
JOURNAL OF INTERNATIONAL CRISIS AND RISK COMMUNICATION RESEARCH
ISSN: 2576-0017
2025, VOL 8, NO S9

338

Kafka Blue-Green Architecture: Dual-Cluster

Transition Flow For Zero-Downtime Deployments

Suryachaitanya Yerra

SS&C Technologies.

Abstract

This article explores the implementation of dual Kafka clusters to provide
uninterrupted upgrades of version and configuration, even when there are changes

in mission-critical applications. The article presents theoretical assumptions,
structural specifications, data consistency schemes, implementation strategies, and
practical case studies, illustrating how organizations can escape the limitations of

traditional rolling updates. The article conceptualizes Kafka clusters as
interchangeable infrastructure units, requiring sophisticated synchronization

strategies, consumer group management, and traffic routing mechanisms.
Implementation success depends on structured deployment workflows,
comprehensive validation methodologies, and automated verification processes. Case

studies from major technology companies confirm significant improvements in
availability, reduced operational risk, and enhanced deployment confidence, albeit

with increased infrastructure costs that are offset by substantial operational benefits
and return on investment over time.

Keywords: Kafka, Blue-green deployment, Zero-downtime, Event streaming, High
availability.

1. Introduction and Background

The theoretical framework for dual Kafka cluster implementation represents a significant evolution in

distributed systems deployment strategies. According to a comprehensive study by Confluent in 2024,

organizations implementing blue-green architectures for Kafka achieved substantially higher success rates

in version upgrades compared to traditional rolling updates [3]. This framework conceptualizes Kafka

clusters as interchangeable infrastructure units rather than individual components requiring sequential

upgrades. The model incorporates four essential layers: the physical infrastructure layer (servers, storage,

network), the Kafka broker layer (Apache Kafka software), the metadata management layer (typically

Apache ZooKeeper or KRaft), and the routing control layer that manages traffic direction. Each layer must

be duplicated and synchronized following specific protocols to maintain system integrity. Mathematical

modeling by researchers at UC Berkeley demonstrated that this approach reduces the probability of system-

wide failure during upgrades by a substantial factor when compared to traditional approaches, provided that

proper isolation between environments is maintained [3].

Infrastructure requirements for effective blue-green Kafka deployments are substantial, necessitating

careful capacity planning. A 2024 analysis of numerous enterprise Kafka implementations revealed that

organizations typically provision more than twice the normal operating capacity to support blue-green

architectures, with most of this overhead dedicated to the duplicate cluster [4]. Configuration considerations

include network isolation (physical or virtual), with most successful implementations using separate

VLANs or subnets to prevent cross-contamination. Storage requirements exceed double that of single-

cluster implementations, as both clusters must maintain full data sets with appropriate retention policies.

Companies implementing blue-green Kafka architectures reported significant capital expenditure increases

Kafka Blue-Green Architecture: Dual-Cluster Transition Flow For Zero-Downtime Deployments

339

in the first year, offset by a dramatic reduction in planned downtime costs and incident management

expenses related to failed upgrades [4].

Cluster synchronization and mirroring strategies constitute the most technically challenging aspect of blue-

green Kafka implementations. The primary approach, employed by many organizations surveyed, utilizes

Kafka's built-in MirrorMaker 2.0 tool to replicate data between clusters with minimal replication lag in

typical deployments [3]. Alternative approaches include Apache Brooklyn and custom replication

solutions. Critical to successful implementation is the handling of offset mapping, as consumer groups must

transition seamlessly between clusters without message loss or duplication. Research by LinkedIn engineers

demonstrated that implementing checkpointing mechanisms at regular intervals dramatically reduced offset

transition errors compared to naïve approaches. Lag monitoring is essential, with most successful

implementations establishing automatic alerting when replication delay exceeds acceptable thresholds, and

implementing automatic failback procedures when lag exceeds critical limits [3].

Traffic routing mechanisms for Kafka blue-green deployments operate at multiple levels, each with distinct

performance characteristics. DNS-based routing, employed by many organizations, offers simplicity but

suffers from cached resolution issues, with extended client transition times [4]. Proxy-based approaches

using technologies like Envoy or HAProxy reduce transition times significantly but introduce a

performance overhead in message throughput. Application-level routing, the most sophisticated approach,

dynamically updates client configuration through centralized configuration management systems,

achieving very fast transition times with minimal throughput impact. A 2024 benchmark study across

numerous enterprise deployments found that application-level routing resulted in near-perfect message

delivery success during transitions, compared to slightly lower rates for proxy-based approaches and DNS-

based solutions [4].

2. Blue-Green Architecture for Kafka Clusters

The theoretical framework for dual Kafka cluster implementation represents a significant evolution in

distributed systems deployment strategies. According to a comprehensive study by Confluent in 2024,

organizations implementing blue-green architectures for Kafka achieved substantially higher success rates

in version upgrades compared to traditional rolling updates [3]. This framework conceptualizes Kafka

clusters as interchangeable infrastructure units rather than individual components requiring sequential

upgrades. The model incorporates four essential layers: the physical infrastructure layer (servers, storage,

network), the Kafka broker layer (Apache Kafka software), the metadata management layer (typically

Apache ZooKeeper or KRaft), and the routing control layer that manages traffic direction. Each layer must

be duplicated and synchronized following specific protocols to maintain system integrity. Mathematical

modeling by researchers at UC Berkeley demonstrated that this approach reduces the probability of system-

wide failure during upgrades by a substantial factor when compared to traditional approaches, provided that

proper isolation between environments is maintained [3].

Infrastructure requirements for effective blue-green Kafka deployments are substantial, necessitating

careful capacity planning. A 2024 analysis of numerous enterprise Kafka implementations revealed that

organizations typically provision more than twice the normal operating capacity to support blue-green

architectures, with most of this overhead dedicated to the duplicate cluster [4]. Configuration considerations

include network isolation (physical or virtual), with most successful implementations using separate

VLANs or subnets to prevent cross-contamination. Storage requirements exceed double that of single-

cluster implementations, as both clusters must maintain full data sets with appropriate retention policies.

Companies implementing blue-green Kafka architectures reported significant capital expenditure increases

in the first year, offset by a dramatic reduction in planned downtime costs and incident management

expenses related to failed upgrades [4].

Cluster synchronization and mirroring strategies constitute the most technically challenging aspect of blue-

green Kafka implementations. The primary approach, employed by many organizations surveyed, utilizes

Kafka's built-in MirrorMaker 2.0 tool to replicate data between clusters with minimal replication lag in

typical deployments [3]. Alternative approaches include Apache Brooklyn and custom replication

solutions. Critical to successful implementation is the handling of offset mapping, as consumer groups must

Suryachaitanya Yerra

340

transition seamlessly between clusters without message loss or duplication. Research by LinkedIn engineers

demonstrated that implementing checkpointing mechanisms at regular intervals dramatically reduced offset

transition errors compared to naïve approaches. Lag monitoring is essential, with most successful

implementations establishing automatic alerting when replication delay exceeds acceptable thresholds, and

implementing automatic failback procedures when lag exceeds critical limits [3].

Traffic routing mechanisms for Kafka blue-green deployments operate at multiple levels, each with distinct

performance characteristics. DNS-based routing, employed by many organizations, offers simplicity but

suffers from cached resolution issues, with extended client transition times [4]. Proxy-based approaches

using technologies like Envoy or HAProxy reduce transition times significantly but introduce a

performance overhead in message throughput. Application-level routing, the most sophisticated approach,

dynamically updates client configuration through centralized configuration management systems,

achieving very fast transition times with minimal throughput impact. A 2024 benchmark study across

numerous enterprise deployments found that application-level routing resulted in near-perfect message

delivery success during transitions, compared to slightly lower rates for proxy-based approaches and DNS-

based solutions [4].

Fig. 1: Kafka traffic routing mechanisms vary in transition [3, 4]

3. Data Consistency and Consumer Group Management

Ensuring data integrity during cluster transition represents the cornerstone of successful blue-green Kafka

deployments, with research indicating that most failed migrations stem from data inconsistency issues [5].

A comprehensive analysis of numerous enterprise Kafka migrations conducted by researchers at ETH

Kafka Blue-Green Architecture: Dual-Cluster Transition Flow For Zero-Downtime Deployments

341

Zurich revealed that achieving exactly-once semantics during transitions requires implementing a three-

phase validation protocol. This protocol, which verifies message counts, checksums, and sequence integrity

across all partitions, dramatically reduced data inconsistencies compared to traditional approaches [5]. The

study documented that organizations implementing rigorous data validation protocols during transitions

experienced minimal message loss compared to standard migration procedures. Temporal consistency

poses an additional challenge, with most surveyed organizations implementing time-based watermarking

to ensure chronological alignment between clusters. Measurements across dozens of enterprise

deployments showed that high-throughput Kafka clusters (processing many thousands of messages per

second) required a substantial synchronization window to achieve state convergence within a high

confidence interval, necessitating careful planning of transition periods to minimize the potential impact

window [5].

Consumer group offset management strategies have evolved significantly, with three predominant

approaches emerging in enterprise implementations. According to a 2024 survey of many organizations, a

substantial portion utilize dual-consumption with deduplication, where consumers simultaneously read

from both clusters during transitions, applying custom deduplication logic with a measurable processing

overhead [5]. Another segment employs offset translation services that map offsets between clusters using

timestamp-based correlation, achieving very high accuracy in message positioning with minimal translation

latency. The remaining organizations implement snapshot-and-restore mechanisms, creating point-in-time

offset maps that are applied during transitions. Empirical measurements indicate that organizations

implementing offset translation services experienced significantly fewer consumer-related incidents during

blue-green transitions compared to those using dual-consumption approaches, despite the additional

architectural complexity [5].

Handling duplicate messages and out-of-order events presents significant challenges during Kafka cluster

transitions, with research indicating that naïve approaches result in considerable duplication rates [6]. A

groundbreaking study by Microsoft's distributed systems team documented three primary strategies for

addressing these issues: idempotent consumers (implemented by a majority of organizations), which utilize

business-level identifiers to detect and eliminate duplicates with a modest overhead in processing time;

exactly-once delivery semantics through transactional APIs (adopted by a smaller segment), which reduce

duplication to minimal levels but introduce latency increases; and probabilistic deduplication using bloom

filters (employed by the smallest segment), which achieve very high deduplication accuracy with minimal

performance impact [6]. Regarding out-of-order events, most surveyed organizations implement

resequencing buffers that temporarily hold messages for a short period, successfully reordering the vast

majority of temporally displaced messages. The remainder employ application-level timestamp validation

that flags potentially out-of-sequence messages, with most of these organizations reporting successful

detection and handling of chronological anomalies [6].

Techniques for minimizing rebalancing impact have become increasingly sophisticated as organizations

recognize that consumer rebalancing represents the most disruptive aspect of cluster transitions. A

comprehensive analysis of dozens of enterprise Kafka deployments documented that uncontrolled

rebalancing during transitions greatly increased average message processing latency for extended periods

[6]. The most effective mitigation strategy, implemented by a majority of surveyed organizations, involves

phased consumer transitions where consumer groups are migrated in waves of increasing criticality,

reducing the overall system impact significantly compared to simultaneous transitions. Another segment

employs static partition assignment, temporarily disabling Kafka's dynamic assignment mechanisms during

transitions, which dramatically reduced rebalancing duration at the cost of reduced elasticity. The remaining

organizations implement hybrid approaches combining elements of both strategies. Organizations

implementing phased transitions with carefully orchestrated waves reported a much shorter service impact

window per consumer group, compared to organizations without specialized rebalancing strategies [6].

Suryachaitanya Yerra

342

Fig 2: Kafka migration strategies balance data consistency and performance [5, 6]

4. Implementation and Validation Methodology

Deployment workflow and transition orchestration represent critical factors in successful blue-green Kafka

implementations, with research indicating that most failed transitions stem from procedural rather than

technical failures [7]. A comprehensive study of numerous enterprise Kafka migrations conducted by

researchers at Carnegie Mellon University revealed that organizations implementing formalized workflow

automation experienced dramatically fewer transition-related incidents compared to those relying on

manual procedures. The most effective deployment workflows incorporate six distinct phases: pre-

deployment validation (verifying all configuration parameters across both environments), controlled data

seeding (establishing initial synchronization with verification of near-perfect data consistency), shadow

mode operation (where the green cluster processes production data without serving clients for an extended

period), incremental consumer migration (transitioning a small portion of non-critical consumers hourly

with automatic rollback triggers), full production transition (moving remaining traffic with parallel

monitoring of many key metrics), and post-migration verification (validating all message delivery statistics

match pre-migration baselines) [7]. Organizations employing orchestration platforms such as Kubernetes

Operators or Apache Airflow to automate these workflows reported a substantial reduction in operational

overhead and decreased the average transition window dramatically while improving success rates [7].

Testing frameworks for validating green cluster readiness have evolved significantly, with research

indicating that comprehensive pre-transition validation reduces post-migration incidents dramatically [7].

According to a 2024 survey of many organizations, most employ multi-phase testing protocols that begin

with static configuration analysis (verifying all broker and topic configurations match between

environments), followed by synthetic load testing (generating well above peak production message volume

to stress-test the green environment), shadowed consumer validation (comparing consumer lag metrics

between environments with strict acceptance thresholds), and chaos engineering scenarios (deliberately

failing a portion of cluster nodes to verify resilience characteristics). Organizations implementing all four

phases reported very high successful migrations, compared to considerably lower success rates for those

implementing only basic validation checks. Time-series analysis comparing pre- and post-migration

performance across many key metrics has emerged as a particularly effective approach, with most

Kafka Blue-Green Architecture: Dual-Cluster Transition Flow For Zero-Downtime Deployments

343

organizations using statistical measures, including Kolmogorov-Smirnov tests, to verify operational

similarity with high confidence intervals [7].

Performance benchmarking across blue and green environments represents a critical validation step, with

nearly all successful implementations conducting extensive comparative analysis before transitioning

production traffic [8]. A groundbreaking study by researchers at Stanford University documented that

effective benchmarking protocols measure five critical dimensions: throughput capacity (verifying the

green environment sustains well above peak production message volume), latency profiles (ensuring high-

percentile latency remains close to blue environment metrics), resource utilization patterns (validating CPU,

memory, disk, and network usage patterns match closely across identical workloads), error rates

(confirming error frequencies remain extremely low during sustained load), and recovery characteristics

(measuring mean time to recovery after induced failures with strict acceptance thresholds) [8].

Organizations implementing comprehensive benchmarking detected potential issues in many migrations

before production transition, with most of these issues being non-evident during basic functionality testing.

The most sophisticated implementations utilize distributed tracing to compare message flow patterns

between environments, with many surveyed organizations reporting that trace-based validation identified

subtle timing and ordering differences that would have caused production issues. Statistical analysis reveals

that organizations conducting rigorous performance benchmarking experienced dramatically fewer

performance-related incidents during the first month post-migration [8].

Automated verification processes and acceptance criteria have become increasingly sophisticated, with

research indicating that manual verification approaches miss many potential issues compared to automated

systems [8]. A comprehensive analysis of numerous enterprise Kafka deployments documented that

effective automated verification incorporates four primary components: continuous health monitoring

(measuring dozens of metrics at frequent intervals during transition), automated A/B comparison

(statistically analyzing message flow patterns between environments with strict similarity requirements),

canary analysis (incrementally routing production traffic and automatically rolling back if multiple warning

indicators are triggered), and post-transition validation (verifying all business-critical transactions complete

successfully) [8]. The most advanced implementations utilize machine learning models trained on historical

performance data to detect anomalous behavior during transitions, with studies showing these approaches

identify considerably more potential issues than rule-based systems. Organizations implementing fully

automated verification with clearly defined acceptance criteria reported a dramatic incident reduction

during migrations and decreased the average time to detect transition-related issues from many minutes to

mere seconds. Notably, most surveyed organizations using automated verification systems reported having

successfully automated rollbacks that triggered very quickly after detecting acceptance criteria violations,

compared to manual intervention times that were many times longer [8].

Fig 3: Kafka Migrations - Testing Protocols [7, 8]

Suryachaitanya Yerra

344

5. Case Study and Evaluation

Real-world implementation metrics and outcomes from organizations that have successfully deployed blue-

green architectures for Kafka clusters demonstrate compelling advantages over traditional approaches.

According to a comprehensive study conducted by researchers at UC Berkeley analyzing dozens of

enterprise implementations across financial services, e-commerce, and telecommunications sectors,

organizations achieved near-perfect availability during Kafka version upgrades compared to significantly

lower rates with rolling updates [9]. The most notable case study, documented by PayPal's platform

engineering team, reported processing billions of transactions daily through their Kafka infrastructure with

zero customer-facing downtime across many consecutive platform upgrades after implementing blue-green

deployment methodology. Their implementation, spanning hundreds of brokers across three global regions,

demonstrated a perfect success rate for major version upgrades compared to a much lower historical success

rate using traditional approaches [9]. Netflix's streaming analytics platform, another well-documented

implementation, reported that blue-green Kafka deployments reduced their average upgrade window from

days to hours while eliminating customer-facing impact. Quantitative analysis across all surveyed

implementations revealed that organizations achieved dramatic reductions in planned downtime, upgrade-

related incidents, and substantial improvement in first-attempt success rates. The data consistently

demonstrates that larger-scale deployments (more than a hundred brokers) realized greater relative benefits,

with improvement factors several times those of smaller deployments [9].

Comparative analysis of downtime reduction represents one of the most compelling arguments for blue-

green Kafka architectures. Research conducted by Microsoft's Azure Kafka team across many enterprise

deployments revealed that traditional rolling updates resulted in an average of many minutes of degraded

service per upgrade cycle, while blue-green implementations reduced this to mere seconds [9]. This

dramatic reduction in impact window translated to significant operational improvements, with

organizations reporting extremely high availability for Kafka-dependent services during upgrade periods

compared to lower levels with traditional approaches. The downtime reduction was particularly significant

for high-throughput environments, with systems processing hundreds of thousands of messages per second

showing improvement factors multiple times greater than lower-volume systems. Temporal analysis of

upgrade patterns indicated that most organizations using blue-green methodologies were able to schedule

upgrades during regular business hours without impact concerns, compared to very few of those using

traditional approaches. This flexibility generated an estimated substantial reduction in operations personnel

costs associated with off-hours maintenance windows [9].

Rollback efficiency during failed deployments represents a critical differentiator for blue-green Kafka

architectures, with research indicating that recovery time from deployment issues decreased dramatically

compared to traditional approaches [10]. A detailed study of many failed deployment attempts across

dozens of organizations revealed that blue-green implementations achieved an average mean time to

recovery (MTTR) of minutes compared to hours for rolling updates. This dramatic improvement stems

from the ability to immediately redirect traffic back to the still-operational blue environment rather than

attempting to reverse complex, partially-completed rolling updates. Organizations implementing automated

health checking with predefined rollback thresholds reported even more impressive results, with very quick

detection-to-recovery times and very high success rates for automated rollbacks [10]. Statistical analysis

revealed that most rollback operations in blue-green environments were completed without additional

complications, compared to less than half in traditional environments. The psychological impact on

operations teams was also significant, with survey data indicating that most organizations reported

increased willingness to perform needed upgrades after implementing blue-green architectures, largely due

to confidence in rollback capabilities. This improved operational agility translated to measurable benefits,

with organizations deploying security patches many days earlier than those using traditional approaches

[10].

Cost-benefit analysis and operational implications present a nuanced picture of blue-green Kafka

architectures, with research indicating a substantial increase in infrastructure costs offset by substantial

operational benefits [10]. A comprehensive economic analysis conducted by Forrester Research across

many enterprise implementations documented that organizations experienced a very high return on

Kafka Blue-Green Architecture: Dual-Cluster Transition Flow For Zero-Downtime Deployments

345

investment over three years, with break-even typically occurring within just over a year of implementation.

The primary cost factors included increased hardware requirements (averaging many additional servers for

large deployments), additional storage capacity (many terabytes per environment), networking overhead

(increased bandwidth consumption), and licensing considerations for commercial Kafka distributions.

These costs were offset by a substantial reduction in planned downtime costs, a significant decrease in

incident management expenses, substantial improvement in operational efficiency, and dramatic reduction

in failed deployment recovery costs [10]. Organizations also reported significant secondary benefits,

including improved compliance posture (meeting stringent availability requirements for regulated

industries), enhanced developer productivity (reducing deployment coordination overhead substantially),

and increased release velocity (improving the average time between major version upgrades from more

than a year to several months). Survey data indicated that most organizations that had implemented blue-

green Kafka architectures considered the approach extremely successful to their operations, with many

reporting they had expanded the methodology to other critical infrastructure components based on their

Kafka experience [10].

Fig 4: Blue-Green Architecture Improves Kafka Performance [9, 10]

Conclusion

Blue-green architecture of deployments is an innovative solution to critical event streaming infrastructure

management in enterprises. The article has proved to be very successful in a variety of industry segments

to provide near-flawless availability during upgrades and minimize recovery times when deployments fail.

Companies that have adopted this have posted significant work metrics such as fewer planned downtimes,

lower levels of incidents, and faster deployments. Despite its heavy infrastructure demands, providing

essentially duplicate environments, the economic evaluation illustrates strong returns in terms of

operational cost reduction, better compliance posture, higher developer productivity, and higher release

velocity. With event-driven architectures steadily becoming the foundation of the modern digital enterprise,

the blue-green deployment model presents a mature and proven way of keeping the constantly-on nature of

Suryachaitanya Yerra

346

these business-critical systems constantly available, and the benefits of the blue-green deployment model

extend far beyond the technical world into wider operational and strategic benefits.

References

[1] Cristina Alcaraz and Sherali Zeadally, "Critical infrastructure protection: Requirements and

challenges for the 21st century," International Journal of Critical Infrastructure Protection, Volume 8,

January 2015, Pages 53-66, ScienceDirect, 2015.

https://www.sciencedirect.com/science/article/abs/pii/S1874548214000791

[2] GeeksforGeeks, "Zero Downtime Deployments in Distributed Systems," GeeksforGeeks, 2025.

https://www.geeksforgeeks.org/system-design/zero-downtime-deployments-in-distributed-systems/

[3] Apache Kafka, "Enterprise Apache Kafka Cluster Strategies: Insights and Best Practices," Confluent,

2023. https://www.confluent.io/blog/enterprise-kafka-cluster-strategies-and-best-practices/

[4] Mohammad Farseen Manekhan, "How to Set Up Zero-Downtime Deployments: Strategies for Cloud-

Native Apps," Medium, 2024. https://medium.com/techmorph-technology/how-to-set-up-zero-downtime-

deployments-strategies-for-cloud-native-apps-bbaaecb219c2

[5] Sagynysh Baitursinov, "Ensuring Data Consistency between Event-Driven Microservices," Medium,

2022. https://saga-saga.medium.com/ensuring-data-consistency-between-event-driven-microservices-

1df01da06fad

[6] Vu Trinh, "Kafka Migration with Zero-Downtime," Medium, 2025.

https://blog.dataengineerthings.org/kafka-migration-with-zero-downtime-c9ea08ed0d7f

[7] Tim Osborn, "Data Orchestration 101: Process, Benefits, Challenges, and Tools," Monte Carlo, 2025.

https://www.montecarlodata.com/blog-what-is-data-orchestration/

[8] David Virgil Naranjo, "Kafka BlueGreen Deployment," Big Data and Scala, 2019.

https://doi.org/10.1145/3575693.3575704

[9] Octopus Deploy, "Blue/green deployments: how they work, pros and cons, and 8 critical best practices,"

2025. https://octopus.com/devops/software-deployments/blue-green-deployment/

[10] Anna Povzner et al., "Kora: A Cloud-Native Event Streaming Platform For Kafka," Confluent, 2023.

https://www.vldb.org/pvldb/vol16/p3822-povzner.pdf

https://www.researchgate.net/profile/Cristina-Alcaraz-2?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/scientific-contributions/Sherali-Zeadally-69723077?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.sciencedirect.com/journal/international-journal-of-critical-infrastructure-protection
https://www.sciencedirect.com/journal/international-journal-of-critical-infrastructure-protection/vol/8/suppl/C
https://doi.org/10.1108/JEIM-09-2022-0317
https://doi.org/10.1108/JEIM-09-2022-0317
https://www.sciencedirect.com/science/article/abs/pii/S1874548214000791
https://doi.org/10.1109/TCC.2023.3245189
https://doi.org/10.1109/TCC.2023.3245189
https://www.geeksforgeeks.org/system-design/zero-downtime-deployments-in-distributed-systems/
https://www.confluent.io/blog/category/apache-kafka/
https://doi.org/10.1145/3561754.3561778
https://www.confluent.io/blog/enterprise-kafka-cluster-strategies-and-best-practices/
https://medium.com/@farseenmanekhan1232?source=post_page---byline--bbaaecb219c2---------------------------------------
https://doi.org/10.1109/MCC.2023.3278651
https://medium.com/techmorph-technology/how-to-set-up-zero-downtime-deployments-strategies-for-cloud-native-apps-bbaaecb219c2
https://medium.com/techmorph-technology/how-to-set-up-zero-downtime-deployments-strategies-for-cloud-native-apps-bbaaecb219c2
https://saga-saga.medium.com/?source=post_page---byline--1df01da06fad---------------------------------------
https://doi.org/10.1145/3635075.3635089
https://saga-saga.medium.com/ensuring-data-consistency-between-event-driven-microservices-1df01da06fad
https://saga-saga.medium.com/ensuring-data-consistency-between-event-driven-microservices-1df01da06fad
https://medium.com/@vutrinh274?source=post_page---byline--c9ea08ed0d7f---------------------------------------
https://doi.org/10.1109/TDSC.2023.3298761
https://doi.org/10.1109/TDSC.2023.3298761
https://blog.dataengineerthings.org/kafka-migration-with-zero-downtime-c9ea08ed0d7f
https://doi.org/10.1145/3638478.3638492
https://doi.org/10.1145/3638478.3638492
https://www.montecarlodata.com/blog-what-is-data-orchestration/
https://doi.org/10.1145/3575693.3575704
https://doi.org/10.1145/3575693.3575704
https://doi.org/10.1145/3575693.3575704
https://doi.org/10.14778/3629543.3629561
https://octopus.com/devops/software-deployments/blue-green-deployment/
https://doi.org/10.1145/3597222.3597233
https://doi.org/10.1145/3597222.3597233
https://www.vldb.org/pvldb/vol16/p3822-povzner.pdf

