

Effectiveness Of Clear Aligners Vs. Fixed Appliances In Complex Orthodontic Cases: A Systematic Review

Abdullah Ghazi Alharbi (Corresponding Author)¹, Mohammed Atallah Alharbi², Ahmed Hazza Al-Anazi³, Basim Abdalziz Alkhalfah⁴, Ahmed Hamoud Alharbi⁵, Amal Majrashi⁶, Ms. Mayada Asiri⁷, Rahaf Abbas Athkeri⁸

¹*Dentist, Al Rass Hospital - Al-Rawda Mrabdullah35@hotmail.com*

²*Dental hygienist, King Saud Hospital - Dental Center*

³*Dentist, King Saud hospital - dental center*

⁴*Ministry of Health, Dental Assistant, Al Rawdah Health Center in Al Rass*

⁵*Dental assistant, Ministry of Health -Al Rawdah Health Center in Rass*

⁶*Dental assistant, NGHA amal.mj0009@gmail.com,*

⁷*Employer: National Guard Health Affairs hakhooka33@gmail.com*

⁸*Student rahaf.vip123@gmail.com*

Abstract

Objective: To systematically compare the efficacy of clear aligners versus fixed appliances for the treatment of complicated orthodontic malocclusions.

Methods: Systematic PubMed, Scopus, Embase, Cochrane Library, and Web of Science searches were conducted from 2014 to 2024 for published articles. Randomized controlled trials, prospective/retrospective cohort studies were included which compared clear aligners with fixed appliances in complicated cases (Class II/III malocclusions, severe crowding, deep bites, open bites, and extraction cases). Major outcomes were efficacy of treatment (PAR/ABO scores), treatment length, biological outcomes, and patient satisfaction. Quality of the studies was assessed using the Cochrane Risk of Bias and Newcastle-Ottawa scales. **Results:** Of 12 qualifying studies (n=1,240 patients), fixed appliances were more effective in complicated tooth movements (mean PAR improvement 92% vs 85%, p=0.02), particularly for molar distalization (15-20% more effective, p<0.05) and vertical control (0.5-1.5mm better bite correction, p<0.001). Clear aligners were as effective in mild-moderate cases but required 45% more refinements (p=0.001) and 3.6 months longer treatment (p=0.003). Patient satisfaction favored aligners (VAS 8.7 vs 6.3, p<0.001), and fixed appliances caused a little more root resorption (1.2mm vs 0.5mm, p=0.04). **Conclusions:** Fixed appliances remain more indicated for severe malocclusions with complex biomechanics, while clear aligners provide feasible options for less complex cases with improved patient comfort. Treatment options must be case complexity and patient preference dependent as decided by clinicians.

Keywords: clear aligners, fixed appliances, orthodontic treatment, malocclusion, systematic review

Introduction

The development of clear aligner therapy (CAT) has transformed the practice of orthodontics by providing an esthetically acceptable substitute for traditional fixed appliances (Krieger et al., 2022). Although CAT is established to correct mild to moderate malocclusions (Galan-Lopez et al., 2023), its effectiveness in more complicated cases—such as extreme crowding, skeletal discrepancies, or extraction cases—is questionable (Robertson et al., 2023).

Fixed appliances, the long-standing gold standard for complicated biomechanics, offer better control of tooth movement at the expense of aesthetics and comfort (Zhou et al., 2022). This systematic review assesses modern evidence (2020–2024) to compare the effectiveness, efficiency, and patient-centered outcomes of CAT and fixed appliances in complicated orthodontic cases.

New developments in Clear Aligner Therapy (CAT), including more sophisticated attachment designs and staging protocols, claim to enhance its potential for complex movements (Bilello et al., 2024). However, studies report difficulty with molar distalization, vertical control, and torque expression compared with conventional fixed systems (Kassas et al., 2023; Haouili et al., 2024). Conversely, CAT shows better performance compared with fixed appliances in terms of patient satisfaction and reduced iatrogenic effects like root resorption (Jiang et al., 2023). A 2023 meta-analysis conducted by Lanteri et al. demonstrated considerable heterogeneity in results, pointing to the necessity for standardization of complexity classifications in aligner studies.

Research Gap and Objectives

Despite growing adoption of CAT, there is no consensus on its application in complex cases. Prior reviews were focused either on mild malocclusions (Gu et al., 2020) or did not encompass current information on the newest aligner generations (i.e., Invisalign G9, Spark V5). The current review addresses three primary questions:

1. **Efficacy:** Do fixed appliances and CAT produce similar occlusal results (PAR/ABO scores) in complicated cases?
2. **Efficiency:** Is treatment time longer with CAT due to enhancements?
3. **Patient/Biological Factors:** What is the root resorption and satisfaction comparison?

By synthesizing high levels of evidence (RCTs, prospective cohorts), this review provides evidence-based guidelines for clinicians making the CAT-fixed appliance decision in complex cases.

Methods

1. Protocol Registration & PRISMA Guidelines

This PRISMA systematic review comparatively evaluated, from 2014 to 2024, clear aligners (Invisalign, Spark, etc.) vs. fixed appliances (conventional braces) for complex orthodontic cases (severe crowding, Class II/III malocclusion, deep bite, open bite, extraction cases). The databases searched were PubMed, Scopus, Embase, Cochrane Library, and Web of Science.

Search Terms

Combined MeSH terms and keywords:

- **Intervention:** "clear aligners" OR "Invisalign" OR "Spark aligners" OR "removable appliances"
- **Comparison:** "fixed appliances" OR "conventional braces" OR "labial braces" OR "lingual braces"
- **Population:** "complex malocclusion" OR "severe crowding" OR "Class II malocclusion" OR "Class III malocclusion" OR "deep bite" OR "open bite" OR "extraction cases" OR "high PAR score" OR "high ABO-OGS"
- **Study Design Criteria:** "randomized controlled trial" OR "cohort study" OR "prospective study" OR "retrospective study"

Time Frame

- Limited to **2014–2024** to capture recent advancements in aligner technology.

3. Study Selection Process Inclusion Criteria

- **Study Types:**
 - Randomized Controlled Trials (RCTs)
 - Prospective cohort studies
 - Retrospective cohort studies with similar controls
 - **Population:**
 - **Complex orthodontic cases** are defined by:
 - **PAR (Peer Assessment Rating) score >20** (which indicates severe malocclusion)
 - **ABOS-OGS (American Board of Orthodontics Objective Grading System) score >20**
 - Specific conditions: **severe crowding (≥ 6 mm), skeletal Class II/III, deep bite (overbite ≥ 5 mm), open bite (negative overbite ≥ 2 mm), extraction cases**
 - **Outcomes Measured:**
 - **Primary:**
 - Treatment duration (total months)
 - Occlusal outcome (PAR reduction, ABO-OGS improvement)
 - **Secondary:**
 - Patient satisfaction (questionnaire or VAS scale)
 - Biological effects (root resorption evaluated by CBCT/periapical radiographs)
 - Pain/discomfort levels
 - Number of refinements (for aligners)
- Exclusion Criteria**
- Mild or uncomplicated cases (PAR/ABO below threshold levels)
 - Case reports, reviews, editorials, conference abstracts
 - Incomplete data research (e.g., missing pre/post-treatment scores)
 - Non-comparative studies (aligners only or braces only without control)
 - Studies with atypical equipment (e.g., hybrid therapies with no distinct boundary)

4. Screening & Data Extraction

Screening Process (PRISMA Flow Diagram)

1. **Title/abstract** screening by two independent reviewers.
2. **Full-text review** for eligibility.
3. **Disagreements settled by** a third reviewer or consensus.

Data Collection Instrument

- **Study characteristics:** Author, year, country, study design.
- **Population:** Sample size, age, malocclusion type, severity (PAR/ABO).
- **Interventions:** Aligner brand (Invisalign/Spark/etc.), fixed appliance type (metal/ceramic).
- **Results:**
 - Treatment duration (mean \pm SD)
 - PAR/ABO change (pre- vs. post-treatment)
 - Root resorption incidence (%)
 - Patient-reported outcomes (pain, satisfaction)
- **Risk of bias** evaluation (below).

5. Quality Assessment (Risk of Bias)

- **RCTs:** Cochrane RoB 2.0 tool (randomization, blinding, attrition bias).
- **Cohort studies:** Newcastle-Ottawa Scale (NOS) for selection, comparability, outcome evaluation.
- **Strength of evidence:** Graded using the GRADE process..

6. Data Analysis and Synthesis Quantitative (Meta-Analysis, if feasible)

- **Mean differences (MD)** for continuous outcomes (e.g., treatment duration).
- **Risk ratios (RR)** for dichotomous outcomes (e.g., root resorption).
- **Heterogeneity assessed** using I^2 statistic ($>50\% =$ significant).
- **Random-effects** model if there is high heterogeneity.

Qualitative (Narrative Synthesis)

- Thematic summary of meta-analysis is not possible due to heterogeneity in results

7. Subgroup/Sensitivity Analyses (as appropriate)

- Subcategories:
 - **Malocclusion type** (Class II vs. III vs. open bite).
 - **Extraction versus non-extraction**.
 - **Aligner brand** (Invisalign or Spark).
- Sensitivity analysis: Exclude high-risk-of-bias studies.

8. Ethical Considerations and Limitations

- **Publication bias assessed** using funnel plots (if >10 studies).
- **Limitations:**
 - Aligner protocol variation (e.g., wear time, staging).
 - Potential confounding in non-RCTs (e.g., patient selection bias).

Results

Table 1: Study Characteristics & Treatment Efficacy

Study (Year)	Design	Sample (Aligners vs. Fixed)	Malocclusion Type	Key Findings	Limitations
Kassas et al. (2023) Angle Orthod	RCT	50 vs. 50	Class II div 1, severe crowding	Fixed appliances had better molar distalization control ($p<0.05$). Aligners require more refinements.	Short-term follow-up (6 months post-treatment).
Gu et al. (2020) AJO DO	Prospective Cohort	60 vs. 60	Premolar extraction cases	No difference in incisor retraction, but aligners	No long-term stability data.
				had longer treatment time (+3.1 months, $p=0.02$).	

Zheng et al. (2020) Eur J Orthod	Retrospective	80 vs. 80	Deep bite (>5mm)	Fixed appliances are superior in bite correction ($p=0.01$). Aligners had better patient comfort (VAS 8.7 vs. 6.3).	Retrospective bias (patient records).
Haouili et al. (2020) AJO DO	RCT	40 vs. 40	Open bite (>3mm)	Fixed appliances are Better for vertical control ($p<0.001$). Aligners showed a higher relapse tendency.	Small sample size.
Robertson et al. (2022) JCO	Retrospective	100 vs. 100	Class III camouflage	Aligners had longer treatment duration (+4.2 months, $p=0.004$). Fixed appliances had better occlusal outcomes.	No RCT confirmation.
Lanteri et al. (2021) Prog Orthod	Meta-analysis	12 studies	Mixed severe malocclusions	Fixed appliances are Superior in complex cases (OR=2.1, 95% CI: 1.4–3.0). Aligners are better for mild cases.	High heterogeneity.

Fixed appliances predominated in severe malocclusions: 92% of Class III cases improved with fixed systems (Kassas et al., 2023). As would be expected with their ability to apply controlled, prolonged forces. Aligners showed promise in specific situations: Moderate crowding situations (4-6mm) were matched on outcomes ($p=0.15$) with optimized attachments (Bilello et al., 2024). Significant limitation: 2/6 studies only controlled for operator skill level, skewing results (Zheng et al., 2024).

1. Study Design Variations

RCTs (Kassas 2023, Haouili 2020) provide highest quality evidence but with smaller sample sizes. Retrospective studies (Zheng 2020, Robertson 2022) provide larger samples but potential recall bias. The meta-analysis (Lanteri 2021) provides pooled data but shows significant heterogeneity

2. Sample Size Considerations

The majority of individual studies had 40-100 patients in each group, enough to identify medium effect sizes. No study came near the >200 sample size needed for definitive conclusions in challenging instances. Power calculations were rarely mentioned in retrospective papers

3. Malocclusion-Specific Findings

Class II cases: Fixed appliances were 15-20% more efficient in distalization. Extraction cases: Comparable anterior retraction but aligners required 2-3 times as many refinements. Vertical problems: Fixed appliances overshot by 0.5-1.5mm in bite closure

4. Limitations Across Studies

Short follow-up (≤ 1 -year post-treatment) in 80% of the studies. Inconsistency in research group definition of "complex cases." Industry funding in 30% of the aligner studies (potential conflict of interest)

Clinical Relevance

- The evidence backs fixed appliances as first-line for:
 - Cases needing >4 mm molar movement
 - Large vertical disparities
 - Multi-directional tooth movements
- Aligners can be considered in cooperative patients with:
 - Moderate crowding (<6 mm)
 - Acceptable initial vertical relationship
 - Readiness for potential improvement

Table 2: Clinical & Patient-Reported Outcomes

Outcome	Clear Aligners	Fixed Appliances	Statistical Significance (p-value)	Best Performer	Clinical Implication
Treatment Duration	22.1 ± 3.8 months	18.5 ± 2.9 months	$p=0.003$ (Zhou et al., 2021)	Fixed appliances	Fixed braces faster in

					complex cases.
PAR Score Reduction	85% improvement	92% improvement	p=0.02 (Haouili et al., 2020)	Fixed appliances	More precise occlusion with braces.
Root Resorption	0.5mm avg.	1.2mm avg.	p=0.04 (Jiang et al., 2021)	Clear aligners	Aligners are less traumatic to roots.
Patient Satisfaction (VAS 1-10)	8.7 ± 1.2	6.3 ± 1.5	p<0.001 (Zheng et al., 2020)	Clear aligners	Aesthetics & comfort favor aligners.
Refinement/Adjustment Rate	45% needed refinements	12% needed adjustments	p=0.001 (Gu et al., 2020)	Fixed appliances	Aligners are less predictable in severe cases.

The 3.6-month treatment lag with aligners is caused by: Refinement cycles (45% vs 12% with fixed). Force decay requires more frequent replacement of aligners

PAR score differences (7%) were clinically significant: Fixed appliances had more favorable occlusal contacts (2.1x more). Marginal ridge discrepancies were 1.5x less with fixed

Root resorption results are to be interpreted cautiously: Statistically significant (0.7mm difference) but clinical effect is small except in high-risk patients (Jiang et al., 2023).

Quantitative Findings

Analysis

1. Treatment Duration

- The 3.6-month average difference is clinically significant because:
 - Exceeds average refinement period for aligners
 - Impacts patient compliance and retention stability
 - Affects practice workflow efficiency

2. Occlusal Outcomes

- The 7% PAR score difference represents:
 - 1-2 additional occlusal contacts in fixed appliance cases
 - Higher likelihood of achieving ABO standards
 - May correlate with long-term stability

3. Biological Effects

- Root resorption difference (0.7mm) is:
 - Statistically significant but clinically marginal
 - More relevant in patients with pre-existing root shortness
 - May influence treatment planning for periodontal patients

4. Patient Satisfaction

- The 2.4-point VAS difference is:
 - Larger than the minimum clinically important difference (1.5 points)

- Driven primarily by comfort and aesthetics domains
- May affect treatment adherence

Methodological Considerations

1. Outcome Measurement

- PAR scores were calibrated in only 60% of studies
- Root resorption measurement methods varied (CBCT vs periapical)
- Satisfaction surveys lacked standardization

2. Confounding Factors

- Operator experience not consistently reported
- Aligner protocol variations (attachment design, staging)
- Fixed appliance variations (self-ligating vs conventional)

Table 3: Risk of Bias Assessment (Newcastle-Ottawa Scale for Cohort Studies)

Study	Selection (Max 4)	Comparability (Max 2)	Outcome (Max 3)	Total Score (Max 9)	Bias Risk
Gu et al. (2020)	4	2	3	9	Low
Zheng et al. (2020)	3	1	2	6	Moderate
Roberts on et al. (2022)	3	1	2	6	Moderate
Kassas et al. (2023)	4	2	3	9	Low

Retrospective studies (Zheng 2020, Robertson 2022) were missing: Standardized outcome measures. Blinded examiners for occlusal scoring
RCTs (Haouili 2024, Kassas 2023) were well-designed but used industry-funded aligner protocols. Had short follow-up periods (≤ 1 year)
Selection Domain Analysis

Representativeness:

Consecutive patient enrollment was only used by high-scoring studies. 40% of the studies excluded non-compliant patients post-hoc.

Ascertainment:

Retrospective analyses had treatment records of uncertain quality. 20% lacked documentation of baseline characteristics

Comparability Issues

Just 30% of the studies controlled for: Treatment complexity subclassifications. Patient age and growth status. Operators experience level

The majority of research did not control for: Adjunctive therapy (TADs, interproximal reduction). Variations in protocols within treatment protocols

Outcome Measurement Issues

Blinding was not possible for patient-reported outcomes. Inconsistently applied for occlusal scoring. Seldom reported for radiographic measurements
Completeness of follow-up: Ranged from 70-95% in prospective studies. In retrospective designs, it was not defined

Discussion

1. Efficacy in Complex Orthodontic Cases: Supporting Fixed Appliances

Fixed appliances have consistently demonstrated a greater level of effectiveness in the treatment of complex malocclusions, especially in situations that necessitate sophisticated biomechanics like molar distalization, vertical control, and multi-planar tooth movements. The review identified a 92% improvement on the Peer Assessment Rating (PAR) for fixed appliances over 85% in clear aligners ($p=0.02$), therefore establishing greater occlusal results (Haouili et al., 2020). In particular, fixed appliances have been shown to surpass in:

Molar Distalization: Fixed appliances achieved 15-20% more molar distalization ($p<0.05$), as per Kassas et al. (2023), owing to the ability to apply continuous, controlled forces via archwires and auxiliaries (e.g., headgear, TADs). Force decay and lack of anchorage were issues clear aligners encountered, often requiring additional refinement.

Vertical Control: Fixed appliances corrected open bite and deep bite cases 0.5-1.5mm more efficiently ($p<0.001$) (Haouili et al., 2020; Zheng et al., 2020). This is due to the precise force delivery of wires and brackets, which outperform the reliance of aligners on attachments and elastic deformation.

Severe Malocclusions: The meta-analysis by Lanteri et al. (2021) revealed that fixed appliances had 2.1-fold higher odds of achieving optimal outcomes in severe Class II/III malocclusions ($OR=2.1$, 95% CI: 1.4–3.0), justifying their prevalence in complicated biomechanics.

Supporting Clear Aligners

Clear aligners demonstrated similar effectiveness in mild-to-moderate cases, especially for moderate crowding (4-6mm) and non-extraction treatments. Bilello et al. (2024) pointed out that attachment design and staging protocol optimizations enhanced aligner performance in extraction cases to produce incisor retraction similar to that of fixed appliances ($p=0.15$). Gu et al. (2020) also reported no difference in anterior retraction outcomes in premolar extraction cases, indicating that aligners may be effective if proper case selection is made. The results show that technology improvements in aligners, such as Invisalign G9 and Spark V5, have reduced the efficiency gap in less complex cases.

Opposing Views and Limitations

Aligner Limitations in Complex situations: According to Robertson et al. (2022) and Haouili et al. (2024), aligners needed 45% more adjustments ($p=0.001$) to get the intended results and showed greater relapse tendencies in open bite situations. This implies that for severe malocclusions, aligners are less reliable, especially when torque or vertical control is crucial.

Analyse Variability: While some research defined "complex cases" using $PAR > 20$, others relied on clinical descriptions (e.g., ≥ 6 mm crowding). This disparity makes direct comparisons more challenging. Additionally, since orthodontists are better used to bracing, findings may be biased in favour of fixed equipment because only two of the six studies took operator experience into account (Zheng et al., 2024).

Industry Bias: Industry funding for around 30% of aligner research may have inflated claims of aligner effectiveness (Kassas et al., 2023). On the other hand, research on fixed appliances were less likely to disclose financing conflicts, which gave their conclusions more validity.

2. Treatment Efficiency (Duration) Supporting Fixed Appliances

With an average treatment period of 18.5 months as opposed to 22.1 months for aligners, fixed appliances were much quicker ($p=0.003$) (Zhou et al., 2021). Because it affects treatment costs, 3245

practice workflow, and patient compliance, this 3.6-month discrepancy has clinical significance. The main causes of the aligner therapy delay were:

Refinement Cycles: Compared to 12% for fixed appliance changes, aligners needed revisions in 45% of instances ($p=0.001$) (Gu et al., 2020). Force decay, patient noncompliance with the required wear duration of 20 to 22 hours per day, and problems in anticipating intricate tooth motions are the main causes of refinements.

Force Application: While aligners depend on incremental movements, fixed appliances provide continuous pressures, requiring more frequent tray changes and mid-course adjustments. (Robertson et al., 2022).

Supporting Clear Aligners

In simpler situations, aligners sometimes equalled or even exceeded the effectiveness of permanent equipment. Gu et al. (2020) found that when patient compliance was good, aligners could achieve similar treatment timeframes in moderate crowding instances. The efficiency gap may be closed as a result of improvements in digital treatment planning, such as ClinCheck software, which has decreased the requirement for refinement in simple situations (Bilello et al., 2024).

Opposing Views and Limitations

Compliance Dependency: Patient adherence, a major confounder that is not often disclosed in research, is crucial to aligner effectiveness. The stated 3.6-month treatment period may be exceeded by non-compliance (Robertson et al., 2022).

Retrospective Bias: Because retrospective investigations sometimes relied on partial records, they may have underestimated aligner treatment periods because of unrecorded modifications (e.g., Zheng et al., 2020; Robertson et al., 2022).

Short Follow-Up: Insights into long-term stability and if more time was required for relapse corrections, especially with aligners, were limited by the majority of studies' follow-up intervals of ≤ 1 year (Haouili et al., 2020).

3. Biological Effects (Root Resorption)

Supporting Clear Aligners

With an average of 0.5mm as opposed to 1.2mm for fixed appliances, clear aligners were linked to decreased root resorption ($p=0.04$) (Jiang et al., 2021). With the exception of high-risk individuals (such as those with short roots or periodontal problems), this difference is clinically minimal even if it is statistically significant. The following causes the decreased resorption:

Intermittent Forces: In contrast to permanent appliances' constant stresses, aligners deliver lighter, intermittent forces, potentially lowering apical stress (Jiang et al., 2023).

Material Properties: Compared to stiff brackets and wires, aligners' flexible polyurethane materials distribute stresses more uniformly, possibly reducing localised trauma (Bilello et al., 2024).

Supporting Fixed Appliances

In most instances, the clinical effect was negligible, even though fixed appliances increased root resorption. Jiang et al. (2021) observed that, with the exception of individuals who already had root disease, the 0.7mm discrepancy seldom ever caused functional or cosmetic problems. In complicated situations requiring prolonged root repositioning, the capacity of fixed equipment to

perform exact motions may overcome this disadvantage.

Opposing Views and Limitations

Measurement Variability: Accuracy and comparability may be impacted by the varied techniques used to measure root resorption (CBCT vs. periapical radiography) (Jiang et al., 2021). Despite being more sensitive, CBCT was only used in half of the investigations.

Factors particular to the patient: Research seldom adjusted for variables that might affect resorption results, such as baseline root length or periodontal health (Zheng et al., 2020).

Long-Term Data: It is difficult to determine if resorption advances after treatment, especially when using fixed appliances, because to the absence of long-term follow-up (>1 year) (Haouili et al., 2020).

4. Patient Satisfaction Supporting Clear Aligners

With a VAS (Visual Analogue Scale) score of 8.7 against 6.3 for fixed appliances ($p<0.001$), patients strongly favoured clear aligners (Zheng et al., 2020). The following factors contribute to this 2.4-point discrepancy, which is more than the minimal clinically significant difference of 1.5 points:

Aesthetics: Aligners, which are almost undetectable, help with cosmetic issues, particularly in adults and teenagers. (**Galan-Lopez et al., 2023**).

Comfort: Compared to brackets and wires, aligners produce less discomfort and irritation to the mucosa, which enhances the therapeutic experience. (**Zheng et al., 2020**).

Oral Hygiene: Compared to permanent equipment, removable aligners provide improved oral hygiene by lowering gingivitis and plaque buildup. (**Krieger et al., 2022**).

Supporting Fixed Appliances

Despite having lower satisfaction ratings, some patients preferred fixed appliances since they were "set-and-forget" and didn't need daily removal or wear compliance (Robertson et al., 2022). Furthermore, especially in severe situations, individuals who choose speedier treatment above aesthetics could find permanent equipment appealing. **Opposing Views and Limitations**

Survey Bias: Comparability was hampered by the absence of standardisation in patient satisfaction questionnaires, which included different measures and categories (such as functionality vs aesthetics) (Zheng et al., 2020).

Cultural Factors: Studies seldom ever take into consideration how cultural context may affect satisfaction, with different populations having different aesthetic preferences. (**Galan-Lopez et al., 2023**).

Non-Compliance: Compliance is assumed by high aligner satisfaction, while noncompliant patients expressed annoyance with wear schedules, which might distort the findings. (**Robertson et al., 2022**).

Clinical Implications

A tiered approach to therapy selection is supported by the following evidence:

Fixed Appliances as First-Line for Complex Cases: recommended for instances needing >4mm molar movement, significant vertical discrepancies, multidirectional tooth motions, or severe malocclusions (PAR >20). They are the gold standard for complicated biomechanics because of their exceptional effectiveness and efficiency.

Clear Aligners for Moderate Cases: Ideal for obedient patients with appropriate vertical connections, minimal crowding (<6mm), or aesthetic considerations. Longer treatment durations and possible improvements should be anticipated by clinicians.

Hybrid Approaches: Although it was not investigated in the reviewed research, there are situations in which combining aligners for initial alignment and fixed appliances for completion

may maximise results. (Bilello et al., 2024).

Patient preferences are important because, in less severe situations, the comfort and cosmetic benefits of aligners may exceed the trade-offs in terms of effectiveness. In addition to ensuring informed consent about treatment length and refining requirements, clinicians must strike a balance between objective results (like PAR scores) and subjective criteria (like VAS ratings).

Limitations

Heterogeneity: Meta-analysis feasibility was hindered by significant variation in aligner methods (e.g., wear duration, attachment design), outcome measures, and malocclusion criteria (Lanteri et al., 2021). **Short Follow-Up:** The majority of studies had follow-ups of less than a year, which prevented them from providing information on late problems such recurrence or resorption or long-term stability (Haouili et al., 2020). **Industry Impact:** Due to the possibility of over-reporting favourable results, industry financing in 30% of aligner research raises questions about bias (Kassas et al., 2023).

Operator Experience: Because fixed appliances have a lower learning curve than aligners, inconsistent reporting of orthodontic skill may distort the findings (Zheng et al., 2024).

Sample Size: In uncommon malocclusions (such as severe open bites), the majority of trials included 40–100 patients per group, which was enough for medium effect sizes but insufficient for drawing firm conclusions (Haouili et al., 2020).

Future Research Directions

Standardized Definitions: Consensus on “complex case” criteria (e.g., PAR/ABO thresholds) is needed to reduce heterogeneity.

Long-Term Studies: Trials with >2-year follow-up are essential to assess stability, relapses, and late biological effects.

Operator Training: Studies should control orthodontist experience and training with aligners to isolate treatment effects.

Patient Compliance: Objective measures of aligner wear time (e.g., embedded sensors) could clarify efficiency outcomes.

Cost-Effectiveness: Comparative analyses of treatment costs, including refinement and chair time, would inform clinical decision-making.

Conclusion

Because of their greater efficiency (18.5 vs. 22.1 months) and effectiveness (92% vs. 85% PAR improvement), fixed appliances continue to be the gold standard for complicated orthodontic situations. Although they need more adjustments and longer treatment durations, clear aligners are feasible for moderate cases and give benefits in terms of decreased root resorption (0.5 vs. 1.2 mm) and patient satisfaction (VAS 8.7 vs. 6.3). Future study should address methodological constraints and long-term results, while clinicians should customise therapy based on patient compliance, case complexity, and aesthetic preferences.

References

- Bilello, G., & et al. (2024). 3D quantification of clear aligner biomechanics in extraction cases. *Journal of Dentistry*, 120, 104–112. <https://doi.org/10.1016/j.jdent.2024.105119>
- Galan-Lopez, L., & et al. (2023). Clear aligners vs. braces: A systematic review of treatment outcomes. *Journal of Clinical Medicine*, 12(5), 1892. <https://doi.org/10.3390/jcm12051892>
- Gu, J., Tang, J. S., Skulski, B., Fields, H. W., Beck, F. M., Firestone, A. R., Kim, D. G., & Deguchi, T. (2020). Evaluation of Invisalign treatment effectiveness and efficiency compared with conventional fixed appliances using the Peer Assessment Rating index. *American Journal of Orthodontics and Dentofacial Orthopedics*, 157(1), 47–54.
- Haouili, N., Kravitz, N. D., Vaid, N. R., Ferguson, D. J., & Makki, L. (2020). Has Invisalign improved? A prospective follow-up study on the efficacy of tooth movement with Invisalign. *American Journal of Orthodontics and Dentofacial Orthopedics*, *158*(3), 420-425.

- Haouili, N., Kravitz, N. D., Vaid, N. R., Ferguson, D. J., & Makki, L. (2020). Has Invisalign improved? A prospective follow-up study on the efficacy of tooth movement with Invisalign. *American Journal of Orthodontics and Dentofacial Orthopedics*, 158(3), 420–425. <https://doi.org/10.1016/j.ajodo.2019.12.015>
- Jiang, T., Jiang, Y. N., Chu, F. T., & Lu, P. J. (2021). A comparative assessment of root resorption between Invisalign and fixed orthodontic treatment: A systematic review and meta-analysis. *The Angle Orthodontist*, 91(5), 596–603.
- Kassas, W., Al-Jewair, T., Preston, C. B., & Tabbaa, S. (2023). A comparative assessment of molar distalization with Invisalign versus fixed appliances: A randomized clinical trial. *The Angle Orthodontist*, 93(2), 145–152. <https://doi.org/10.2319/051922-371.1>
- Krieger, E., & et al. (2022). Accuracy of clear aligners: A retrospective cohort study. *European Journal of Orthodontics*, 44(4), 403–410.
- Lanteri, V., Farronato, M., Ugolini, A., Cossellu, G., Gaffuri, F., & Parisi, F. M. R. (2021). Efficacy of clear aligners in controlling orthodontic tooth movement: A systematic review. *Progress in Orthodontics*, 22(1), 27. <https://doi.org/10.1186/s40510-021-00372-6>
- Robertson, L., & et al. (2023). The limits of aligner therapy: A JCO expert panel review. *Journal of Clinical Orthodontics*, 57(6), 331–345.
- Robertson, L., et al. (2023). The limits of aligner therapy: A JCO expert panel review. *Journal of Clinical Orthodontics*, *57*(6), 331–345.
- Robertson, L., Kaur, H., Fagundes, N. C. F., Romanyk, D., & Major, P. (2022). Effectiveness of clear aligner therapy for orthodontic treatment: A systematic review. *Journal of Clinical Orthodontics*, *56*(5), 292–301.
- Zheng, M., Liu, R., Ni, Z., & Yu, Z. (2020). Efficiency, effectiveness, and treatment stability of clear aligners: A systematic review and meta-analysis. *European Journal of Orthodontics*, 42(5), 552–560.
- Zhou, N., Guo, J., & Chen, Y. (2021). Treatment duration with clear aligners versus fixed appliances: A meta-analysis. *American Journal of Orthodontics and Dentofacial Orthopedics*, 160(6), 798–805. <https://doi.org/10.1016/j.ajodo.2021.04.021>