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Abstract 

This article scrutinizes the shifting terrain of distributed training systems for Large 
Language Models (LLMs), tackling the pivotal challenges of scalability and resilience. 

Modern LLMs' expanding size and intricacy expose fundamental constraints in 
traditional training approaches—namely memory limitations, computational 
demands, and communication bottlenecks. The article puts forward a methodical 

taxonomy built upon four interconnected pillars: parallelism approaches (data, 
tensor, pipeline, and sequence), memory optimization methods, fault tolerance 

mechanisms, and cluster management frameworks. The analysis reveals how these 
elements interact to facilitate effective training on volatile, preemptible cloud 
resources rather than dedicated supercomputing hardware. By highlighting the 

crucial interplay between these components, the article demonstrates how 
parallelism choices directly affect memory usage, communication dynamics, and 

resilience capabilities. Through detailed examination of systems engineered 
specifically for elastic training environments, the work spotlights innovations in 
checkpointing, recovery protocols, and dynamic reconfiguration. The conclusion 

identifies promising research avenues, including algorithm-system co-design for 
elasticity, automated parallelism strategy selection, standardized resilience 

benchmarking, and energy-conscious training methodologies. 
 
Keywords: Distributed Training, Large Language Models, Memory Optimization, 

Fault Tolerance, Cloud-Native Computing. 
 
1. Introduction 

 

1.1 The Unprecedented Scale of Modern LLMs and the Resulting Systems Challenge 

Artificial intelligence currently undergoes transformation propelled by large language model (LLM) 

scaling. GPT-3, PaLM, and Llama demonstrate that expanding parameter counts, training data volumes, 

and computational resources yields substantial—often emergent—capabilities in language understanding, 

generation, and reasoning.[1][2] This scaling phenomenon—the predictable performance gains achieved 

through scale—has sparked fierce competition toward increasingly massive models, with parameter counts 

surging from billions toward trillions.[3] 

Such exponential expansion represents more than mere quantitative advancement; it has triggered a 

qualitative shift in required training infrastructure. Contemporary LLMs exceed the memory capacity of 

even cutting-edge single accelerators, rendering distributed training an absolute necessity rather than 

optional optimization.[1][5] Training itself constitutes a massive undertaking, demanding vast GPU clusters 

operating for weeks or months, consuming staggering amounts of energy and compute time.[2] This 

endeavor stretches existing hardware and software to breaking points, creating fundamental bottlenecks 

across three key dimensions: 
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● Memory: Storing model parameters, gradients, and optimizer states for trillion-parameter models 

demands tens of terabytes—far beyond any single device's capacity.[4][6] 

● Computation: A single training run requires zettaFLOPs of operations, necessitating sustained, 

high-performance computation across thousands of devices.[8] 

● Communication: Distributed settings require constant information exchange between devices, 

including gradients and activations. This communication frequently becomes the primary 

bottleneck, with some workloads spending over 90% of execution time on network operations, 

severely limiting scalability and efficiency.[2][3] 

1.2 The Cloud-Native and Decentralized Imperative: Training on Dynamic and Distributed 

Resources 

Traditionally, large-scale scientific computing relied on dedicated, on-premise supercomputers with 

specialized, custom interconnects. While LLM training benefits from such "hyperclusters," a marked 

paradigm shift toward elastic, cloud-native and increasingly decentralized infrastructure has 

emerged.[7][45] This transition is driven not only by economic forces—particularly the availability of 

discount "spot" virtual machines (VMs), which cost up to 5 times less than standard on-demand instances—

but also by the fundamental goal of democratizing access to large-scale AI training.[7][48] 

The democratization aspect is crucial: cloud-native and decentralized approaches enable a wider range of 

organizations, from academic institutions to startups and smaller companies, to participate in cutting-edge 

LLM research and development without needing to invest in prohibitively expensive dedicated 

infrastructure. This broader access fosters innovation and ensures that AI advancement isn't confined to 

only the largest technology companies with massive computing resources. 

The emerging decentralized training paradigm takes this democratization even further by leveraging 

heterogeneous, geographically distributed resources. This approach allows training to occur across diverse 

computing environments—potentially spanning multiple cloud providers, private data centers, and edge 

devices—creating a more resilient and accessible training ecosystem. However, this new reality introduces 

fresh systems challenges: 

● Resource Preemption: Spot instances face revocation with minimal warning, potentially derailing 

training runs spanning weeks or months.[7][37] 

● Hardware Heterogeneity: Cloud and decentralized clusters typically comprise diverse GPU 

generations and architectures, causing performance variability and straggler issues.[47] 

● Variable Network Performance: Unlike purpose-built, high-performance supercomputer networks, 

commodity cloud networks and especially geographically distributed networks exhibit higher 

latency and jitter, potentially crippling communication-intensive training algorithms.[8][47] 

● Cross-Region Coordination: Decentralized training must overcome challenges in synchronizing 

work across different geographical regions with varying network capabilities and reliability. 

This new landscape challenges the assumption that massive models require specialized, stable 

hardware.[6][45] It demands fundamental rethinking of system design, pivoting from raw performance on 

static resources toward resilience and elasticity on dynamic, heterogeneous, and geographically distributed 

resources. 

1.3 A Unified Framework: The Interplay of Parallelism, Memory, and Resilience 

The central argument advanced in this survey posits that distributed training's three pillars—scalability, 

memory efficiency, and resilience—function not as isolated concerns but as deeply interwoven 

considerations. Parallelism strategy selection, for instance, creates direct and cascading effects on memory 

consumption and communication patterns. These factors subsequently determine system vulnerability to 

failures and capacity for elastic adaptation. 

Consider tensor parallelism versus pipeline parallelism. Tensor parallelism, which divides individual 

mathematical operations within model layers, effectively balances computational load but demands 

frequent, high-volume communication (e.g., All-Reduce) among participating devices. This creates acute 

sensitivity to network latency and jitter, making it most suitable for tightly-coupled GPUs within single 

server nodes connected via high-speed interconnects like NVLink.[5][15] Pipeline parallelism, conversely, 

partitions models by layers, requiring communication only of activations between sequential stages. This 
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substantially reduced communication volume better tolerates the higher latency typical of inter-node, 

commodity cloud networks.[9][13] Consequently, systems designed for resilience on preemptible cloud 

VMs might favor pipeline parallelism, despite tensor parallelism potentially offering superior theoretical 

performance on dedicated supercomputers. This interplay creates a complex, multi-dimensional 

optimization problem requiring careful navigation by system architects. 

1.4 Contributions and Paper Organization 

This survey makes several scholarly contributions: 

● A systematic, comprehensive taxonomy of modern distributed LLM training techniques, organized 

into four logical pillars building upon one another, from foundational parallelism to cluster-level 

orchestration. 

● A unified analytical framework clarifying critical trade-offs between computational performance, 

memory efficiency, communication overhead, and system robustness. 

● In-depth analysis of systems specifically engineered for resilience and elasticity on dynamic, 

preemptible cloud resources—a critical and increasingly relevant research area. 

● Identification of key underexplored research directions and a forward-looking agenda guiding 

future work toward more scalable, robust, and efficient training systems. 

The paper continues as follows. Section 2 examines foundational parallelism strategies forming distributed 

training building blocks. Section 3 explores techniques for optimizing memory consumption at scale. 

Section 4 addresses critical mechanisms achieving fault tolerance and elasticity in dynamic environments. 

Section 5 investigates schedulers and cluster management systems orchestrating these complex workloads. 

Section 6 discusses open challenges and proposes future research directions. Section 7 concludes the 

survey. 

 

2. Foundational Parallelism Strategies 

Modern LLMs' immense scale necessitates the training process's distribution across multiple hardware 

accelerators. Distribution strategies have evolved through a clear causal chain, with each approach's 

limitations directly motivating subsequent innovations. This evolution reflects continuous efforts 

addressing the most pressing system bottlenecks at each model scaling stage. This section examines four 

foundational parallelism strategies—data, model (tensor and pipeline), sequence, and expert parallelism—

tracing their development and analyzing respective trade-offs. 

2.1 Data Parallelism (DP): The Baseline and Its Memory Bottleneck 

Data Parallelism (DP) represents the most straightforward, widely adopted distributed training method. Its 

core concept involves replicating entire models across multiple devices (workers). Each worker processes 

different training data slices (mini-batches) in parallel during forward and backward passes. Maintaining 

model replica synchronization requires gradient aggregation across all workers through collective 

communication operations, typically All-Reduce, before optimizer weight updates.[9][2] 

DP's primary advantage lies in training throughput scalability through very large global batch sizes—the 

sum of worker mini-batch sizes. However, LLM training applications face severe constraints from a 

fundamental bottleneck: memory. Standard DP requires each worker to maintain complete model state 

copies, including parameters, gradients, and optimizer states (e.g., momentum and variance vectors for 

Adam optimizers).[5][6] Multi-billion parameter models easily exceed single GPU memory capacity, 

creating an insurmountable "memory wall" rendering vanilla DP impractical.[6] 

2.2 Model Parallelism (MP): Decomposing the Model 

Model Parallelism (MP) emerged directly addressing DP's memory wall. Rather than replicating models, 

MP partitions them, distributing layers and parameters across multiple devices.[8] This leverages aggregate 

cluster memory capacity to accommodate massive models. MP typically manifests in two distinct forms: 

tensor parallelism and pipeline parallelism. 

2.2.1 Tensor Parallelism (TP): Intra-Layer Parallelism 

Tensor Parallelism, also termed intra-layer model parallelism, partitions individual model layers. The key 

insight, pioneered by Megatron-LM, recognizes that Transformer models' most computation-intensive 

components involve large matrix multiplications (GEMMs) within Multi-Layer Perceptron (MLP) and 
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attention blocks.[5][10] TP parallelizes these GEMMs by splitting weight matrices along specific 

dimensions (e.g., column-wise for first matrices and row-wise for second matrices in MLP blocks) and 

distributing shards across GPU groups.[5][10] 

During computation, each GPU performs matrix multiplication on local weight matrix shards. Collective 

communication operations ensure mathematical equivalence to the original, non-parallel operations. This 

typically requires two All-Reduce operations per Transformer layer (one during forward passes and one 

during backward passes) for partial result aggregation.[9] 

TP design couples tightly with the underlying hardware topology. It's frequent, fine-grained communication 

creates high sensitivity to network latency and bandwidth. Consequently, TP works most effectively across 

GPUs within single server nodes connected by high-bandwidth, low-latency interconnects like NVIDIA's 

NVLink, which sustains the required communication volume with minimal overhead.[9] While TP delivers 

excellent computational load balancing and high device utilization, its dependence on high-speed 

interconnects limits its suitability for scaling across multiple server nodes over standard datacenter 

networks. 

2.2.2 Pipeline Parallelism (PP): Inter-Layer Parallelism 

Pipeline Parallelism, or inter-layer model parallelism, adopts an alternative partitioning approach. Rather 

than splitting individual layers, it divides entire models into sequential stages, each comprising contiguous 

layer blocks. These stages distribute across different devices, forming computational pipelines.[9] Data 

mini-batches break down into smaller micro-batches fed sequentially into pipelines. This enables different 

devices to process different micro-batches simultaneously, overlapping computation across stages. 

Early, influential PP implementations include GPipe and PipeDream: 

● GPipe introduced synchronous pipeline models using micro-batching to maximize device 

utilization.[9][13] During forward passes, activations pass from one stage to the next. During 

backward passes, gradients flow in reverse. Maintaining mathematical equivalence with serial 

execution requires accumulating gradients for all micro-batches before performing single, 

synchronous optimizer steps for entire mini-batches.[13] While ensuring correctness, this creates 

"pipeline bubbles"—periods at mini-batch processing beginnings and ends where some devices 

remain idle, waiting for pipelines to fill or drain. Bubble size proportionally increases with pipeline 

depth, potentially limiting efficiency.[14] 

● PipeDream aimed to eliminate bubbles and achieve higher throughput. It employs asynchronous 

"1F1B" (one-forward, one-backward) scheduling, where devices alternate between performing 

forward passes for new micro-batches and backward passes for previous ones.[11][16] This keeps 

devices nearly fully utilized during steady-state operation. However, this efficiency introduces 

weight staleness. Since backward passes for given micro-batches might execute after model 

weights update from preceding micro-batches, gradients are computed using slightly older 

parameter versions. Ensuring correctness requires "weight stashing," storing multiple weight 

versions for each in-flight micro-batch, increasing memory requirements.[11] Subsequent work, 

including PipeDream-2BW and PipeMare, sought to improve asynchronous pipelining memory 

efficiency and convergence properties.[16][17] 

Compared to TP, PP maintains substantially lower communication-to-computation ratios. It only requires 

passing activations and gradients between adjacent stages at partition boundaries, significantly smaller data 

volumes than TP's All-Reduce operations.[9] This creates far greater tolerance for network latency, making 

PP better suited for scaling across multiple nodes in commodity cloud environments.[9] 

2.3 Sequence Parallelism (SP): Scaling to Long Contexts 

As models grew larger and processing longer input sequences (contexts) became crucial, a new memory 

bottleneck emerged: activations. Even with TP and PP distributing model parameters, storing intermediate 

activations for each layer during forward passes requires prohibitive memory, particularly with sequence 

lengths reaching millions of tokens.[21][22] 

Sequence Parallelism (SP) addresses this specific challenge. Its core concept involves partitioning tensors 

not along hidden dimensions (like TP) but along sequence dimensions.[20] For sequences of length L with 

TP degree N, each GPU stores activations for only L/N tokens. 
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The effectiveness of SP depends significantly on its integration with other technologies, particularly 

optimized attention implementations. Modern systems like FlashAttention provide crucial support for SP 

by enabling efficient memory access patterns and reducing redundant memory operations, which is 

especially important when dealing with partitioned sequences.[23] Without these optimized attention 

mechanisms, the benefits of SP would be substantially reduced due to the computational overhead of 

managing partitioned sequence dimensions. 

Implementations in Megatron-LM and DeepSpeed-Ulysses display particular ingenuity. An All-Reduce 

operation mathematically equals a Reduce-Scatter operation followed by an All-Gather operation. SP 

modifies standard TP communication patterns by replacing the first forward pass All-Reduce operations 

with Reduce-Scatter, and the second operations with backward pass All-Gather. This ensures activations, 

replicated across TP ranks after the first All-Reduce in standard TP, remain partitioned in SP. This 

modification delivers substantial activation memory savings with zero additional communication overhead, 

as total transferred data volume remains unchanged.[20] DeepSpeed-Ulysses further optimizes this using 

efficient all-to-all collectives managing distributed attention computation.[23][24] SP's primary trade-off 

involves tight coupling with TP; it functions as a TP optimization and cannot apply independently.[20] 

Different approaches to SP have emerged, with variations in how they handle attention computation across 

partitioned sequences. Some methods focus on reducing memory footprint at the cost of additional 

communication, while others prioritize minimizing communication overhead but require more 

sophisticated implementation. The choice between these approaches depends heavily on specific hardware 

configurations and sequence length requirements. 

2.4 Expert Parallelism (EP): Scaling Mixture-of-Experts Models 

An emerging parallelism strategy worth noting is Expert Parallelism (EP), designed specifically for 

Mixture-of-Experts (MoE) architectures. MoE models distribute computation across specialized "expert" 

networks that process only a subset of the input tokens based on a learned routing mechanism. This sparse 

activation pattern creates unique opportunities for parallelism that traditional approaches don't fully exploit. 

In EP, different expert networks are distributed across devices, with each device responsible for a subset of 

the experts. This approach is particularly effective because only a small fraction of experts activate for any 

given input token, reducing both computation and communication requirements compared to dense models 

of equivalent parameter counts. Models like Switch Transformer, GShard, and more recent efforts like 

Mixtral demonstrate how EP can achieve remarkable parameter efficiency and training scalability. 

EP introduces its own challenges, particularly in load balancing, as popular experts can create 

computational hotspots. Advanced implementations use techniques like auxiliary load balancing losses and 

dynamic expert allocation to mitigate these issues. As MoE architectures continue to gain prominence for 

their parameter efficiency, EP will likely become an increasingly important part of the distributed training 

ecosystem. 

2.5 Hybrid Approaches and 3D Parallelism 

In practice, these foundational strategies rarely apply in isolation. State-of-the-art training frameworks like 

DeepSpeed and Megatron-LM combine them into sophisticated hybrid approaches, often called "3D 

Parallelism".[25][30] 

To illustrate how this works in practice, consider training a 175-billion parameter model (similar to GPT-

3) on a cluster of 1024 GPUs. A common, highly effective multi-node cluster configuration might include: 

● Tensor Parallelism (TP): 8-way parallelism within each server node, partitioning individual layers 

across 8 GPUs connected by NVLink 

● Pipeline Parallelism (PP): 16-way parallelism across server nodes, with each group of 8 GPUs (one 

full node) handling a different segment of the model's layers 

● Data Parallelism (DP): 8-way replication of the entire pipeline, allowing 8 different batches to be 

processed simultaneously 

● Sequence Parallelism (SP): Integrated with the 8-way TP to efficiently handle long context 

windows 
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In this configuration, the full system processes 8 different batches simultaneously (DP=8), each batch flows 

through 16 pipeline stages (PP=16), and within each stage, computation is distributed across 8 GPUs 

(TP=8). This creates effective utilization of all 1024 GPUs (8×16×8=1024). 

This hierarchical approach enables system designers to map appropriate parallelism strategies to 

corresponding hardware hierarchy levels, maximizing both scalability and efficiency. TP and SP operate 

within server nodes to leverage high-speed interconnects, while PP spans across nodes to accommodate 

higher-latency inter-node communication. DP then allows further scaling by replicating this entire pipeline 

structure. 
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Table 1: Comparison of Parallelism Strategies 

 

3. Memory Optimization at Scale 

While parallelism strategies distribute models across multiple devices, per-device memory footprints 

remain critical constraints. Advanced optimization techniques reduce per-device memory consumption, 

enabling training larger models, using larger batch sizes for improved throughput, or training on hardware 

with limited VRAM. These techniques typically operate orthogonally to parallelism and combine with it 

for maximum effect. They generally involve fundamental trade-offs, exchanging abundant resources (e.g., 

compute cycles or CPU memory) for scarcer ones: GPU memory. 

3.1 Activation Recomputation (Checkpointing) 

During training backward passes, autograd engines require intermediate activations computed during 

forward passes to calculate gradients. Storing all activations in GPU memory consumes enormous 

resources, often becoming primary memory bottlenecks after accounting for model parameters and 

optimizer states.[26][27] 

Activation recomputation, also called activation checkpointing or gradient checkpointing, directly 

addresses this by trading memory for computation. The approach works simply: instead of storing all 

intermediate activations for specified model regions (e.g., Transformer blocks), systems discard them after 
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forward passes. During backward passes, when these activations become necessary for gradient calculation, 

systems re-run forward passes for specific blocks to "rematerialize" activations on-the-fly.[27][28] 

This approach dramatically reduces peak activation memory requirements, as activations no longer occupy 

memory throughout entire forward-backward cycles. Memory savings come at the cost of computational 

overhead from additional forward passes, potentially increasing total training time. However, for memory-

bound workloads, this trade-off often proves highly favorable, potentially determining whether models fit 

in memory at all. Frameworks like DeepSpeed provide sophisticated activation checkpointing 

implementations, including features that partition recomputed activations across model-parallel ranks or 

even offload them to CPU memory, further extending memory efficiency boundaries.[29][30] 

3.2 The Zero Redundancy Optimizer (ZeRO) 

The Zero Redundancy Optimizer (ZeRO), developed by Microsoft within DeepSpeed, represents an 

optimization family fundamentally reimagining data parallelism memory usage.[4][31] Standard data 

parallelism wastes memory by replicating entire training states—model parameters, gradients, and 

optimizer states—on every GPU. ZeRO systematically eliminates this redundancy by partitioning states 

across data-parallel workers. 

3.2.1 ZeRO Stages 1, 2, & 3: Partitioning Model States 

ZeRO implements three progressive stages, each offering greater memory savings by partitioning more 

training state components:[31][34] 

● ZeRO-Stage 1 (Optimizer State Partitioning): This stage addresses optimizer states (e.g., 

momentum and variance vectors in Adam optimizers), which consume substantial memory (e.g., 8 

bytes per model parameter for Adam in mixed precision). Rather than replicating these states, 

ZeRO-1 partitions them across data-parallel processes. Each GPU maintains and updates only a 

slice of total optimizer states. After gradient reduction, each GPU updates its local parameter 

partition using its local optimizer state shard. A final All-Gather operation ensures all GPUs receive 

fully updated parameters. This stage alone reduces model state memory requirements up to 4x.[31] 

● ZeRO-Stage 2 (Gradient and Optimizer State Partitioning): This stage extends the first by also 

partitioning gradients. Since each GPU only updates parameter partitions, it needs only gradients 

corresponding to those partitions. During backward passes, instead of All-Reduce, Reduce-Scatter 

operations send each GPU only final, averaged gradients for parameter slices they manage. This 

eliminates gradient redundancy and provides up to 8x memory reduction compared to standard data 

parallelism, while maintaining identical communication volumes.[31][36] 

● ZeRO-Stage 3 (Parameter, Gradient, and Optimizer State Partitioning): This most aggressive stage 

partitions model parameters themselves alongside gradients and optimizer states.[31] Each data-

parallel worker holds only model weight shards at any given time. During forward and backward 

passes, All-Gather collectives dynamically assemble complete layers just before computation needs 

them. Once computation completes, non-local parameter memory gets released. This powerful 

technique makes memory savings linear with data-parallel degrees. For example, 64-GPU systems 

using ZeRO-3 can reduce model state memory footprints 64-fold, at the cost of modest 50% 

communication volume increases compared to standard data parallelism.[31][34] 

From a practical perspective, most production training setups find ZeRO-1 and ZeRO-2 offer an optimal 

balance of memory savings and performance overhead. These stages provide substantial memory reductions 

(4-8x) with minimal impact on training throughput, making them suitable for most large-scale training 

scenarios. ZeRO-3, while offering the most dramatic memory savings, introduces more significant 

communication overhead and is typically reserved for the most extreme cases where model size would 

otherwise be prohibitive. Organizations planning LLM training should carefully evaluate their specific 

hardware constraints and model sizes to determine which ZeRO stage best meets their needs. 

3.2.2 ZeRO-Infinity: Breaking the GPU Memory Wall with CPU/NVMe Offloading 

ZeRO memory partitioning logically extends beyond aggregate GPU cluster memory into deeper memory 

hierarchies. ZeRO-Offload and ZeRO-Infinity represent groundbreaking ZeRO-3 extensions doing 

precisely this.[32][35] These systems treat GPU memory, CPU RAM, and even fast NVMe solid-state 

drives as single, massive, virtual memory pools. 
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Partitioned model states (parameters, gradients, and optimizer states) offload from scarce, fast GPU 

memory to abundant but slower CPU or NVMe memory. Core innovations lie in sophisticated software 

orchestrating data movement across this hierarchy. Systems intelligently prefetch required parameter shards 

from CPU/NVMe to GPUs just before computation needs them and offload them once requirements end. 

By carefully overlapping data transfers with ongoing GPU computation, ZeRO-Infinity effectively hides 

slower memory tier latency, thereby "breaking the GPU memory wall".[35] This enables training models 

with tens or hundreds of trillions of parameters on existing hardware and democratizes billion-scale model 

training access by allowing it even on systems with limited GPU memory.[4][45] 

3.3 Mixed-Precision and Quantized Training 

Mixed-precision training reduces memory footprints and often accelerates computation. Instead of 

performing all calculations in standard 32-bit single-precision floating-point (FP32), it uses 16-bit half-

precision formats like FP16 or BF16 for most forward and backward passes.[3][33] This immediately 

halves the memory required for storing activations and gradients. 

Maintaining numerical stability and preventing information loss from small gradient values typically 

requires keeping master model weight copies in FP32. During optimizer steps, gradients are converted to 

FP32 before updating master copies. For FP16, which has limited dynamic range, dynamic loss scaling 

becomes critical. This involves scaling loss values upward before backward passes to bring small gradients 

into FP16 representable ranges, then scaling gradients back down before weight updates.[33][36] BF16 

format, sharing FP32's exponent range, suffers from these issues less frequently and often requires no loss 

scaling. On hardware with specialized units like NVIDIA's Tensor Cores, 16-bit format operations can run 

significantly faster than 32-bit counterparts, providing dual benefits of memory savings and increased 

throughput.[33] Emerging research pushes boundaries further with 8-bit formats (FP8) for even greater 

efficiency.[36] 

3.4 Memory-Balanced Parallelism Strategies 

Beyond the standard memory optimization techniques, recent research has focused on memory-balanced 

approaches to parallelism. One notable example is memory-balanced pipeline parallelism, which addresses 

a key limitation of standard pipeline parallelism: uneven memory distribution across pipeline stages. 

In traditional pipeline parallelism, the memory consumption can vary significantly between stages 

depending on the layers assigned to each. This creates inefficiency, as the pipeline depth is constrained by 

the most memory-intensive stage. Memory-balanced pipeline strategies dynamically allocate layers to 

stages based on their memory footprint rather than simply dividing the model into equal numbers of layers. 

This results in more uniform memory utilization across devices and enables deeper pipelines, further 

reducing per-device memory requirements. 

Similar balancing approaches are being explored for other parallelism strategies. For example, adaptive 

tensor parallelism techniques dynamically adjust the degree of tensor parallelism for different model 

components based on their memory and computation profiles. These advanced approaches represent the 

cutting edge of memory optimization research, promising even more efficient utilization of available 

hardware resources. 
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Table 2: Memory Optimization Techniques  

 

4. Fault Tolerance and Elasticity in Dynamic Environments 

While parallelism and memory optimization enable scale, their effectiveness assumes stable, reliable 

hardware environments. This assumption breaks down in modern cloud-native settings, where resource 

preemption and transient failures represent norms, not exceptions.[11] Consequently, resilience—

encompassing both fault tolerance and elasticity—has become a first-class concern in distributed training 

system design. Fault tolerance ensures training jobs survive hardware or software failures, while elasticity 

enables jobs to dynamically adapt to changing available resource quantities. These capabilities prove 

essential for cost-effective training on ephemeral resources like spot instances. 

4.1 Checkpointing and Recovery Mechanisms 

Checkpointing—periodically saving training states to persistent storage—forms the fundamental fault 

tolerance mechanism. When failures occur, training can resume from last valid checkpoints, potentially 

saving weeks or months of computation. 

4.1.1 Synchronous vs. Asynchronous Checkpointing 

Checkpointing methods significantly impact training efficiency. 

● Synchronous Checkpointing: This traditional approach globally pauses entire training processes. 

All workers halt computation, save states (model parameters, optimizer states, etc.) to distributed 

file systems, and only then resume training.[37] While simple and robust, this method introduces 

substantial downtime, as GPUs—the most expensive resources—remain idle during potentially 

slow I/O operations writing terabytes of data to storage. As model sizes grow, this overhead 

becomes prohibitively expensive, creating painful trade-offs between checkpoint frequency 

(safety) and training throughput (speed).[38] 

● Asynchronous Checkpointing: To mitigate this overhead, modern systems employ asynchronous 

checkpointing. This technique decouples I/O-bound saving processes from compute-bound training 

loops. Common implementations involve two-phase processes: first, rapid, synchronous training 

state copies from GPU memory to pinned CPU memory. Once complete, GPUs freely resume the 

next training iterations. The second phase, writing states from CPU memory to persistent storage, 

proceeds in the background on separate I/O threads without stalling GPUs.[39][40] 

The impact of asynchronous checkpointing is substantial and quantifiable. For a 175-billion parameter 

model, a synchronous checkpoint might pause training for 10-15 minutes while terabytes of data are written 

to storage. With asynchronous checkpointing, the visible pause is reduced to just 3-5 seconds for the 

memory copy phase, with the remaining I/O operations proceeding in the background without affecting 

training throughput. This represents a 95-98% reduction in checkpoint-related downtime. For a training run 

saving checkpoints every 6 hours over 20 days, this can translate to recovering nearly a full day of otherwise 

lost training time, a significant efficiency gain for expensive GPU resources.[40] 

4.1.2 Stateless vs. Stateful Recovery Models 

Recovery processes following failures can be designed differently. 
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● Stateless Recovery: In this model, cluster managers or schedulers treat training jobs as stateless 

entities. When nodes fail, entire jobs terminate. Systems then attempt relaunching jobs from 

scratch, acquiring new resource sets and loading most recent global checkpoints from persistent 

storage. This approach offers simple implementation but proves highly inefficient, involving 

complete distributed job teardowns and setups, which consume substantial time.[41][42] 

● Stateful Recovery: More sophisticated approaches involve stateful orchestrators maintaining 

awareness of live training jobs. If workers fail, systems gracefully handle departures, procure 

replacement workers, and have them rejoin existing training groups. New workers then restore 

states, either from shared checkpoints or by receiving them from peers. This model enables much 

faster, more surgical recovery from individual node failures, avoiding complete job restart 

costs.[43][44] 

4.2 Elastic Training Systems 

Elasticity extends fault tolerance concepts from merely surviving failures to actively adapting to resource 

availability changes. This key capability enables cost-effective preemptible spot instance usage, as training 

jobs dynamically shrink or grow worker pools responding to preemptions and new resource availability. 

4.2.1 Byzantine Fault Tolerance in Decentralized Training 

As distributed training increasingly moves toward decentralized environments spanning multiple 

organizations or untrusted participants, Byzantine fault tolerance (BFT) becomes increasingly relevant. 

BFT addresses scenarios where participating nodes might not just fail but actively behave maliciously or 

unpredictably—sending incorrect gradients, manipulating training data, or attempting to inject backdoors 

into models. 

Traditional distributed training systems assume benign failures rather than adversarial behavior. However, 

in future trustless training environments where compute resources might be contributed by multiple entities 

(similar to blockchain networks), robust protection against Byzantine failures becomes critical. Emerging 

research explores BFT-inspired aggregation algorithms that can detect and filter out suspicious gradient 

updates, enabling reliable training even when a portion of the participating nodes behaves arbitrarily. These 

approaches typically involve gradient validation mechanisms, robust aggregation schemes like geometric 

median instead of average, and reputation systems for worker nodes. 

While still in early research stages, Byzantine-resilient training will likely become increasingly important 

as training moves beyond the boundaries of single organizations and into decentralized, collaborative 

environments. 

4.2.2 Dynamic Reconfiguration and Job Morphing 

Varuna stands out as a system designed from first principles for elastic training on commodity cloud 

infrastructure.[6] Its core innovation, "job morphing," dynamically and automatically reconfigures job 

parallelism strategies responding to available node quantity changes.[6] 

When spot instances face preemption, rigid systems fail. Varuna, however, detects resource reductions and 

triggers reconfiguration. It employs fast, micro-benchmark-driven simulators determining new optimal 

hybrid parallelism strategies—for example, potentially decreasing data parallelism degrees while 

increasing pipeline depths to best utilize remaining nodes. Jobs then seamlessly transition to new 

configurations, resuming from last checkpoints.[6] This allows uninterrupted training continuation, albeit 

potentially at different throughput rates, thus maximizing progress and minimizing wasted resources. 

However, dynamic reconfiguration faces significant engineering challenges that should not be 

underestimated. The performance overhead during reconfiguration periods can be substantial—in some 

implementations, requiring complete pipeline draining, checkpoint restoration, and rebalancing, which may 

take minutes to complete for large models. There's also the risk of training instability, as changing batch 

sizes or parallelism strategies mid-training can disrupt optimizer dynamics and potentially affect 

convergence. Early implementations showed convergence rate degradation of up to 5-10% in some 

scenarios compared to static configurations. Recent systems have improved on these issues, but they remain 

important considerations when implementing elastic training. 

4.2.3 Auto-scaling and Failure Handling in Orchestration Frameworks 
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General-purpose distributed computing frameworks like Ray provide robust elastic training 

support.[45][46] Ray's architecture inherently embraces dynamism, built around actors (stateful worker 

processes) added or removed at runtime. 

Ray Train, the framework's distributed deep learning library, leverages this foundation. Training jobs 

launch with specified worker ranges (e.g., minimums and maximums). Ray autoscalers manage underlying 

cluster resources, adding or removing nodes based on demand. If nodes fail or face preemption, Ray Train 

detects worker losses and continues training with remaining sets. When new resources become available, 

new workers launch and integrate into training jobs on-the-fly.[46][47] This provides flexible, resilient 

foundations for building elastic training applications.[48] 

 

 
Fig 1: Fault Tolerance and Elasticity in Distributed LLM Training  

 

5. Schedulers and Cluster Management 

Moving up system stacks, cluster schedulers and management layers play crucial roles in orchestrating 

large-scale LLM training jobs. These systems handle resource allocation, job placement, and policy 

enforcement across multi-tenant clusters. Tightly-coupled, communication-intensive distributed training's 

unique requirements expose general-purpose scheduler limitations and drive specialized solution 
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development. Modern AI/ML workload schedulers must solve complex, multi-objective optimization 

problems, balancing job atomicity, network topology awareness, resource efficiency, and fairness. 

5.1 Gang Scheduling for Tightly-Coupled Workloads 

Distributed training frameworks like PyTorch DDP require all worker processes to be simultaneously active 

and communicating to make progress.[47] This "all-or-nothing" requirement fundamentally conflicts with 

default container orchestrator scheduling behaviors like Kubernetes. Native Kubernetes schedulers evaluate 

and place pods individually. If a distributed jobs request N pods but clusters only have N-1 pod resources, 

default schedulers place those N-1 pods. These pods start, consume valuable resources, but remain idle, 

indefinitely awaiting the Nth pod that cannot be scheduled. This wastes resources and, in worst cases, 

creates cluster-wide deadlocks.[49][50] 

Gang scheduling addresses this by treating pod groups constituting single jobs as atomic units. Schedulers 

only commit to placing any pods if and only if sufficient resources exist for placing all pods 

simultaneously.[49] This prevents deadlocks and ensures resources avoid waste on partially-scheduled jobs. 

This functionality, absent from default Kubernetes schedulers, comes from specialized, pluggable 

schedulers designed for batch and HPC workloads. 

Several widely-used industry tools implement gang scheduling in Kubernetes environments: 

● Volcano: A CNCF incubating project that introduces PodGroup custom resources defining "gangs" 

of pods requiring co-scheduling. Volcano offers features specifically tailored for ML workloads, 

including fair-sharing, resource reservation, and queue management.[51][52] 

● Kueue: Google's lightweight batch scheduling framework for Kubernetes which supports gang 

scheduling while focusing on simplicity and integration with standard Kubernetes resources.[53] 

● YuniKorn: Apache's scheduler that provides fine-grained resource management with gang 

scheduling capabilities, often used in Hadoop/Spark environments transitioning to Kubernetes.[54] 

● KubeDL: A Kubernetes-native job scheduling framework specifically designed for deep learning 

workloads with built-in gang scheduling support.[54] 

Organizations deploying large-scale LLM training typically select one of these specialized schedulers to 

ensure efficient resource utilization and avoid the inefficiencies of partial job placement. 

5.2 Topology-Aware Placement for Communication Optimization 

For communication-intensive LLM training, pod placement locations matter as much as whether they get 

placed. Collective communication operation performance depends heavily on datacenter physical network 

topologies. Data transfers between GPUs in the same servers over NVLink run orders of magnitude faster 

than between GPUs in different racks connected through multiple network switches.[55] 

Standard schedulers remain topology-agnostic; they see flat resource pools and may scatter single job pods 

across distant racks, severely degrading communication performance and overall training throughput. 

Topology-aware scheduling addresses this by endowing schedulers with physical network hierarchy 

knowledge (nodes, racks, spines, etc.). When placing jobs, schedulers use this information to co-locate pods 

requiring frequent communication, such as those within the same tensor-parallel or data-parallel groups, 

onto physically proximate nodes.[55][56] 

To illustrate the critical importance of topology-aware placement, consider a concrete example: an 8-way 

tensor-parallel job running on 8 GPUs. When all 8 GPUs are located within the same server node connected 

via NVLink (which provides ~600 GB/s bidirectional bandwidth), the frequent All-Reduce operations 

required for tensor parallelism might take just 5-10 milliseconds. However, if the scheduler naively places 

these 8 GPUs across different server racks connected via standard datacenter networking (10-100 Gb/s), 

these same operations could take 500-1000 milliseconds—a 100x performance degradation. In a training 

run with thousands of iterations, this poor placement could extend training time from days to months, or 

make training practically infeasible. 

Google's Topology Aware Scheduling (TAS), often paired with Kueue schedulers, strategically places 

workers minimizing network hops between them, reducing contention and optimizing bandwidth 

utilization.[56][57] This intelligent placement significantly improves training times and efficiency. Some 

advanced systems even incorporate rack-level awareness, prioritizing placement within the same power 

domain to minimize vulnerability to power-related failures that might affect entire racks simultaneously. 
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5.3 Integrated Orchestration Systems 

The next cluster management frontier involves moving beyond separate scheduling and execution systems 

toward tightly integrated frameworks automating entire processes, from model compilation to parallel 

execution. 

● Pathways (Google): Pathways represents a new large-scale orchestration architecture. Built on 

asynchronous distributed dataflow models, computations appear as operator graphs consuming and 

producing futures.[59][60] Its single-controller design provides global cluster views, enabling 

efficient gang-scheduling of complex, heterogeneous parallelism patterns across thousands of 

accelerators. Pathways orchestrates computations spanning multiple TPU "pods," managing not 

just computation placement but also data transfer coordination over dedicated interconnects, 

enabling novel parallelism scheme research.[59][60] 

● Alpa (Berkeley): Alpa approaches problems from a compiler perspective. This system automates 

optimal parallelization strategy discovery for given models and clusters.[61][62] Alpa introduces 

hierarchical parallelism views, distinguishing between inter-operator parallelism (like pipelining, 

partitioning operator graphs) and intra-operator parallelism (like tensor parallelism, partitioning 

operators themselves). It combines dynamic programming and integer linear programming (ILP) 

solvers searching vast, hierarchical spaces to find optimal model partition methods and device mesh 

mappings, effectively unifying and automating complex hybrid parallelism strategy design 

tasks.[61][62] 

 

 
Fig 2:Cluster Management Strategies for LLM Training 

 

6. Challenges and Future Research Directions 
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Despite remarkable scalable and resilient LLM training progress, significant challenges persist, indicating 

fertile ground for future research. Solutions to these problems will prove critical for democratizing large-

scale training access and advancing AI frontiers sustainably and efficiently. 

6.1 Co-design of Algorithms, Systems, and Schedulers for Elasticity 

Most current systems treat machine learning algorithms as fixed workloads for execution. Resilience 

happens at system levels through checkpoint/restart mechanisms and dynamic reconfiguration, but training 

algorithms themselves remain largely unaware of changing resource landscapes. A promising future 

direction involves deep algorithm-system co-design. This might include: 

● Gradient-staleness-robust optimizers: Developing optimization algorithms specifically designed to 

handle the gradient staleness that occurs during asynchronous recovery and elastic reconfiguration. 

These could incorporate techniques like staleness-aware learning rate adjustment, where the 

optimizer automatically reduces learning rates proportionally to detected staleness levels. 

● Resource-aware adaptive batch sizing: Creating algorithms that automatically adjust batch sizes in 

response to resource changes while preserving convergence properties through careful learning rate 

scaling and gradient accumulation techniques. 

● Elastic consistency models: Developing training frameworks that can dynamically shift between 

synchronous and asynchronous training paradigms based on available resources and network 

conditions, with theoretical guarantees on convergence behavior. 

● Failure-anticipating pre-emptive checkpointing: Building predictive models that can anticipate 

failures before they occur (using system telemetry) and trigger targeted checkpoints only for 

endangered model components. 

Such approaches would shift from reactive resilience (recovering from changes) toward proactive 

adaptation (algorithmically anticipating and adjusting to changes). The key breakthrough would be training 

algorithms that treat elasticity and resource variability as first-class concerns rather than exceptional 

conditions. 

6.2 Automating the Parallelism Strategy Search Space 

Hybrid parallelism strategy design spaces grow combinatorially vast. Choosing optimal data, tensor, 

pipeline, and sequence parallelism combinations, along with corresponding parallelism degrees and device 

mesh configurations, presents daunting tasks highly dependent on both model architectures and specific 

hardware clusters. While compiler-based systems like Alpa have significantly advanced this search 

automation, developing more scalable, efficient, and generalizable search algorithms remains a critical open 

problem. 

Several promising approaches for navigating this complex search space are emerging: 

● Reinforcement Learning (RL): Using RL agents to explore the parallelism strategy space by 

learning from execution traces and performance feedback. Systems like AutoPipe are beginning to 

demonstrate how RL can efficiently discover parallelism strategies that outperform hand-tuned 

configurations, particularly for novel model architectures. 

● Performance Modeling: Developing analytical models that can predict distributed training 

performance without actually executing the full workload. These models combine theoretical 

communication and computation cost analysis with empirical measurements from small-scale 

profiling runs to rapidly evaluate thousands of potential configurations. 

● Genetic Algorithms and Evolutionary Approaches: Using population-based optimization 

techniques that "evolve" parallelism strategies through mutation and selection based on actual 

performance measurements or model predictions. 

● Transfer Learning for Configuration: Leveraging knowledge from previously optimized models to 

accelerate the search for new, similar architectures—effectively "warm starting" the optimization 

process rather than beginning from scratch. 

Future systems must quickly find near-optimal plans for novel model architectures and highly 

heterogeneous hardware environments, perhaps using machine learning-based performance models guiding 

searches.[61][62] The ultimate goal is a system that can automatically adapt its parallelization strategy as 

models evolve during development and as available hardware resources change over time. 
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6.3 Standardizing Resilience Benchmarking 

Currently, no widely accepted benchmarks or metric sets exist evaluating distributed training system 

resilience and elasticity. Papers typically report throughput on fixed GPU quantities, failing to capture 

performance in dynamic, real-world cloud environments. Standardized benchmarking suites allowing fair, 

rigorous system comparisons are needed. 

The article propose the development of a composite "Resilience Score" (RS) that would combine multiple 

metrics into a single, comparable value. This score would incorporate: 

● Recovery Point Objective (RPO): Maximum work lost upon failure, determined by checkpointing 

frequency and overhead.[37][39] (Measured in training iterations or wall-clock time) 

● Recovery Time Objective (RTO): Time required to detect failures, acquire new resources, and 

resume training.[40] (Measured in seconds or minutes) 

● Elasticity Overhead: Performance penalties or time required to reconfigure jobs when scaling up 

or down.[6][47] (Measured as a percentage of normal training throughput) 

● Performance under Jitter: Throughput degradation when subjected to simulated network latency 

and variability.[8][9] (Measured as a percentage of ideal throughput) 

● Preemption Resilience: The ability to maintain training progress under various preemption rates 

and patterns. (Measured through specialized benchmark scenarios) 

A weighted formula combining these metrics could produce a single RS value, where higher scores indicate 

more resilient systems. For example: 

RS = w₁(1/RPO) + w₂(1/RTO) + w₃(1/ElasticityOverhead) + w₄(PerformanceUnderJitter) + 

w₅(PreemptionResilience) 

Where w₁ through w₅ are weighting factors that can be adjusted based on specific deployment priorities. 

This standardized approach would allow researchers and practitioners to make informed decisions about 

which distributed training systems best meet their resilience requirements and enable meaningful 

comparisons across different implementations. 

6.4 Energy-Aware and Sustainable Training 

The environmental and economic costs of training state-of-the-art LLMs raise growing concerns. Single 

training run energy consumption can equal hundreds of households' annual usage. To date, system design 

has overwhelmingly prioritized minimizing time-to-solution. A critical future direction involves 

incorporating energy efficiency as a first-class optimization objective. This might manifest in several ways: 

● Energy-Aware Schedulers: Schedulers making placement decisions based not only on performance 

but also power consumption, potentially consolidating workloads, allowing idle node power-

down.[50][53] 

● Power-Capping-Aware Training: Systems operating efficiently under dynamic power caps, 

adjusting computation and communication, staying within given power budgets.[37][38] 

● Algorithmic Efficiency: Developing fundamentally more compute-efficient model architectures 

and training approaches: 

○ Sparse Models: Leveraging techniques like conditional computation, mixture-of-experts, 

and dynamic network pruning to activate only relevant parts of models during training and 

inference 

○ Efficient Architectures: Designing inherently more parameter-efficient architectures that 

achieve comparable quality with fewer FLOPs 

○ Sample-Efficient Training: Creating algorithms that learn from fewer examples, reducing 

the total computation needed for convergence 

○ Knowledge Distillation: Training smaller, efficient models by transferring knowledge from 

larger pre-trained models 

● Carbon-Aware Scheduling: Systems that schedule computation based on carbon intensity of 

electricity grids, prioritizing training during periods of abundant renewable energy availability. 

● Hardware-Software Co-Optimization: Designing specialized hardware accelerators in concert with 

algorithms that exploit their efficiency characteristics. 
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The focus on sustainability extends beyond just reducing power consumption—it encompasses the entire 

lifecycle of model development, from initial training through deployment and ongoing maintenance. Truly 

sustainable AI will require innovations across all these dimensions, with particular emphasis on the often-

overlooked algorithmic efficiency that can provide order-of-magnitude improvements in energy utilization. 

 

Conclusion 

The journey to train ever-larger language models has catalyzed a rapid and profound evolution in distributed 

computing. This survey has charted this evolution, moving from the initial challenge of pure computational 

scale to the more nuanced, multi-faceted problem of achieving scalable, efficient, and resilient training in 

dynamic, cloud-native environments. The article has structured this landscape into four interdependent 

pillars—parallelism, memory optimization, fault tolerance, and cluster management—demonstrating how 

innovations in each area have been driven by the limitations of the last. The overarching trend is a move 

away from static, brute-force scaling and towards intelligent, adaptive, and automated systems. The future 

of LLM training lies not in simply adding more hardware but in the co-design of algorithms and systems 

that can navigate the complex trade-offs between performance, memory, cost, and resilience. The open 

challenges identified—from automated parallelism search to standardized resilience benchmarking and 

energy-aware training—highlight that this field remains a vibrant and critical area of research. The 

continued progress in this domain will be essential for unlocking the next generation of artificial intelligence 

in a scalable, robust, and sustainable manner. 
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