
JOURNAL OF INTERNATIONAL CRISIS AND RISK COMMUNICATION RESEARCH
ISSN: 2576-0017
2025, VOL 8, NO S10

126

Debugging Streaming Applications In Kubernetes:

Tools, Patterns, And Case Studies

Swapna Marru

Apple Inc., USA.

Abstract

The streaming applications running in the Kubernetes environment present
exceptional debugging problems that are not present with traditional stateless

microservices because of in-memory state permanence, event-time strict semantics,
and perpetual uptime demands. The containerized infrastructure, because of its
almanac nature and the distributed nature of the streaming system, results in a

complex clinical environment where the traditional debugging technology interferes
with the significant data processing pipelines. The article generates a general map of

debaging streaming applications in the development of a cloud environment,
stressing non-guspath clinical techniques that do not affect the availability of the
system through offering profound operating insight. The discussion covers ephemeral

container usage, the kubectl debug option to diagnose live without interrupting
service, and aggregate logs through Fluentd, Elasticsearch, and Kibana to provide

end-to-end observability. The main challenges in Kubernetes debugging situations
are container visibility problems, pod connectivity problems, and configuration drift,
which can only be addressed with specialized tooling and a regular process.

Workflows of cloud-native debugging show significant gains in the speed of
development and the stability of production due to streamlined debugging operations.

The ephemeral containers can allow direct access to running container environments
without modifying images or restarting pods, which is especially useful with stateful
streaming applications. The EFK stack design offers fully detailed logging features

that can support large volume streaming workloads with advanced log processing
pipelines and metadata enrichment. Production debugging methods allow the real-

time resolution of issues and operational continuity, which is necessary in the case
of mission-critical systems. Practical experiments in the financial services, IoT

analytics, and media streaming platform domains show that integrated debugging
approaches are effective in practice to solve more complex operational problems such
as memory leakage, thread contention, and resource management bugs.

Keywords: Kubernetes debugging, streaming applications, ephemeral containers,

log aggregation, production troubleshooting, containerized observability.

1. Introduction

The proliferation of real-time data processing has made streaming applications the cornerstone of modern

distributed systems, especially in domains such as financial services, IOT analytics, and e-commerce

platforms. The Kuberanets-based infrastructure optimization resource uses for the high-demonstration

computing environments display significant improvements in resource efficiency, which has shown

contained applications to be shown to be extended scalability patterns as compared to traditional purpose

models [1]. These applied continuous data flow, maintaining complex internal state using frameworks such

Debugging Streaming Applications In Kubernetes: Tools, Patterns, And Case Studies

127

as applications, Apache Flink, Kafka Streams, and Spark structured streaming, and operate under stringent

delay requirements that often demand sub-millisecond reaction time for important financial trading systems

and real-time fraud detection platforms. When Kuberanets are deployed in the atmosphere, these streaming

workloads introduce unique debugging challenges that struggle to effectively address traditional

observation abilities. Cloud DevOps taking advantage of Kuberanets for scalable data processing shows

adequate automation capabilities, although the complexity of contained orchestration introduces novel

operating challenges that require special debugging functionality [2]. The complexity stems from the

intersection of the containerized infrastructure management, which requires continuous availability in

distribution stream processing semantics, and mission-critical data pipelines.

Unlike stateless microservices, which can be easily restarted or replaced, streaming apps are continuously

maintained in memory, work under strict event-time semantics, and require continuous uptime to prevent

data loss or processing delay, which can be cast through downstream systems. The almanac nature of

Kuberanets pods, combined with the distributed architecture of the streaming system, creates a complex

debag landscape where traditional techniques such as procedure attachment or direct container inspections

can disrupt important processing pipelines. Advanced Kubernetes orchestration patterns enable dynamic

resource allocation and automatic scaling, yet these abilities introduce additional layers of complexity when

diagnosing failures in the state streaming workload [1]. This broad structure to debug in Kuberanets

production environments focuses on non-scarcity clinical techniques that preserve the availability of the

system by providing deep operating insights. The discovery of almanac containers, Kubectal debug

capabilities, and centralized log collection creates a strong debugging method for a long-running charge,

especially in a containerized environment. Modern cloud-country architecture benefits from the underlying

scalability and resource management capabilities of Kuberanets, although debugging of streaming

applications requires special approaches that cater to the nature of the state of these systems [2].

Table 1: Key Benefits of Optimized Kubernetes Deployments [1,2]

2. Challenges in Debugging Streaming Applications

Debugging Streaming Apps in Kuberanets presents many interconnected challenges that distinguish them

from traditional app debugging scenarios. The statistical nature of the streaming processor creates primary

complexity, as these applications maintain a broad in-memory status, including winding buffers,

aggregation results, and checkpoint metadata, which cannot be easily re-re-re-re-inspected without

potentially disrupting the ongoing processing. Among the top container debugging challenges, container

representation issues and pod connectivity problems represent the most important obstacles for streaming

workloads, where traditional debugging equipment often fails to provide adequate insight into the container

states and inter-pod communication patterns [3]. Temporary aspects of the streaming system introduce

additional debugging complexity through event-time processing semantics, watermark proliferation, and

late data handling. When issues appear as a delay in data discrepancies or processing, the root cause requires

understanding complex relations between ingested timestamps, processing time, and watermark

advancement in distributed operators to detect. Traditional debugging approaches that process obstruction

or state examination, inadvertently change these cosmic relations, mask the original problem, or introduce

new discrepancies. Configuration flow and resource allocation issues reduce these temporary debugging

Benefit Category Traditional Deployment Kubernetes-Optimized

Scalability Limited Highly Elastic

Resource Utilization Inconsistent Efficient

Deployment Speed Slow Rapid

Infrastructure Flexibility Fixed Adaptable

Swapna Marru

128

challenges, as streaming applications require frequent resource provisions to maintain processing guarantee

and avoid watermark delay [3].

Resource management presents a more important challenge, as the streaming applications usually display

dynamic resource consumption patterns that vary with data velocity, complexity of operation, and state

size. Memory leaks, waste collection pressure, and CPU throttle issues can appear only under specific load

conditions or after an extended runtime period. The almanac nature of the Kuberanets pods complicates

long-term resource monitoring, as the container can reset the resource usage to reset the process matrix and

make it difficult to correct resource issues with the application behavior pattern. Advanced debugging

functionality emphasizes the importance of broad logging strategies and real-time monitoring approaches

that can capture the resource usage patterns before the incidence of POD termination [4].

Network partitions, service mesh complications, and inter-pod communication failures distribute system

debugging landscapes where failures may cascade in many streaming operators. Unlike stateless services,

where individual component failures are usually isolated, streaming apps often display complex failure

spread patterns, where the upstream issues can cause downstream backpresses, processing delays, or data

that can cause corruption that manifests away from the original failure point. Kuberanets' debugging

acceleration techniques focus on the rapid identification of network connectivity issues and service search

problems that can significantly affect streaming application performance. Distributed streaming topology

[4] requires special equipment and functionality to detect communication failures.

Table 2: Debugging Challenges in Streaming Applications [3,4]

Challenge Area Impact on Operations Debugging Approach

State Management Data Consistency Issues Non-intrusive Inspection

Event Processing Temporal Inconsistencies Timeline Analysis

Resource Allocation Performance Degradation Real-time Monitoring

Network Communication Service Disruptions Topology Mapping

3. Ephemeral Containers and kubectl debug for Live Diagnosis

Ephemeral containers represent a paradigm shift in Kubernetes debugging, providing a mechanism to inject

diagnostic tools into running pods without modifying the original container specifications or disrupting

application execution. For streaming applications, this capability proves invaluable as it enables deep

inspection of running processes, memory utilization patterns, and network connectivity without the risk of

interrupting critical data processing pipelines. Cloud-native debugging workflows emphasize the

importance of maintaining development velocity while ensuring production stability, requiring

sophisticated tooling approaches that can provide comprehensive system insights without compromising

application performance or availability [3]. The kubectl debug command leverages ephemeral containers

to create debugging sessions that share the process namespace, network stack, and filesystem mounts with

target containers while maintaining complete isolation of the debugging environment. This approach allows

engineers to attach profilers, examine process memory, inspect network connections, and analyze file

system state without installing debugging tools in production containers or requiring application restarts.

Modern debugging workflow improvements focus on reducing the friction between development and

production environments, enabling rapid problem identification and resolution through advanced container

debugging capabilities that preserve system integrity [3].

When debugging streaming applications, ephemeral containers can be configured with specialized toolsets

including JVM profilers for Flink and Kafka Streams applications, Python debugging tools for PySpark

workloads, and network analysis utilities for investigating connectivity issues. The shared process

namespace enables inspection of application threads, memory allocation patterns, and garbage collection

Debugging Streaming Applications In Kubernetes: Tools, Patterns, And Case Studies

129

behavior that are crucial for diagnosing performance issues in long-running streaming processes.

Kubernetes ephemeral containers provide essential troubleshooting capabilities by enabling direct access

to running container environments without requiring image modifications or pod restarts, particularly

valuable for stateful streaming applications that maintain critical processing state [4].

Advanced debugging scenarios involve using ephemeral containers to access application-specific state

stores, checkpoint data, and internal metrics that are not typically exposed through standard monitoring

interfaces. For Apache Flink applications, ephemeral containers can access RocksDB state backends to

examine key-value stores, analyze checkpoint metadata, and investigate state size growth patterns that may

indicate data skew or inefficient state management. Similarly, Kafka Streams applications can be debugged

by examining local state stores, investigating topology metadata, and analyzing consumer group

coordination issues. The troubleshooting process benefits from ephemeral container capabilities that allow

comprehensive system analysis without disrupting ongoing data processing operations, essential for

maintaining streaming application availability and data consistency [4].

The integration of ephemeral containers with service mesh technologies like Istio creates additional

debugging capabilities, allowing engineers to inspect service-to-service communication patterns, analyze

traffic routing decisions, and investigate authentication or authorization failures that may affect streaming

data flow. This level of network-aware debugging is particularly valuable for complex streaming topologies

that span multiple services and require coordination between different components of the data processing

pipeline.

Table 3: Ephemeral Container Debugging Methods [5,6]

Method
Application

Impact
Diagnostic Capability

Process Inspection Minimal Thread & Memory Analysis

Network Tracing None Communication Patterns

File System Access Read-only Configuration Verification

State Store Examination Non-disruptive Data Integrity Checks

4. Log Aggregation and Centralized Observability with Fluentd and Elasticsearch

The centralized log collection forms the foundation of effective streaming application observation,

providing the necessary relevant information to understand complex distributed system behavior and detect

issues in many components. The combination of fluent, elastic discovery, and Kibana makes a powerful

observation stack of high-trust of streaming applications running in the Kuberanets environment,

particularly favorable for structured logging requirements. EFK Stack Architecture provides extensive

logging capabilities for Cuberanets Clusters, which enables efficient log collections, processing, and

visualization in distributed streaming workloads, which require real-time monitoring and analysis [5].

Flexible plugin architecture of Fluentd enables refined log processing pipelines that can pass the application

logs, enrich them with kuberanets metadata, and route various log types for proper storage back-end. For

streaming applications, this capacity proves significant for correlation of application-level events with

infrastructure metrics, pod lifestyle events, and cluster-level resource changes. The ability to parse logs

from frameworks such as Apache Flink, which emit information about detailed operator matrix, checkpoint

progression, and watermark advancement, enables deep insight into the application behavior that will be

difficult to obtain through traditional monitoring approaches. The log collection system displays significant

operational values by consolidating the logs in a centralized repository from several sources, reducing the

complexity of monitoring the distributed system, and the application enables the comprehensive analysis

of behavior patterns [5].

Swapna Marru

130

The integration of integrated integration of log unification with the Kubernetes Metadata enrichment

provides the required reference to debug for distributed streaming applications. When annotations log

entries with fluent collectors pod names, namespace information, node assignment, and resource

limitations, debugging engineers can quickly correct the issues of the application with infrastructure

deficiency, scheduling decisions, or network policies. This metadata enrichment becomes particularly

valuable when examining issues that spread many pods or include complex interactions between streaming

operators and Kubernetes resource management systems. The cubernets logging management through the

EFK stack enables refined log processing workflows that can handle high-volume streaming applications

while maintaining the required performance and reliability standards for the production environment [6].

The sequencing and searching capabilities of Elasticsearch enable sophisticated log analysis patterns that

are particularly valuable for application debugging and streaming. Time-based sequencing strategies align

well with the temporary nature of streaming workloads, allowing engineers to skillfully query logs within

the windows of specific time that correspond to processing delays, checkpoint failures, or data

inconsistencies. The ability to complicate complex aggregation and correlation in log entries enables the

identification of patterns such as recurring resource exhaustion, periodic network issues, or a decline in

gradual performance that may not be clear through real-time monitoring. The centralized log management

system provides adequate benefits, including better troubleshooting capabilities, an increase in safety

monitoring, and reduced operating overheads through automatic log collection and analysis processes [6].

Advanced log analysis patterns include Recent Carries of Cubernets Events, Container Resource Utilization

Matrix, and Cretivation Log with External System Logs to create wide debugging stories. Centralized

logging architecture organizations enable the strategic log retention policies and intelligent data routing

mechanisms [6] to reduce logging costs by maintaining wide system visibility.

Table 4: Log Aggregation Implementation Strategies [7,8]

Strategy Implementation Complexity Observability Gain

Centralized Collection Moderate Comprehensive

Metadata Enrichment Low Contextual

Structured Parsing Medium Deep Analysis

Real-time Alerting High Proactive Response

5. Real-World Case Studies from Production Environments

The practical application of debugging functionality for streaming applications is best depicted through the

study of a detailed case from the production environment, where these techniques have been successfully

employed to solve complex operating issues. These examples display the integration of almanac containers,

centralized logging, and systematic debugging approaches in real-world scenarios. Production debugging

represents an important operating capacity that enables organizations to identify and solve issues in the live

system without disrupting service availability, requiring sophisticated functions that balance the clinical

depth with system stability [7].

A financial services platform high frequency trading data processing experiences intermittent data loss in

its Apache Flink-based risk calculation pipeline. The traditional surveillance did not show any clear

resource lack or error, but the transactions were sometimes missing from downstream aggregation. Using

almanac containers, engineers were capable of attaching JVM profilers to run a flinch task manager without

disrupting the trading pipeline. Profileing revealed the memory pressure during waste collection cycles,

which caused brief processing, leading to the issue of watermark advancement and eventually data loss.

The centralized logging system correlation of the GC log with the incidence of checkpoint failure confirmed

the diagnosis, which enabled the targeted JVM tuning that resolved the issue. Production debugging

technology enables the resolution of real-time issues while maintaining operational continuity, required for

a mission-critical financial system that cannot tolerate service obstacles [7].

Debugging Streaming Applications In Kubernetes: Tools, Patterns, And Case Studies

131

An IOT analytics platform managing sensor data from industrial equipment faced a delay in periodic

processing, inspiring the alarm system to trigger late warnings. The streaming app produced using Kafka

Currents showed normal throughput metrics, but performed irregular delay spikes. Almanac Container

debugging revealed the thread contestant at the Custom Serialization Logic of the application, while the log

agitation analysis identified the patterns that corrected these delays with specific sensor data types, which

included unusually large payloads. The debugging process involves checking the thread dump through

almanac containers and corresponding to apply display logs with the Kafka consumer interval matrix. The

resolution included applying streaming data compression and adapting serialization for large payloads.

Distributed stream processing systems display complex performance characteristics, which require

systematic analysis approaches to identify opportunities for bottlenecks and adaptation in the distributed

computing environment [8].

The incidents of a media streaming platform processing user engagement experienced a memory leak that

caused the pod to restart and temporarily caused service to fall. The spark structured streaming application

gradually increased memory use in several days, but the short-term pod environment challenged long-term

memorial analysis. Using frequent log collection, engineers tracked the memory utilization pattern in pod

lifestyle and identified a correlation with specific event types. Revealing excessive commodity retention in

custom aggregation functions, almanac containers enabled pile dump analysis during the extreme memory

use period. The combination of historical log analysis and live debugging through almanac containers

enabled the identification of the memory leak source and the implementation of proper object life cycle

management. Display evaluation in distributed stream processing requires a comprehensive mapping of

system behavior and resource usage patterns to ensure optimal operating efficiency [8].

These cases display the importance of combining several debugging approaches to address complex failure

modes of study study streaming applications.

Conclusion

Debugging of streaming applications in the Kuberanets environment requires a sophisticated outline that

addresses the unique challenges run by long-running workloads of the state that are functioning within the

almanac contained contained infrastructure. This article has presented a comprehensive functioning

combining almanac containers, Kubectal debug capabilities, and a centralized log collector to create

effective debugging solutions that preserve system availability by providing wide operating insights.

Integration of almanac containers with streaming application debugging represents a significant

advancement in production troubleshooting capabilities, enabling engineers to perform wide systems

diagnostics without risks associated with traditional debugging methods, while containers address the

container visibility issues, pod connectivity problems, and configuration drifts. The centralized log

collection using Fluent, Elastic Search, and Kibana forms the necessary observation foundations to

understand the streaming system behavior distributed in temporary and component boundaries, which

enables refined log processing workflows that maintain high-commitment streaming applications while

maintaining the required performance standards for the production environment. Production debugging

technology shows the importance of maintaining operational continuity when performing diagnostics,

especially for mission-critical streaming applications that process financial transactions, industrial sensor

data, and user engagement events, showing a unified debugging method for the real-world case study.

Production is necessary to maintain reliable streaming systems in the Kuberanets environment.

References

[1] Vedran Dakić, Et Al., "Optimizing Kubernetes Scheduling For Web Applications Using Machine

Learning," Mdpi, 2025. [Online]. Available: Https://Www.Mdpi.Com/2079-9292/14/5/863

[2] Daniel Dunsin, "The Future Of Container Orchestration Beyond Kubernetes," Researchgate, 2024

[Online]. Available:

Https://Www.Researchgate.Net/Publication/393684582_The_Future_Of_Container_Orchestration_Beyon

d_Kubernetes

https://www.mdpi.com/2079-9292/14/5/863
https://www.mdpi.com/2079-9292/14/5/863
https://www.researchgate.net/publication/393684582_THE_FUTURE_OF_CONTAINER_ORCHESTRATION_BEYOND_KUBERNETES
https://www.researchgate.net/publication/393684582_THE_FUTURE_OF_CONTAINER_ORCHESTRATION_BEYOND_KUBERNETES
https://www.researchgate.net/publication/393684582_THE_FUTURE_OF_CONTAINER_ORCHESTRATION_BEYOND_KUBERNETES
https://www.researchgate.net/publication/393684582_THE_FUTURE_OF_CONTAINER_ORCHESTRATION_BEYOND_KUBERNETES

Swapna Marru

132

[R3] José Flora, Et Al., "A Study On The Aging And Fault Tolerance Of Microservices In Kubernetes"

Ieee Access, 2022. [Online]. Available:

Https://Ieeexplore.Ieee.Org/Stamp/Stamp.Jsp?Arnumber=9996355

[R4] Wang Tao, Et Al., "Self-Adaptive Cloud Monitoring With Online Anomaly Detection,"

Researchgate, 2017. [Doi: 10.1109/Tnsm.2022.3195598]. [Online]. Available:

Https://Www.Researchgate.Net/Publication/320682553_Self-

Adaptive_Cloud_Monitoring_With_Online_Anomaly_Detection

[R5] Jinyang Liu, "Scalable And Adaptive Log-Based Anomaly Detection With Expert In The Loop,"

Researchgate 2023. [Online]. Available:

Https://Www.Researchgate.Net/Publication/371413972_Scalable_And_Adaptive_Log-

Based_Anomaly_Detection_With_Expert_In_The_Loop

[R6] Carlos Albuquerque, Filipe Correia, "Logging Design Patterns For Cloud-Native Applications," Acm

Digital Library, 2024. [Online]. Available: Https://Dl.Acm.Org/Doi/Full/10.1145/3698322.3698351

[R7] Ankur Mahida, “Enhancing Observability In Distributed Systems-A Comprehensive Review,”

Journal Of Mathematical & Computer Applications, [Online]. Available:

Https://D1wqtxts1xzle7.Cloudfront.Net/114240063/Enhancing_Observability_In_Distributed_Systemsa_

Comprehensive_Review-Libre.Pdf?1715051079=&Response-Content-

Disposition=Inline%3b+Filename%3denhancing_Observability_In_Distributed_S.Pdf&Expires=1756205

113&Signature=F3kvvfurggmignkcyxqhexgzelgdzuaajnwq9hxp4tpfqhhu8dowuo4fvtieuaipj0ie745upcjw

vg3khlmsbfvqpypgrza-Ochyqjasj2uvx9m2bqhwsdtaw8~2nziq-

6qgvuok4mb74zaa8qdfrq8nuf5b2wh~8sdnrwgspdtt7tzql3~Kcui2dhgg2zhcixmp0s3ekaj0z9lwhdifrk3m~1

8wjszw0m3upc7ikbl6r8uxzialety-Www7kr5d7srn2oaxajega5cv-

P4bemmwfvcj~Ln2iii1elb55ndcc2mvlitrt50zio10jrvscfieqxxazai9yqswcu10uw__&Key-Pair-

Id=Apkajlohf5ggslrbv4za

[R8] Jeyhun Karimov, "Benchmarking Distributed Stream Data Processing Systems," Ieee, 2018.

[Online]. Available: Https://Ieeexplore.Ieee.Org/Document/8509390

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9996355
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9996355
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9996355
https://www.researchgate.net/publication/320682553_Self-adaptive_cloud_monitoring_with_online_anomaly_detection
https://www.researchgate.net/publication/320682553_Self-adaptive_cloud_monitoring_with_online_anomaly_detection
https://www.researchgate.net/publication/320682553_Self-adaptive_cloud_monitoring_with_online_anomaly_detection
https://www.researchgate.net/publication/320682553_Self-adaptive_cloud_monitoring_with_online_anomaly_detection
https://www.researchgate.net/publication/371413972_Scalable_and_Adaptive_Log-based_Anomaly_Detection_with_Expert_in_the_Loop
https://www.researchgate.net/publication/371413972_Scalable_and_Adaptive_Log-based_Anomaly_Detection_with_Expert_in_the_Loop
https://www.researchgate.net/publication/371413972_Scalable_and_Adaptive_Log-based_Anomaly_Detection_with_Expert_in_the_Loop
https://www.researchgate.net/publication/371413972_Scalable_and_Adaptive_Log-based_Anomaly_Detection_with_Expert_in_the_Loop
https://dl.acm.org/doi/full/10.1145/3698322.3698351
https://dl.acm.org/doi/full/10.1145/3698322.3698351
https://d1wqtxts1xzle7.cloudfront.net/114240063/enhancing_observability_in_distributed_systemsa_comprehensive_review-libre.pdf?1715051079=&response-content-disposition=inline%3B+filename%3DEnhancing_Observability_in_Distributed_S.pdf&Expires=1756205113&Signature=f3kvvFURgGMignkcYxqHexGzeLGDzUaajnwq9hXP4tPFqhhu8dowUO4fvTIeuaipj0ie745UpcJwVg3khLMSbfvqpYpGRza-OCHyqjAsj2uvX9m2bqHwSDtaW8~2nZiq-6qgVuok4mB74zaA8QdFrq8Nuf5B2wh~8SdNrwGSpDtt7tZql3~kCui2dHgG2zhciXmp0S3EKAJ0z9lwHDiFRk3m~18wjSZw0M3UPc7ikBl6r8UXzIaLEtY-wwW7Kr5D7sRN2oAxajEga5CV-P4bemmwFVcJ~Ln2IiI1ElB55NDCc2mvLiTRT50zio10JRVscFieQxxazaI9YqswCU10uw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/114240063/enhancing_observability_in_distributed_systemsa_comprehensive_review-libre.pdf?1715051079=&response-content-disposition=inline%3B+filename%3DEnhancing_Observability_in_Distributed_S.pdf&Expires=1756205113&Signature=f3kvvFURgGMignkcYxqHexGzeLGDzUaajnwq9hXP4tPFqhhu8dowUO4fvTIeuaipj0ie745UpcJwVg3khLMSbfvqpYpGRza-OCHyqjAsj2uvX9m2bqHwSDtaW8~2nZiq-6qgVuok4mB74zaA8QdFrq8Nuf5B2wh~8SdNrwGSpDtt7tZql3~kCui2dHgG2zhciXmp0S3EKAJ0z9lwHDiFRk3m~18wjSZw0M3UPc7ikBl6r8UXzIaLEtY-wwW7Kr5D7sRN2oAxajEga5CV-P4bemmwFVcJ~Ln2IiI1ElB55NDCc2mvLiTRT50zio10JRVscFieQxxazaI9YqswCU10uw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/114240063/enhancing_observability_in_distributed_systemsa_comprehensive_review-libre.pdf?1715051079=&response-content-disposition=inline%3B+filename%3DEnhancing_Observability_in_Distributed_S.pdf&Expires=1756205113&Signature=f3kvvFURgGMignkcYxqHexGzeLGDzUaajnwq9hXP4tPFqhhu8dowUO4fvTIeuaipj0ie745UpcJwVg3khLMSbfvqpYpGRza-OCHyqjAsj2uvX9m2bqHwSDtaW8~2nZiq-6qgVuok4mB74zaA8QdFrq8Nuf5B2wh~8SdNrwGSpDtt7tZql3~kCui2dHgG2zhciXmp0S3EKAJ0z9lwHDiFRk3m~18wjSZw0M3UPc7ikBl6r8UXzIaLEtY-wwW7Kr5D7sRN2oAxajEga5CV-P4bemmwFVcJ~Ln2IiI1ElB55NDCc2mvLiTRT50zio10JRVscFieQxxazaI9YqswCU10uw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/114240063/enhancing_observability_in_distributed_systemsa_comprehensive_review-libre.pdf?1715051079=&response-content-disposition=inline%3B+filename%3DEnhancing_Observability_in_Distributed_S.pdf&Expires=1756205113&Signature=f3kvvFURgGMignkcYxqHexGzeLGDzUaajnwq9hXP4tPFqhhu8dowUO4fvTIeuaipj0ie745UpcJwVg3khLMSbfvqpYpGRza-OCHyqjAsj2uvX9m2bqHwSDtaW8~2nZiq-6qgVuok4mB74zaA8QdFrq8Nuf5B2wh~8SdNrwGSpDtt7tZql3~kCui2dHgG2zhciXmp0S3EKAJ0z9lwHDiFRk3m~18wjSZw0M3UPc7ikBl6r8UXzIaLEtY-wwW7Kr5D7sRN2oAxajEga5CV-P4bemmwFVcJ~Ln2IiI1ElB55NDCc2mvLiTRT50zio10JRVscFieQxxazaI9YqswCU10uw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/114240063/enhancing_observability_in_distributed_systemsa_comprehensive_review-libre.pdf?1715051079=&response-content-disposition=inline%3B+filename%3DEnhancing_Observability_in_Distributed_S.pdf&Expires=1756205113&Signature=f3kvvFURgGMignkcYxqHexGzeLGDzUaajnwq9hXP4tPFqhhu8dowUO4fvTIeuaipj0ie745UpcJwVg3khLMSbfvqpYpGRza-OCHyqjAsj2uvX9m2bqHwSDtaW8~2nZiq-6qgVuok4mB74zaA8QdFrq8Nuf5B2wh~8SdNrwGSpDtt7tZql3~kCui2dHgG2zhciXmp0S3EKAJ0z9lwHDiFRk3m~18wjSZw0M3UPc7ikBl6r8UXzIaLEtY-wwW7Kr5D7sRN2oAxajEga5CV-P4bemmwFVcJ~Ln2IiI1ElB55NDCc2mvLiTRT50zio10JRVscFieQxxazaI9YqswCU10uw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/114240063/enhancing_observability_in_distributed_systemsa_comprehensive_review-libre.pdf?1715051079=&response-content-disposition=inline%3B+filename%3DEnhancing_Observability_in_Distributed_S.pdf&Expires=1756205113&Signature=f3kvvFURgGMignkcYxqHexGzeLGDzUaajnwq9hXP4tPFqhhu8dowUO4fvTIeuaipj0ie745UpcJwVg3khLMSbfvqpYpGRza-OCHyqjAsj2uvX9m2bqHwSDtaW8~2nZiq-6qgVuok4mB74zaA8QdFrq8Nuf5B2wh~8SdNrwGSpDtt7tZql3~kCui2dHgG2zhciXmp0S3EKAJ0z9lwHDiFRk3m~18wjSZw0M3UPc7ikBl6r8UXzIaLEtY-wwW7Kr5D7sRN2oAxajEga5CV-P4bemmwFVcJ~Ln2IiI1ElB55NDCc2mvLiTRT50zio10JRVscFieQxxazaI9YqswCU10uw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/114240063/enhancing_observability_in_distributed_systemsa_comprehensive_review-libre.pdf?1715051079=&response-content-disposition=inline%3B+filename%3DEnhancing_Observability_in_Distributed_S.pdf&Expires=1756205113&Signature=f3kvvFURgGMignkcYxqHexGzeLGDzUaajnwq9hXP4tPFqhhu8dowUO4fvTIeuaipj0ie745UpcJwVg3khLMSbfvqpYpGRza-OCHyqjAsj2uvX9m2bqHwSDtaW8~2nZiq-6qgVuok4mB74zaA8QdFrq8Nuf5B2wh~8SdNrwGSpDtt7tZql3~kCui2dHgG2zhciXmp0S3EKAJ0z9lwHDiFRk3m~18wjSZw0M3UPc7ikBl6r8UXzIaLEtY-wwW7Kr5D7sRN2oAxajEga5CV-P4bemmwFVcJ~Ln2IiI1ElB55NDCc2mvLiTRT50zio10JRVscFieQxxazaI9YqswCU10uw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/114240063/enhancing_observability_in_distributed_systemsa_comprehensive_review-libre.pdf?1715051079=&response-content-disposition=inline%3B+filename%3DEnhancing_Observability_in_Distributed_S.pdf&Expires=1756205113&Signature=f3kvvFURgGMignkcYxqHexGzeLGDzUaajnwq9hXP4tPFqhhu8dowUO4fvTIeuaipj0ie745UpcJwVg3khLMSbfvqpYpGRza-OCHyqjAsj2uvX9m2bqHwSDtaW8~2nZiq-6qgVuok4mB74zaA8QdFrq8Nuf5B2wh~8SdNrwGSpDtt7tZql3~kCui2dHgG2zhciXmp0S3EKAJ0z9lwHDiFRk3m~18wjSZw0M3UPc7ikBl6r8UXzIaLEtY-wwW7Kr5D7sRN2oAxajEga5CV-P4bemmwFVcJ~Ln2IiI1ElB55NDCc2mvLiTRT50zio10JRVscFieQxxazaI9YqswCU10uw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/114240063/enhancing_observability_in_distributed_systemsa_comprehensive_review-libre.pdf?1715051079=&response-content-disposition=inline%3B+filename%3DEnhancing_Observability_in_Distributed_S.pdf&Expires=1756205113&Signature=f3kvvFURgGMignkcYxqHexGzeLGDzUaajnwq9hXP4tPFqhhu8dowUO4fvTIeuaipj0ie745UpcJwVg3khLMSbfvqpYpGRza-OCHyqjAsj2uvX9m2bqHwSDtaW8~2nZiq-6qgVuok4mB74zaA8QdFrq8Nuf5B2wh~8SdNrwGSpDtt7tZql3~kCui2dHgG2zhciXmp0S3EKAJ0z9lwHDiFRk3m~18wjSZw0M3UPc7ikBl6r8UXzIaLEtY-wwW7Kr5D7sRN2oAxajEga5CV-P4bemmwFVcJ~Ln2IiI1ElB55NDCc2mvLiTRT50zio10JRVscFieQxxazaI9YqswCU10uw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/114240063/enhancing_observability_in_distributed_systemsa_comprehensive_review-libre.pdf?1715051079=&response-content-disposition=inline%3B+filename%3DEnhancing_Observability_in_Distributed_S.pdf&Expires=1756205113&Signature=f3kvvFURgGMignkcYxqHexGzeLGDzUaajnwq9hXP4tPFqhhu8dowUO4fvTIeuaipj0ie745UpcJwVg3khLMSbfvqpYpGRza-OCHyqjAsj2uvX9m2bqHwSDtaW8~2nZiq-6qgVuok4mB74zaA8QdFrq8Nuf5B2wh~8SdNrwGSpDtt7tZql3~kCui2dHgG2zhciXmp0S3EKAJ0z9lwHDiFRk3m~18wjSZw0M3UPc7ikBl6r8UXzIaLEtY-wwW7Kr5D7sRN2oAxajEga5CV-P4bemmwFVcJ~Ln2IiI1ElB55NDCc2mvLiTRT50zio10JRVscFieQxxazaI9YqswCU10uw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/114240063/enhancing_observability_in_distributed_systemsa_comprehensive_review-libre.pdf?1715051079=&response-content-disposition=inline%3B+filename%3DEnhancing_Observability_in_Distributed_S.pdf&Expires=1756205113&Signature=f3kvvFURgGMignkcYxqHexGzeLGDzUaajnwq9hXP4tPFqhhu8dowUO4fvTIeuaipj0ie745UpcJwVg3khLMSbfvqpYpGRza-OCHyqjAsj2uvX9m2bqHwSDtaW8~2nZiq-6qgVuok4mB74zaA8QdFrq8Nuf5B2wh~8SdNrwGSpDtt7tZql3~kCui2dHgG2zhciXmp0S3EKAJ0z9lwHDiFRk3m~18wjSZw0M3UPc7ikBl6r8UXzIaLEtY-wwW7Kr5D7sRN2oAxajEga5CV-P4bemmwFVcJ~Ln2IiI1ElB55NDCc2mvLiTRT50zio10JRVscFieQxxazaI9YqswCU10uw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://ieeexplore.ieee.org/document/8509390
https://ieeexplore.ieee.org/document/8509390

