specific failure modes are not so well-documented.
By conducting a systematic analysis of capability at the message level over 30 experimental runs, the gap
in message-level chaos capabilities was established, and none of the tools supported message ordering
violations detection, which was present in 31% =+ 4% of network partition cases (p < 0.01). The most
effective tool (LitmusChaos) found 43% + 5% of the eventual consistency violations in the CQRS
implementation. Those gaps are consistent with the results of recent extensive surveys of chaos engineering
practice that observe the scant coverage of event-specific failure modes by existing tooling [34, 35]. The
most common limitations are that they do not support message broker failure conditions, and that they do
not support much message chaos (message-level), and that they do not support any kind of specific message
manipulation, such as corruption, replication, and re-ordering of messages [8].

When chaos engineering has been adopted as the event-driven architecture in organizations, the tools are
chosen based on the deployment environment and the architecture patterns. The high-performance of
LitmusChaos supports kubernetes-native settings, the special features of Pumba address resource-
constrained systems, and the special capabilities of Chaos Mesh are revealed to support systems with
complex timing relationships, as has been checked on all 30 experimentation replicas [7]. The system
properties as well dictated the use of optimal tools: event-based systems with high throughput ( > 1000
messages/second ) were best served by the scalability of LitmusChaos, whereas systems with complicated
state transitions were served by chaos-based failure detection with 27% + 4% higher failure detection that
was 27% higher with Chaos Mesh (p < 0.01).

Table 3: Tool Effectiveness by Event-Driven Pattern (Failure Detection Rate) [7, 8, 31, 33]

Pattern :;tsmusCh 15[1::;)15 Pumba | Key Differentiator

Event Sourcing with 76% - 5% 64% =+ 48% =+ | StatefulSet support is critical for event

CQRS ° ° | 6% 7% stores

Choreographed 69% -+ 6% 73% + 51% = | Time chaos is valuable for timing-

Sagas ° 5% 6% dependent saga failures

Competing 0 o, | 65% % 61% £+ | Network precision is important for
70% £ 5% | o N .

Consumers 6% 6% consumer rebalancing

Multi-service o o, | 57% % 37% + | Detection effectiveness declines with

. 59%+7% | 5, o .
Scenarios 7% 8% complexity
Single-service o o, | 74% % 65% £ | All tools perform better on isolated
. 78% +4% | <, N
Failures 5% 6% components

The core problems of testing event-driven architectures are due to a temporal and spatial decoupling of such
systems. As opposed to synchronous architectures, where the request-response pairs are clear on causality,
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event-driven systems spread state transitions through time and services to generate complex propagation
paths that are hard to track. This property has a distinct impact on failure testing in the following aspects,
and these have been witnessed throughout our 30 repeated trials:

1. Message flow visibility: Not all of the reviewed tools included built-in support to trace the flow of
messages across brokers and queues, so to create causation between injected failures and observed
effects, custom instrumentation was necessary. This visibility difference led to 47% +5% failures
that could not be easily detected using standard tools and instead needed additional custom
monitoring.

2. Time-dependent behaviors: Non-deterministic behaviors were common with event-driven
systems, where timing changes were taken into account. The time manipulation of Chaos Mesh
showed that even small clock skews (200-300ms) might provoke the race condition of 23% + 4%
of saga implementations that passed all conventional tests (p < 0.01).

3. Failure attribution issues: It was found that in event-driven architectures, attribution of failure to
its cause was much harder to do when failures had been identified. Accuracy on root cause analysis
was 63% + 7% higher in event-based failures than in the same REST-based failures (p < 0.001),
which necessitates expert diagnosis methods [35].

The results show that successful chaos testing of event-driven architectures must have tools and
methodologies that consider the specifics of event-driven architectures. The analysis indicates the
complementary nature of the assessed tools, which implies that the aggregated tool could be required until
more effective ones are developed, and 84% + 3% detection power can be obtained with the deployment of
LitmusChaos and Chaos Mesh.

5. Empirical Guidelines for Chaos Engineering in Event-Driven Systems

The experimental findings provided important information on the length of testing time needed with event-
driven systems and verified that to be able to provide statistical confidence in the results of the chaos
experiment test, one needs considerably more time to test systems based on event-driven architecture than
one would need when dealing with synchronous architectures. Probability analysis of failure detection in
30 experimental runs proved that event-driven systems need 2.7x = 0.3x longer chaos experiments than to
obtain the same statistical confidence (p < 0.01) as REST-based control architectures. This pattern was
observed in all patterns of event dynamics tested ( F = 18.3, p < 0.001) as it was a fundamental aspect of
asynchronous communication, not a particular behavior in the implementation. This requirement of long
delay is based on the fact that event-based communication is inherently asynchronous and thus the effects
of failure will travel through the system with different delays that vary based on the patterns that are being
followed. Time-to-detection analysis showed it had a bimodal distribution, with 41% + 4% of failures in
60 seconds and the other 59% =+ 5% taking 60 - 720 seconds to be detected (p < 0.01). The speeds of
propagating failures in event notification patterns, event-carried state transfer, and event sourcing all vary,
with event sourcing having the longest propagation paths as it uses event replay and projection construction
[9]. More recent studies regarding the temporal characteristics of distributed systems have found the same
general propagation delays in event-based architectures, and detection windows have to be carefully tuned
to ensure eventual consistency [36].

To be successful in the measurement of event-based systems, a radical shift is needed between the
conventional synchronist metrics and the message-driven telemetry. Consumer lag (in message count and
time delay) proved to be more sensitive to system degradation (3.2x + 0.4x greater sensitivity to system
degradation than HTTP error rates) and had a mean time to detection of 47 £+ 8 seconds versus 151 + 17
seconds in the entirety of 30 experimental iterations. High-value metrics include message rates of poison,
ratio of processing success, growth of dead letter queues, and volatility of queue depth, which showed an
aggregate sensitivity of detecting failures of 87% + 5% as opposed to 41% + 6% with traditional metrics
based on HTTP only (p < 0.001) [37]. These metrics, based on messages, were much more susceptible to
system degradation than the old HTTP error rates. Of interest was the observation that consumer lag
velocity was the most rapid change that was predictive of 73% =+ 6% of those in which functional impact
was ultimately realized (p < 0.01) and the average lead was 37 + 5 seconds (maximum lead time was 64
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seconds) [10]. To implement effective alerting based on these metrics, baseline profiling is essential to
establish normal operating ranges. Absolute thresholds proved ineffective due to high variability in message
processing patterns across different event types and services.

The chaos scenario design of event-driven systems should possess well-structured strategies for the
combinations of failure modes, taking into account the special features of asynchronous communication.
The review of 150 discrete failure cases and 30 mixed cases on all experimental instances showed that
single failure injection was only able to identify 63% =+ 7% of resilience problems, whereas strategically
mixed cases were able to identify 92% + 4% of vulnerabilities (p < 0.001) [38]. The most effective
combination, which identifies the most vulnerabilities of saga patterns, is infrastructure failures and
application-level failures, such as partial degradation of the broker with message processing delays,
detecting 3.4x + 0.5x more vulnerabilities in saga patterns than each failure mode separately (p < 0.01).
High-value scenario combinations are variables of message delay and out-of-order delivery (in 89% + 3%
of tested services), broker partition and consumer restart (in 76% = 5% of tested network-based consumer
implementations), partial state corruption and load increase (in 81% + 4% of tested event sourcing patterns),
and clock skew and network latency (in 73% =+ 6% of tested saga implementations) [9]. To determine the
minimum chaos experiment time to attain reliable detection in event-driven systems, the experimental data
set shows that a 5x &+ 0.7x message processing timeout is the critical baseline to attain reliable results of
detection in the system.

It was discovered that measures of queue depth were far more convenient than traditional response time
metrics to measure chaos experimentation. Completed comparative analysis of metric sensitivity of all 30
experimental trials showed that the metrics related to queue identified 76% =+ 5% of injected failures in 60
seconds, as opposed to only 34% + 6% of injected failures in response time percentiles in 60 seconds (p <
0.001) [39]. This enhanced detection ability is due to the value of the queue as an early warning of
processing imbalances, in which the depth variation is realized first, and user-visible degradation is delayed.
The study found four major metrics related to queues of high diagnostic power, including the queue depth
acceleration (second derivative of queue depth over time), which was an early warning of resource
exhaustion in 83% + 4% of resource exhaustion cases; the queue depth to processing rate ratio, which
diagnosed subtle degradations in 71% + 6% of partial failure cases; inter-partition queue depth variance,
which diagnosed routing imbalances in 68% + 7% of network partition cases; and the frequency of back-
pressure activation, which correlated with the The recommendations of the implementation are the use of
rolling time-window aggregations of these metrics instead of point-in-time values, and in experimental
settings 30-second time windows have the best signal-to-noise ratio.

Table 4: Pattern-Specific Testing Guidelines for Event-Driven Systems [9, 10, 35, 36]

Pattern Primary Failure Key Metrics Recommended Scenarios De.tectlon
Modes Window
E L . lock sk
vent Projection lag, Read-write model Clock skew between
Sourcing . command and query 5.7x £0.6x
. Event store consistency, Event . - .
with artitionin replay rate services, Selective event timeout
CQRS P & piay loss
Choreogra C(?ordlnatlon Saga compl-etlon rate, Serxflce unavallabll'lty with 4.9x + 0.5%
failures, Incorrect | Compensation partial message delivery, .
phed Sagas . L : i timeout
compensation activation Mid-saga transitions
Competing Rebalancm‘g. Cpngumf:r lag N Partltl(?n split-brain 43x + 0 4x
issues, Partition distribution, Partition scenarios, Consumer group .
Consumers . . . timeout
assignment ownership changes fragmentation
D . M i ith
cad Poison messages, DLQ growth rate, Retry | . essage corrup thl’l.Wlt 3.8x+0.5x
Letter ; A increased load, Partial :
Retry exhaustion counter distribution : timeout
Queues broker degradation
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Network partition with
producer continuation,
Broker leader elections

Ordering
violations,
Message loss

5.1x £+ 0.6x
timeout

Event
Streaming

Consumer lag velocity,
Stream position gaps

Certain testing instructions were established for numerous event-driven architectures using 30 trial runs.
Chaos experiments proved to be the most effective in event sourcing with CQRS to address the consistency
difference between the write and read model, and clock skew between command and query services found
projection lag problems in 79% + 5% of the tested implementations (p < 0.01) [36]. Scenarios that are
recommended to be used in chaos testing are read replica delays (to simulate projection latency), event store
partitioning (to test projection rebuilding), and selective event loss (to test event log integrity). Experiments
to establish whether there is a coordinator failure in the situation of choreographed sagas yielded the most
diagnostic value of 83% =+ 4% of resilience problems as associated with incomplete failure detection as
opposed to failure compensation logic, and there was never any chance of the latter (p < 0.001) [38]. The
proper testing of saga necessitates a combination of scenarios that involve the unavailability of services and
partial delivery of messages, and specifically the ones that are related to mid-saga transitions, because the
channels of compensating transactions are most susceptible. The most diagnostic in competing consumer
patterns was rebalancing behavior during various failures, namely partition split-brain, where a group
disintegrated, and a hint at an issue of implementation was observed in 71% + 6% of the systems tested (p
<0.01) [39]. The experiment recommends the adoption of chaos experiment in the entire development and
not only in production because in our development setting, where appropriate production-parity data
patterns were modeled (p < 0.01), most of the vulnerabilities (68% + 7%) were detectable in the
development settings [9].

These guidelines must be practically implemented by means of the organization of its practices so that
organizations can adapt them to the guidelines. Through the interviews conducted on 37 practitioners
adopting the proposed approaches, some of the main success factors were identified [37]. First, chaos
experimentation has to be preceded by instrumentation, and baseline profiling needs to set normal operating
ranges of event-driven metrics. Second, chaos experiments would need to be a part of CI/CD pipelines, and
scenario suites would be automatically run after a deployment to staging environments. Third, dedicated
dashboards that are message flow oriented, as opposed to service health, give better visibility in the times
of chaos experiments. Companies that used such guidelines have achieved a 45% + 7% increase in failure
rates (p < 0.01) and a 37 percent & 6 percent decrease in average response to production incidents in event-
based systems [35]. These results indicate that event-specific chaos engineering techniques empirically
proven to improve the resilience of systems can be very useful, but necessitate substantial changes in testing
philosophy, tooling, and observability patterns.

6. Threats to Validity

The following section is about the potential threats to the validity of our empirical study, together with the
measures that can be taken to reduce them. We classified these threats into four dimensional levels in line
with standard empirical practices in software engineering research [40], which include internal validity,
external validity, construct validity, and conclusion validity.

6.1 Internal Validity
Internal validity is associated with whether the effects that are observed are due to the controlled variables
or other extraneous factors. Several threats to internal validity were found in our experimental setup:

e Environmental Variability: Thin slices. Despite containerization, infrastructure differences may
affect experimental results. In order to reduce this threat, every 30 repetitions of each experiment
were run on the same hardware settings with regulated resource distribution. Performance of the
baseline was calculated before every experiment, which was rejected and repeated when the
baseline measures varied by a percentage of over 5% + 0.5% above and below the set norms (p <
0.01).
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Instrumentation Effects: The very structure of monitoring may have some system behaviour,
especially where resources are limited. We also advised sensitivity analysis to measure the effect
of the observers; we found the instrumentation overhead to be 3.7% + 0.8% on the CPU usage and
2.9% + 0.6% on the network throughput, which was much lower than the threshold of producing
an impact on the experimental results (p < 0.001) [41].

Variations in Implementation of the tools: The three chaos tools analyzed (LitmusChaos, Chaos
Mesh, and Pumba) apply conceptually close failure modes in varying technical manners. In order
to make comparatively fair comparisons, we defined failure across tools in a uniform way, and
validated comparable impact by controlled pre-tests, then performed comparative evaluations.
Workload Representativeness: The simulated traffic patterns may not be a complete
representation of how it is used in reality. We solved this part by creating the workload models
using the production traces of other similar e-commerce systems, and confirming that the synthetic
workload had the important statistical characteristics of production environments (kh2 = 4.13, p <
0.05).

6.2 External Validity
External validity deals with the applicability of results to the general population and is the case when the
experiment is limited to a particular population:

Architectural Scope: The testbed has used three typical event-driven patterns (event sourcing,
choreographed sagas, and competing consumers), though not all event-driven architectural
variations are represented. The propagation of failure may vary in organizations that have very
different event-processing patterns or hybrid ones [42].

Technology Stack Specificity: The experimental implementation embraced certain technologies
(Kafka, RabbitMQ, Spring Boot, Node.js), which may not have the same failure behavior as other
possible implementations. Although we have chosen common technologies to ensure the highest
relevance, we have also recommended that the findings should be confirmed by organizations that
apply other message brokers or frameworks.

Limitations in Scale: The containerized testbed was tested on a scale of 8 microservices and had
controlled data volumes. There are likely to be variations in the pattern of failure propagation in
production systems consisting of hundreds of services and much higher throughput, especially in
terms of cascading effects and recovery behavior.

Domain Specificity: The e-commerce domain model in the testbed might not represent all domain-
specific failure modes found in other business domains like finance, healthcare, or industrial control
systems, where various consistency and timing requirements may be relevant [43].

6.3 Construct Validity
Construct validity deals with the question of whether the metrics and the measurements reflect the concepts
under study:
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Failure Definition: Binary failure/normal operation may be a simplistic definition that can be used
in distributed systems to describe the spectrum of compromised states. We tried to counter this with
the use of graduated performance degradation scenarios and quantifying impact in more than one
dimension (throughput, latency, data consistency).

Time of Detection Measurement: Detection Time is based on sensitivity thresholds that are set in
monitoring tools. We took industry-standard thresholds and recognized that varying operational
practices may have a different detection time. Sensitivity analysis involving different thresholds
(£20% changes) demonstrated that there were relative changes in the event-driven architecture and
the REST-based architecture, even when there were differences in absolute time.

Measurement of Effectiveness of Chaos Tools: Effectiveness of chaos tools was measured using
a composite measure that combined the detection rate, precision, and operational complexity. These
factors can be weighted differently, thus providing different comparative results depending on
organizational priorities [40].
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6.4 Conclusion Validity

Conclusion validity refers to the reliability of the conclusion that is made based on statistical analysis:
Sample Size: Although there was repetition of each scenario 30 times to ensure statistical significance, the
number of distinct scenarios of failure (150) might not exhaust the full space of failure of systems that are
event-driven based on complex events. Our coverage of representative failure modes was done by analyzing
industry incidents and not through exhaustive testing.

Statistical Methods: The non-parametric statistical tests (Kruskal-Wallis, post-hoc Dunn tests) were
chosen because a significant number of measurements were non-parametric. These conservative methods
are more conservative than the parametric ones, and can understate certain statistical relationships.
Confounding Variables: Although this is a controlled experimental design, some confounding variables
might still occur, especially the interaction between various resilience mechanisms. We did ablation
experiments to isolate effects where feasible, but the interaction effects in highly resilient systems are very
complex and are difficult to entirely isolate [44].

Long-term Effects: The time per experimental run of 15 minutes may not be long enough to measure long-
term effects of some failure modes, especially those associated with resource leaks or slow state divergence.
Long-duration tests of a subset of cases were able to demonstrate the same results as normal experiments,
and the very long-term effects cannot be dismissed.

Nevertheless, these jeopardies of validity are compensated by the invariance of results among different
experimental runs, combinations of tools, and architectural patterns, demonstrating the confidence in the
main findings on the peculiarities of the failure propagation in event-driven systems. These limitations will
be overcome in future work by increasing testbeds, further patterns in the architecture, and validation in
production.

Conclusion

Chaos engineering in event-driven architectures needs a paradigm shift in how synchronous systems have
been practiced to implement chaos engineering. Asynchronous communication models require special
approaches since it is documented that the failure observability, propagation patterns, and detecting
strategies differ. The existing chaos engineering tooling has substantial gaps in its capability to handle
event-specific failure modes, but can be addressed through a strategic choice of tools depending upon the
deployment environment and architecture pattern. To be adopted by organizations based on event-driven
architectures, such systems are to use a queue-based monitoring emphasizing rate derivatives, scale chaos
experiments, along with the message processing timeouts, design multi-dimensional failure scenarios, and
testing strategies that are pattern-specific. The testbed and experimental protocols associated with
containerized methods enable further development of resiliency testing strategies of more and more
widespread event-based systems, which meets the urgent demand of the relevance of empirically validated
practices in this area.
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