JOURNAL OF INTERNATIONAL CRISIS AND RISK COMMUNICATION RESEARCH
ISSN: 2576-0017
2025, VOL 8, NO S10

Debugging Streaming Applications In Kubernetes:
Tools, Patterns, And Case Studies

Swapna Marru
Apple Inc., USA.

Abstract

The streaming applications running in the Kubernetes environment present
exceptional debugging problems that are not present with traditional stateless
microservices because of in-memory state permanence, event-time strict semantics,
and perpetual uptime demands. The containerized infrastructure, because of its
almanac nature and the distributed nature of the streaming system, results in a
complex clinical environment where the traditional debugging technology interferes
with the significant data processing pipelines. The article generates a general map of
debaging streaming applications in the development of a cloud environment,
stressing non-guspath clinical techniques that do not affect the availability of the
system through offering profound operating insight. The discussion covers ephemeral
container usage, the kubectl debug option to diagnose live without interrupting
service, and aggregate logs through Fluentd, Elasticsearch, and Kibana to provide
end-to-end observability. The main challenges in Kubernetes debugging situations
are container visibility problems, pod connectivity problems, and configuration drift,
which can only be addressed with specialized tooling and a regular process.
Workflows of cloud-native debugging show significant gains in the speed of
development and the stability of production due to streamlined debugging operations.
The ephemeral containers can allow direct access to running container environments
without modifying images or restarting pods, which is especially useful with stateful
streaming applications. The EFK stack design offers fully detailed logging features
that can support large volume streaming workloads with advanced log processing
pipelines and metadata enrichment. Production debugging methods allow the real-
time resolution of issues and operational continuity, which is necessary in the case
of mission-critical systems. Practical experiments in the financial services, IoT
analytics, and media streaming platform domains show that integrated debugging
approaches are effective in practice to solve more complex operational problems such
as memory leakage, thread contention, and resource management bugs.

Keywords: Kubernetes debugging, streaming applications, ephemeral containers,
log aggregation, production troubleshooting, containerized observability.

1. Introduction

The proliferation of real-time data processing has made streaming applications the cornerstone of modern
distributed systems, especially in domains such as financial services, IOT analytics, and e-commerce
platforms. The Kuberanets-based infrastructure optimization resource uses for the high-demonstration
computing environments display significant improvements in resource efficiency, which has shown
contained applications to be shown to be extended scalability patterns as compared to traditional purpose
models [1]. These applied continuous data flow, maintaining complex internal state using frameworks such

126



Debugging Streaming Applications In Kubernetes: Tools, Patterns, And Case Studies

as applications, Apache Flink, Kafka Streams, and Spark structured streaming, and operate under stringent
delay requirements that often demand sub-millisecond reaction time for important financial trading systems
and real-time fraud detection platforms. When Kuberanets are deployed in the atmosphere, these streaming
workloads introduce unique debugging challenges that struggle to effectively address traditional
observation abilities. Cloud DevOps taking advantage of Kuberanets for scalable data processing shows
adequate automation capabilities, although the complexity of contained orchestration introduces novel
operating challenges that require special debugging functionality [2]. The complexity stems from the
intersection of the containerized infrastructure management, which requires continuous availability in
distribution stream processing semantics, and mission-critical data pipelines.

Unlike stateless microservices, which can be easily restarted or replaced, streaming apps are continuously
maintained in memory, work under strict event-time semantics, and require continuous uptime to prevent
data loss or processing delay, which can be cast through downstream systems. The almanac nature of
Kuberanets pods, combined with the distributed architecture of the streaming system, creates a complex
debag landscape where traditional techniques such as procedure attachment or direct container inspections
can disrupt important processing pipelines. Advanced Kubernetes orchestration patterns enable dynamic
resource allocation and automatic scaling, yet these abilities introduce additional layers of complexity when
diagnosing failures in the state streaming workload [1]. This broad structure to debug in Kuberanets
production environments focuses on non-scarcity clinical techniques that preserve the availability of the
system by providing deep operating insights. The discovery of almanac containers, Kubectal debug
capabilities, and centralized log collection creates a strong debugging method for a long-running charge,
especially in a containerized environment. Modern cloud-country architecture benefits from the underlying
scalability and resource management capabilities of Kuberanets, although debugging of streaming
applications requires special approaches that cater to the nature of the state of these systems [2].

Table 1: Key Benefits of Optimized Kubernetes Deployments [1,2]

Benefit Category Traditional Deployment Kubernetes-Optimized
Scalability Limited Highly Elastic
Resource Utilization Inconsistent Efficient
Deployment Speed Slow Rapid
Infrastructure Flexibility Fixed Adaptable

2. Challenges in Debugging Streaming Applications

Debugging Streaming Apps in Kuberanets presents many interconnected challenges that distinguish them
from traditional app debugging scenarios. The statistical nature of the streaming processor creates primary
complexity, as these applications maintain a broad in-memory status, including winding buffers,
aggregation results, and checkpoint metadata, which cannot be easily re-re-re-re-inspected without
potentially disrupting the ongoing processing. Among the top container debugging challenges, container
representation issues and pod connectivity problems represent the most important obstacles for streaming
workloads, where traditional debugging equipment often fails to provide adequate insight into the container
states and inter-pod communication patterns [3]. Temporary aspects of the streaming system introduce
additional debugging complexity through event-time processing semantics, watermark proliferation, and
late data handling. When issues appear as a delay in data discrepancies or processing, the root cause requires
understanding complex relations between ingested timestamps, processing time, and watermark
advancement in distributed operators to detect. Traditional debugging approaches that process obstruction
or state examination, inadvertently change these cosmic relations, mask the original problem, or introduce
new discrepancies. Configuration flow and resource allocation issues reduce these temporary debugging

127



Swapna Marru

challenges, as streaming applications require frequent resource provisions to maintain processing guarantee
and avoid watermark delay [3].

Resource management presents a more important challenge, as the streaming applications usually display
dynamic resource consumption patterns that vary with data velocity, complexity of operation, and state
size. Memory leaks, waste collection pressure, and CPU throttle issues can appear only under specific load
conditions or after an extended runtime period. The almanac nature of the Kuberanets pods complicates
long-term resource monitoring, as the container can reset the resource usage to reset the process matrix and
make it difficult to correct resource issues with the application behavior pattern. Advanced debugging
functionality emphasizes the importance of broad logging strategies and real-time monitoring approaches
that can capture the resource usage patterns before the incidence of POD termination [4].

Network partitions, service mesh complications, and inter-pod communication failures distribute system
debugging landscapes where failures may cascade in many streaming operators. Unlike stateless services,
where individual component failures are usually isolated, streaming apps often display complex failure
spread patterns, where the upstream issues can cause downstream backpresses, processing delays, or data
that can cause corruption that manifests away from the original failure point. Kuberanets' debugging
acceleration techniques focus on the rapid identification of network connectivity issues and service search
problems that can significantly affect streaming application performance. Distributed streaming topology
[4] requires special equipment and functionality to detect communication failures.

Table 2: Debugging Challenges in Streaming Applications [3,4]

Challenge Area

Impact on Operations

Debugging Approach

State Management

Data Consistency Issues

Non-intrusive Inspection

Event Processing

Temporal Inconsistencies

Timeline Analysis

Resource Allocation

Performance Degradation

Real-time Monitoring

Network Communication

Service Disruptions

Topology Mapping

3. Ephemeral Containers and kubectl debug for Live Diagnosis

Ephemeral containers represent a paradigm shift in Kubernetes debugging, providing a mechanism to inject
diagnostic tools into running pods without modifying the original container specifications or disrupting
application execution. For streaming applications, this capability proves invaluable as it enables deep
inspection of running processes, memory utilization patterns, and network connectivity without the risk of
interrupting critical data processing pipelines. Cloud-native debugging workflows emphasize the
importance of maintaining development velocity while ensuring production stability, requiring
sophisticated tooling approaches that can provide comprehensive system insights without compromising
application performance or availability [3]. The kubectl debug command leverages ephemeral containers
to create debugging sessions that share the process namespace, network stack, and filesystem mounts with
target containers while maintaining complete isolation of the debugging environment. This approach allows
engineers to attach profilers, examine process memory, inspect network connections, and analyze file
system state without installing debugging tools in production containers or requiring application restarts.
Modern debugging workflow improvements focus on reducing the friction between development and
production environments, enabling rapid problem identification and resolution through advanced container
debugging capabilities that preserve system integrity [3].

When debugging streaming applications, ephemeral containers can be configured with specialized toolsets
including JVM profilers for Flink and Kafka Streams applications, Python debugging tools for PySpark
workloads, and network analysis utilities for investigating connectivity issues. The shared process
namespace enables inspection of application threads, memory allocation patterns, and garbage collection

128



Debugging Streaming Applications In Kubernetes: Tools, Patterns, And Case Studies

behavior that are crucial for diagnosing performance issues in long-running streaming processes.
Kubernetes ephemeral containers provide essential troubleshooting capabilities by enabling direct access
to running container environments without requiring image modifications or pod restarts, particularly
valuable for stateful streaming applications that maintain critical processing state [4].

Advanced debugging scenarios involve using ephemeral containers to access application-specific state
stores, checkpoint data, and internal metrics that are not typically exposed through standard monitoring
interfaces. For Apache Flink applications, ephemeral containers can access RocksDB state backends to
examine key-value stores, analyze checkpoint metadata, and investigate state size growth patterns that may
indicate data skew or inefficient state management. Similarly, Kafka Streams applications can be debugged
by examining local state stores, investigating topology metadata, and analyzing consumer group
coordination issues. The troubleshooting process benefits from ephemeral container capabilities that allow
comprehensive system analysis without disrupting ongoing data processing operations, essential for
maintaining streaming application availability and data consistency [4].

The integration of ephemeral containers with service mesh technologies like Istio creates additional
debugging capabilities, allowing engineers to inspect service-to-service communication patterns, analyze
traffic routing decisions, and investigate authentication or authorization failures that may affect streaming
data flow. This level of network-aware debugging is particularly valuable for complex streaming topologies
that span multiple services and require coordination between different components of the data processing
pipeline.

Table 3: Ephemeral Container Debugging Methods [5,6]

Method Alil:rlli;:ziton Diagnostic Capability
Process Inspection Minimal Thread & Memory Analysis
Network Tracing None Communication Patterns
File System Access Read-only Configuration Verification
State Store Examination Non-disruptive Data Integrity Checks

4. Log Aggregation and Centralized Observability with Fluentd and Elasticsearch

The centralized log collection forms the foundation of effective streaming application observation,
providing the necessary relevant information to understand complex distributed system behavior and detect
issues in many components. The combination of fluent, elastic discovery, and Kibana makes a powerful
observation stack of high-trust of streaming applications running in the Kuberanets environment,
particularly favorable for structured logging requirements. EFK Stack Architecture provides extensive
logging capabilities for Cuberanets Clusters, which enables efficient log collections, processing, and
visualization in distributed streaming workloads, which require real-time monitoring and analysis [5].
Flexible plugin architecture of Fluentd enables refined log processing pipelines that can pass the application
logs, enrich them with kuberanets metadata, and route various log types for proper storage back-end. For
streaming applications, this capacity proves significant for correlation of application-level events with
infrastructure metrics, pod lifestyle events, and cluster-level resource changes. The ability to parse logs
from frameworks such as Apache Flink, which emit information about detailed operator matrix, checkpoint
progression, and watermark advancement, enables deep insight into the application behavior that will be
difficult to obtain through traditional monitoring approaches. The log collection system displays significant
operational values by consolidating the logs in a centralized repository from several sources, reducing the
complexity of monitoring the distributed system, and the application enables the comprehensive analysis
of behavior patterns [5].

129



Swapna Marru

The integration of integrated integration of log unification with the Kubernetes Metadata enrichment
provides the required reference to debug for distributed streaming applications. When annotations log
entries with fluent collectors pod names, namespace information, node assignment, and resource
limitations, debugging engineers can quickly correct the issues of the application with infrastructure
deficiency, scheduling decisions, or network policies. This metadata enrichment becomes particularly
valuable when examining issues that spread many pods or include complex interactions between streaming
operators and Kubernetes resource management systems. The cubernets logging management through the
EFK stack enables refined log processing workflows that can handle high-volume streaming applications
while maintaining the required performance and reliability standards for the production environment [6].
The sequencing and searching capabilities of Elasticsearch enable sophisticated log analysis patterns that
are particularly valuable for application debugging and streaming. Time-based sequencing strategies align
well with the temporary nature of streaming workloads, allowing engineers to skillfully query logs within
the windows of specific time that correspond to processing delays, checkpoint failures, or data
inconsistencies. The ability to complicate complex aggregation and correlation in log entries enables the
identification of patterns such as recurring resource exhaustion, periodic network issues, or a decline in
gradual performance that may not be clear through real-time monitoring. The centralized log management
system provides adequate benefits, including better troubleshooting capabilities, an increase in safety
monitoring, and reduced operating overheads through automatic log collection and analysis processes [6].
Advanced log analysis patterns include Recent Carries of Cubernets Events, Container Resource Utilization
Matrix, and Cretivation Log with External System Logs to create wide debugging stories. Centralized
logging architecture organizations enable the strategic log retention policies and intelligent data routing
mechanisms [6] to reduce logging costs by maintaining wide system visibility.

Table 4: Log Aggregation Implementation Strategies [7,8]

Strategy Implementation Complexity Observability Gain
Centralized Collection Moderate Comprehensive
Metadata Enrichment Low Contextual

Structured Parsing Medium Deep Analysis
Real-time Alerting High Proactive Response

5. Real-World Case Studies from Production Environments

The practical application of debugging functionality for streaming applications is best depicted through the
study of a detailed case from the production environment, where these techniques have been successfully
employed to solve complex operating issues. These examples display the integration of almanac containers,
centralized logging, and systematic debugging approaches in real-world scenarios. Production debugging
represents an important operating capacity that enables organizations to identify and solve issues in the live
system without disrupting service availability, requiring sophisticated functions that balance the clinical
depth with system stability [7].

A financial services platform high frequency trading data processing experiences intermittent data loss in
its Apache Flink-based risk calculation pipeline. The traditional surveillance did not show any clear
resource lack or error, but the transactions were sometimes missing from downstream aggregation. Using
almanac containers, engineers were capable of attaching JVM profilers to run a flinch task manager without
disrupting the trading pipeline. Profileing revealed the memory pressure during waste collection cycles,
which caused brief processing, leading to the issue of watermark advancement and eventually data loss.
The centralized logging system correlation of the GC log with the incidence of checkpoint failure confirmed
the diagnosis, which enabled the targeted JVM tuning that resolved the issue. Production debugging
technology enables the resolution of real-time issues while maintaining operational continuity, required for
a mission-critical financial system that cannot tolerate service obstacles [7].

130



Debugging Streaming Applications In Kubernetes: Tools, Patterns, And Case Studies

An 10T analytics platform managing sensor data from industrial equipment faced a delay in periodic
processing, inspiring the alarm system to trigger late warnings. The streaming app produced using Kafka
Currents showed normal throughput metrics, but performed irregular delay spikes. Almanac Container
debugging revealed the thread contestant at the Custom Serialization Logic of the application, while the log
agitation analysis identified the patterns that corrected these delays with specific sensor data types, which
included unusually large payloads. The debugging process involves checking the thread dump through
almanac containers and corresponding to apply display logs with the Kafka consumer interval matrix. The
resolution included applying streaming data compression and adapting serialization for large payloads.
Distributed stream processing systems display complex performance characteristics, which require
systematic analysis approaches to identify opportunities for bottlenecks and adaptation in the distributed
computing environment [8].

The incidents of a media streaming platform processing user engagement experienced a memory leak that
caused the pod to restart and temporarily caused service to fall. The spark structured streaming application
gradually increased memory use in several days, but the short-term pod environment challenged long-term
memorial analysis. Using frequent log collection, engineers tracked the memory utilization pattern in pod
lifestyle and identified a correlation with specific event types. Revealing excessive commodity retention in
custom aggregation functions, almanac containers enabled pile dump analysis during the extreme memory
use period. The combination of historical log analysis and live debugging through almanac containers
enabled the identification of the memory leak source and the implementation of proper object life cycle
management. Display evaluation in distributed stream processing requires a comprehensive mapping of
system behavior and resource usage patterns to ensure optimal operating efficiency [8].

These cases display the importance of combining several debugging approaches to address complex failure
modes of study study streaming applications.

Conclusion

Debugging of streaming applications in the Kuberanets environment requires a sophisticated outline that
addresses the unique challenges run by long-running workloads of the state that are functioning within the
almanac contained contained infrastructure. This article has presented a comprehensive functioning
combining almanac containers, Kubectal debug capabilities, and a centralized log collector to create
effective debugging solutions that preserve system availability by providing wide operating insights.
Integration of almanac containers with streaming application debugging represents a significant
advancement in production troubleshooting capabilities, enabling engineers to perform wide systems
diagnostics without risks associated with traditional debugging methods, while containers address the
container visibility issues, pod connectivity problems, and configuration drifts. The centralized log
collection using Fluent, Elastic Search, and Kibana forms the necessary observation foundations to
understand the streaming system behavior distributed in temporary and component boundaries, which
enables refined log processing workflows that maintain high-commitment streaming applications while
maintaining the required performance standards for the production environment. Production debugging
technology shows the importance of maintaining operational continuity when performing diagnostics,
especially for mission-critical streaming applications that process financial transactions, industrial sensor
data, and user engagement events, showing a unified debugging method for the real-world case study.
Production is necessary to maintain reliable streaming systems in the Kuberanets environment.

References

[1] Vedran Daki¢, Et Al., "Optimizing Kubernetes Scheduling For Web Applications Using Machine
Learning," Mdpi, 2025. [Online]. Available: Https://Www.Mdpi.Com/2079-9292/14/5/863

[2] Daniel Dunsin, "The Future Of Container Orchestration Beyond Kubernetes," Researchgate, 2024
[Online]. Available:
Https://Www.Researchgate.Net/Publication/393684582 The Future Of Container Orchestration Beyon
d_Kubernetes

131


https://www.mdpi.com/2079-9292/14/5/863
https://www.mdpi.com/2079-9292/14/5/863
https://www.researchgate.net/publication/393684582_THE_FUTURE_OF_CONTAINER_ORCHESTRATION_BEYOND_KUBERNETES
https://www.researchgate.net/publication/393684582_THE_FUTURE_OF_CONTAINER_ORCHESTRATION_BEYOND_KUBERNETES
https://www.researchgate.net/publication/393684582_THE_FUTURE_OF_CONTAINER_ORCHESTRATION_BEYOND_KUBERNETES
https://www.researchgate.net/publication/393684582_THE_FUTURE_OF_CONTAINER_ORCHESTRATION_BEYOND_KUBERNETES

Swapna Marru

[R3] José Flora, Et Al., "A Study On The Aging And Fault Tolerance Of Microservices In Kubernetes"
Ieee Access, 2022. [Online]. Available:

Https://Ieeexplore.leee.Org/Stamp/Stamp.Jsp? Arnumber=9996355

[R4] Wang Tao, Et Al., "Self-Adaptive Cloud Monitoring With Online Anomaly Detection,"
Researchgate, 2017. [Doi: 10.1109/Tnsm.2022.3195598]. [Online]. Available:
Https://Www.Researchgate.Net/Publication/320682553 Self-
Adaptive_Cloud Monitoring_ With_Online_ Anomaly Detection

[R5] Jinyang Liu, "Scalable And Adaptive Log-Based Anomaly Detection With Expert In The Loop,"
Researchgate 2023. [Online]. Available:

Https://Www.Researchgate.Net/Publication/371413972 Scalable And Adaptive Log-

Based Anomaly Detection With Expert In The Loop

[R6] Carlos Albuquerque, Filipe Correia, "Logging Design Patterns For Cloud-Native Applications," Acm
Digital Library, 2024. [Online]. Available: Https://D1.Acm.Org/Doi/Full/10.1145/3698322.3698351

[R7] Ankur Mahida, “Enhancing Observability In Distributed Systems-A Comprehensive Review,”
Journal Of Mathematical & Computer Applications, [Online]. Available:
Https://D1wqtxts1xzle7.Cloudfront.Net/114240063/Enhancing_Observability In Distributed Systemsa
Comprehensive_Review-Libre.Pdf?1715051079=&Response-Content-
Disposition=Inline%3b+Filename%3denhancing_Observability In Distributed S.Pdf&Expires=1756205
113&Signature=F3kvvfurggmignkcyxghexgzelgdzuaajnwq9hxp4tpfghhu8dowuo4fvtieuaipjOie745upcjw
vg3khlmsbfvqpypgrza-Ochyqjasj2uvx9m2bghwsdtaw8~2nziq-
6qgvuok4mb74zaa8qdfrq8nuf5b2wh~8sdnrwgspdtt7tzql3~Kcui2dhgg2zhcixmp0s3ekaj0z9lwhdifrk3m~1
8wjszwOm3upc7ikbl6r8uxzialety-Www7kr5d7srn2o0axajegaScv-
P4bemmwfvcj~Ln2iiilelb55ndcc2mvlitrt50zio10jrvscfieqxxazai9ygqsweul Ouw__ &Key-Pair-
Id=Apkajlohf5ggslrbv4za

[R8] Jeyhun Karimov, "Benchmarking Distributed Stream Data Processing Systems," leee, 2018.
[Online]. Available: Https://Ieeexplore.leee.Org/Document/8509390

132


https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9996355
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9996355
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9996355
https://www.researchgate.net/publication/320682553_Self-adaptive_cloud_monitoring_with_online_anomaly_detection
https://www.researchgate.net/publication/320682553_Self-adaptive_cloud_monitoring_with_online_anomaly_detection
https://www.researchgate.net/publication/320682553_Self-adaptive_cloud_monitoring_with_online_anomaly_detection
https://www.researchgate.net/publication/320682553_Self-adaptive_cloud_monitoring_with_online_anomaly_detection
https://www.researchgate.net/publication/371413972_Scalable_and_Adaptive_Log-based_Anomaly_Detection_with_Expert_in_the_Loop
https://www.researchgate.net/publication/371413972_Scalable_and_Adaptive_Log-based_Anomaly_Detection_with_Expert_in_the_Loop
https://www.researchgate.net/publication/371413972_Scalable_and_Adaptive_Log-based_Anomaly_Detection_with_Expert_in_the_Loop
https://www.researchgate.net/publication/371413972_Scalable_and_Adaptive_Log-based_Anomaly_Detection_with_Expert_in_the_Loop
https://dl.acm.org/doi/full/10.1145/3698322.3698351
https://dl.acm.org/doi/full/10.1145/3698322.3698351
https://d1wqtxts1xzle7.cloudfront.net/114240063/enhancing_observability_in_distributed_systemsa_comprehensive_review-libre.pdf?1715051079=&response-content-disposition=inline%3B+filename%3DEnhancing_Observability_in_Distributed_S.pdf&Expires=1756205113&Signature=f3kvvFURgGMignkcYxqHexGzeLGDzUaajnwq9hXP4tPFqhhu8dowUO4fvTIeuaipj0ie745UpcJwVg3khLMSbfvqpYpGRza-OCHyqjAsj2uvX9m2bqHwSDtaW8~2nZiq-6qgVuok4mB74zaA8QdFrq8Nuf5B2wh~8SdNrwGSpDtt7tZql3~kCui2dHgG2zhciXmp0S3EKAJ0z9lwHDiFRk3m~18wjSZw0M3UPc7ikBl6r8UXzIaLEtY-wwW7Kr5D7sRN2oAxajEga5CV-P4bemmwFVcJ~Ln2IiI1ElB55NDCc2mvLiTRT50zio10JRVscFieQxxazaI9YqswCU10uw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/114240063/enhancing_observability_in_distributed_systemsa_comprehensive_review-libre.pdf?1715051079=&response-content-disposition=inline%3B+filename%3DEnhancing_Observability_in_Distributed_S.pdf&Expires=1756205113&Signature=f3kvvFURgGMignkcYxqHexGzeLGDzUaajnwq9hXP4tPFqhhu8dowUO4fvTIeuaipj0ie745UpcJwVg3khLMSbfvqpYpGRza-OCHyqjAsj2uvX9m2bqHwSDtaW8~2nZiq-6qgVuok4mB74zaA8QdFrq8Nuf5B2wh~8SdNrwGSpDtt7tZql3~kCui2dHgG2zhciXmp0S3EKAJ0z9lwHDiFRk3m~18wjSZw0M3UPc7ikBl6r8UXzIaLEtY-wwW7Kr5D7sRN2oAxajEga5CV-P4bemmwFVcJ~Ln2IiI1ElB55NDCc2mvLiTRT50zio10JRVscFieQxxazaI9YqswCU10uw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/114240063/enhancing_observability_in_distributed_systemsa_comprehensive_review-libre.pdf?1715051079=&response-content-disposition=inline%3B+filename%3DEnhancing_Observability_in_Distributed_S.pdf&Expires=1756205113&Signature=f3kvvFURgGMignkcYxqHexGzeLGDzUaajnwq9hXP4tPFqhhu8dowUO4fvTIeuaipj0ie745UpcJwVg3khLMSbfvqpYpGRza-OCHyqjAsj2uvX9m2bqHwSDtaW8~2nZiq-6qgVuok4mB74zaA8QdFrq8Nuf5B2wh~8SdNrwGSpDtt7tZql3~kCui2dHgG2zhciXmp0S3EKAJ0z9lwHDiFRk3m~18wjSZw0M3UPc7ikBl6r8UXzIaLEtY-wwW7Kr5D7sRN2oAxajEga5CV-P4bemmwFVcJ~Ln2IiI1ElB55NDCc2mvLiTRT50zio10JRVscFieQxxazaI9YqswCU10uw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/114240063/enhancing_observability_in_distributed_systemsa_comprehensive_review-libre.pdf?1715051079=&response-content-disposition=inline%3B+filename%3DEnhancing_Observability_in_Distributed_S.pdf&Expires=1756205113&Signature=f3kvvFURgGMignkcYxqHexGzeLGDzUaajnwq9hXP4tPFqhhu8dowUO4fvTIeuaipj0ie745UpcJwVg3khLMSbfvqpYpGRza-OCHyqjAsj2uvX9m2bqHwSDtaW8~2nZiq-6qgVuok4mB74zaA8QdFrq8Nuf5B2wh~8SdNrwGSpDtt7tZql3~kCui2dHgG2zhciXmp0S3EKAJ0z9lwHDiFRk3m~18wjSZw0M3UPc7ikBl6r8UXzIaLEtY-wwW7Kr5D7sRN2oAxajEga5CV-P4bemmwFVcJ~Ln2IiI1ElB55NDCc2mvLiTRT50zio10JRVscFieQxxazaI9YqswCU10uw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/114240063/enhancing_observability_in_distributed_systemsa_comprehensive_review-libre.pdf?1715051079=&response-content-disposition=inline%3B+filename%3DEnhancing_Observability_in_Distributed_S.pdf&Expires=1756205113&Signature=f3kvvFURgGMignkcYxqHexGzeLGDzUaajnwq9hXP4tPFqhhu8dowUO4fvTIeuaipj0ie745UpcJwVg3khLMSbfvqpYpGRza-OCHyqjAsj2uvX9m2bqHwSDtaW8~2nZiq-6qgVuok4mB74zaA8QdFrq8Nuf5B2wh~8SdNrwGSpDtt7tZql3~kCui2dHgG2zhciXmp0S3EKAJ0z9lwHDiFRk3m~18wjSZw0M3UPc7ikBl6r8UXzIaLEtY-wwW7Kr5D7sRN2oAxajEga5CV-P4bemmwFVcJ~Ln2IiI1ElB55NDCc2mvLiTRT50zio10JRVscFieQxxazaI9YqswCU10uw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/114240063/enhancing_observability_in_distributed_systemsa_comprehensive_review-libre.pdf?1715051079=&response-content-disposition=inline%3B+filename%3DEnhancing_Observability_in_Distributed_S.pdf&Expires=1756205113&Signature=f3kvvFURgGMignkcYxqHexGzeLGDzUaajnwq9hXP4tPFqhhu8dowUO4fvTIeuaipj0ie745UpcJwVg3khLMSbfvqpYpGRza-OCHyqjAsj2uvX9m2bqHwSDtaW8~2nZiq-6qgVuok4mB74zaA8QdFrq8Nuf5B2wh~8SdNrwGSpDtt7tZql3~kCui2dHgG2zhciXmp0S3EKAJ0z9lwHDiFRk3m~18wjSZw0M3UPc7ikBl6r8UXzIaLEtY-wwW7Kr5D7sRN2oAxajEga5CV-P4bemmwFVcJ~Ln2IiI1ElB55NDCc2mvLiTRT50zio10JRVscFieQxxazaI9YqswCU10uw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/114240063/enhancing_observability_in_distributed_systemsa_comprehensive_review-libre.pdf?1715051079=&response-content-disposition=inline%3B+filename%3DEnhancing_Observability_in_Distributed_S.pdf&Expires=1756205113&Signature=f3kvvFURgGMignkcYxqHexGzeLGDzUaajnwq9hXP4tPFqhhu8dowUO4fvTIeuaipj0ie745UpcJwVg3khLMSbfvqpYpGRza-OCHyqjAsj2uvX9m2bqHwSDtaW8~2nZiq-6qgVuok4mB74zaA8QdFrq8Nuf5B2wh~8SdNrwGSpDtt7tZql3~kCui2dHgG2zhciXmp0S3EKAJ0z9lwHDiFRk3m~18wjSZw0M3UPc7ikBl6r8UXzIaLEtY-wwW7Kr5D7sRN2oAxajEga5CV-P4bemmwFVcJ~Ln2IiI1ElB55NDCc2mvLiTRT50zio10JRVscFieQxxazaI9YqswCU10uw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/114240063/enhancing_observability_in_distributed_systemsa_comprehensive_review-libre.pdf?1715051079=&response-content-disposition=inline%3B+filename%3DEnhancing_Observability_in_Distributed_S.pdf&Expires=1756205113&Signature=f3kvvFURgGMignkcYxqHexGzeLGDzUaajnwq9hXP4tPFqhhu8dowUO4fvTIeuaipj0ie745UpcJwVg3khLMSbfvqpYpGRza-OCHyqjAsj2uvX9m2bqHwSDtaW8~2nZiq-6qgVuok4mB74zaA8QdFrq8Nuf5B2wh~8SdNrwGSpDtt7tZql3~kCui2dHgG2zhciXmp0S3EKAJ0z9lwHDiFRk3m~18wjSZw0M3UPc7ikBl6r8UXzIaLEtY-wwW7Kr5D7sRN2oAxajEga5CV-P4bemmwFVcJ~Ln2IiI1ElB55NDCc2mvLiTRT50zio10JRVscFieQxxazaI9YqswCU10uw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/114240063/enhancing_observability_in_distributed_systemsa_comprehensive_review-libre.pdf?1715051079=&response-content-disposition=inline%3B+filename%3DEnhancing_Observability_in_Distributed_S.pdf&Expires=1756205113&Signature=f3kvvFURgGMignkcYxqHexGzeLGDzUaajnwq9hXP4tPFqhhu8dowUO4fvTIeuaipj0ie745UpcJwVg3khLMSbfvqpYpGRza-OCHyqjAsj2uvX9m2bqHwSDtaW8~2nZiq-6qgVuok4mB74zaA8QdFrq8Nuf5B2wh~8SdNrwGSpDtt7tZql3~kCui2dHgG2zhciXmp0S3EKAJ0z9lwHDiFRk3m~18wjSZw0M3UPc7ikBl6r8UXzIaLEtY-wwW7Kr5D7sRN2oAxajEga5CV-P4bemmwFVcJ~Ln2IiI1ElB55NDCc2mvLiTRT50zio10JRVscFieQxxazaI9YqswCU10uw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/114240063/enhancing_observability_in_distributed_systemsa_comprehensive_review-libre.pdf?1715051079=&response-content-disposition=inline%3B+filename%3DEnhancing_Observability_in_Distributed_S.pdf&Expires=1756205113&Signature=f3kvvFURgGMignkcYxqHexGzeLGDzUaajnwq9hXP4tPFqhhu8dowUO4fvTIeuaipj0ie745UpcJwVg3khLMSbfvqpYpGRza-OCHyqjAsj2uvX9m2bqHwSDtaW8~2nZiq-6qgVuok4mB74zaA8QdFrq8Nuf5B2wh~8SdNrwGSpDtt7tZql3~kCui2dHgG2zhciXmp0S3EKAJ0z9lwHDiFRk3m~18wjSZw0M3UPc7ikBl6r8UXzIaLEtY-wwW7Kr5D7sRN2oAxajEga5CV-P4bemmwFVcJ~Ln2IiI1ElB55NDCc2mvLiTRT50zio10JRVscFieQxxazaI9YqswCU10uw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/114240063/enhancing_observability_in_distributed_systemsa_comprehensive_review-libre.pdf?1715051079=&response-content-disposition=inline%3B+filename%3DEnhancing_Observability_in_Distributed_S.pdf&Expires=1756205113&Signature=f3kvvFURgGMignkcYxqHexGzeLGDzUaajnwq9hXP4tPFqhhu8dowUO4fvTIeuaipj0ie745UpcJwVg3khLMSbfvqpYpGRza-OCHyqjAsj2uvX9m2bqHwSDtaW8~2nZiq-6qgVuok4mB74zaA8QdFrq8Nuf5B2wh~8SdNrwGSpDtt7tZql3~kCui2dHgG2zhciXmp0S3EKAJ0z9lwHDiFRk3m~18wjSZw0M3UPc7ikBl6r8UXzIaLEtY-wwW7Kr5D7sRN2oAxajEga5CV-P4bemmwFVcJ~Ln2IiI1ElB55NDCc2mvLiTRT50zio10JRVscFieQxxazaI9YqswCU10uw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://ieeexplore.ieee.org/document/8509390
https://ieeexplore.ieee.org/document/8509390

