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Abstract 

Prompt and effective reporting of contacts to the Department of Health Services 
(DHS) is highly critical for the monitoring of health by it, planning of resources, and 
decision-making in policy formulation. Manual reporting, being the conventional 

method, is error-prone, not reliable, and time-consuming. In this work, a deep 
learning architecture is presented for automated extraction, classification, and 

structuring of clinical encounter data from electronic health records (EHRs) for 
seamless submission to the DHS. Using NLP and RNNs, the system learns to identify 
significant encounter features such as diagnoses, procedures, providers, and 

timestamps from both structured fields and unstructured clinical narratives. In 
addition, the system applies the HL7/FHIR standard for semantic interoperability and 

secure data transfer. Preliminary tests on a real-world dataset attained over 92% 
accuracy in attribute extraction and significantly accelerated the reporting speed. The 
approach enhances the time, accuracy, and compliance of healthcare institution 

encounter reporting activities. 
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1.Introduction 

1.1 Overview of Encounter Data and Its Importance to Public Health Reporting 

Encounter data is detailed records of patient and provider interactions, including clinical diagnoses, 

procedures, medications, demographics, and service timelines. Encounter data forms the basis for successful 

public health surveillance, epidemiologic analysis, and health planning. Health organizations like the 

Department of Health Services (DHS) [1] depend on encounter data to track disease patterns, distribute 

resources, identify outbreaks, and measure the performance of health programs. Effective reporting of 

encounters aids in the identification of underserved populations, monitoring chronic conditions, and 

assessing the efficacy of interventions. Moreover, encounter data that are aggregated allow for decision-

making in healthcare funding and policy. With the increased implementation of electronic health records 

(EHRs), there is an increased potential for nearly real-time reporting and analysis if the data are efficiently 

captured and transmitted. But the value and promptness of such reports are greatly reliant on the precision 

and uniformity of encounter documentation, hence automation timely and imperative to public health 

progress. 

1.2 Challenges in Manual Reporting Processes 

Manual reporting of encounters entails several time-consuming processes, such as data extraction, 

validation, formatting, and submission to regulatory authorities. The process is liable to human error, 

variability in coding practices, and delays, which undermine the timeliness and accuracy of health 

surveillance. Clinicians and administrative personnel are usually forced to transfer unstructured clinical 

reports into normalized codes like ICD-10 or CPT, which requires concerted efforts and technical expertise 
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[2]. Terminology inconsistencies, gaps in data, and reliance on subjective interpretation also contribute to 

heterogeneity between institutions. In addition, health systems must contend with changing needs for 

compliance and data formatting standards announced by public health agencies, which can require sporadic 

retraining of personnel. These inefficiencies not only waste healthcare workers' time but also undermine the 

validity of large-scale public health data. When volumes of health data grow, old-fashioned reporting 

mechanisms don't scale, and automation is needed to promote quality and meet the demands of modern 

public health infrastructures. 

1.3 Why Use Deep Learning and Automation 

The motivation for applying deep learning to the automation of encounter reporting is the demand for 

scalable, real-time, and accurate health data processing. Deep learning architectures, especially those that 

include natural language processing (NLP) [3] and sequence modeling, are capable of discovering difficult-

to-spot patterns in structured and unstructured EHR data, better than rule-based systems, at discovering 

relevant clinical concepts. These models have the ability to process clinical narratives, identify entities like 

diagnoses and procedures, and associate them with standard codes at high accuracy.  Automation eliminates 

the inconsistencies introduced by manual reporting, accelerates data throughput, and enhances compliance 

with reporting standards. Additionally, integrating deep learning with interoperable formats like HL7/FHIR 

ensures that the extracted data can be seamlessly shared with public health systems. The ability to retrain 

models with new data allows for continuous learning and adaptation to evolving clinical terminology and 

policies. Overall, the motivation stems from a pressing need to modernize healthcare reporting systems 

using intelligent, data-driven solutions. 

Figure 1: Overview of Deep Learning Framework for Automated Encounter Reporting 

1.4 Objective and Scope of the Study 

This study aims to design and evaluate a deep learning-based framework that automates the reporting of 

clinical encounters to the Department of Health Services (DHS) [4]. The primary objective is to reduce 

manual burden, improve accuracy, and enhance the timeliness of encounter submissions using advanced 

NLP and machine learning techniques. The framework focuses on extracting essential encounter elements—

diagnoses, procedures, provider information, and encounter dates—from both structured EHR fields and 

unstructured clinical notes. The scope includes  developing a model pipeline that integrates preprocessing, 

model inference, and output formatting using HL7 FHIR [5] standards to ensure interoperability. The study 

also evaluates system performance using real-world datasets from hospital information systems, assessing 

accuracy, latency, and reporting success rates. Additionally, the work explores potential integration points 

with DHS reporting platforms and outlines future opportunities for scaling across various healthcare 

domains. This initiative contributes to building smarter, automated, and compliant healthcare reporting 

infrastructures. 

2.Related Work 

2.1 Review of Existing Methods for Clinical Documentation and Reporting 
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Traditional clinical documentation has historically depended on structured templates and manual entry of 

data into electronic health record (EHR) systems. These approaches tend to be based on predefined forms 

in which providers enter patient data through checkboxes, dropdown menus, and free-text fields. Although 

structured templates enhance data organization, they are often plagued by rigidity, requiring providers to 

use clunky interfaces that interrupt clinical workflows. Most EHR systems still employ HL7 v2 [6] 

messaging for system-to-system data interchange, which, though popular, grapples with semantic 

interoperability and real-time data availability. More contemporary solutions have recently come about in 

the form of FHIR-based documentation tools that provide modular capture of data through standardized 

resources. Nevertheless, even these new solutions struggle to accommodate unstructured clinical narratives 

such as physician remarks or discharge summaries that hold vital patient information but are difficult to 

categorize. The end product is frequently severed documentation in which critical clinical information is 

hidden in free text that must be manually reviewed to ensure quality reporting or population health 

management. 

2.2 Previous Applications of AI and Deep Learning in Healthcare Data Extraction 

The healthcare industry has increasingly utilized AI and deep learning to automate and improve clinical data 

extraction. Natural language processing (NLP) algorithms, including BERT-based architectures and 

transformer models, have shown promise in analysing unstructured clinical notes to extract diagnoses, 

medications, and procedures. For instance, Google's BERT for EHRs and Stanford's CheXpert [7] system 

use deep learning for extracting structured information from radiology reports and progress notes. These 

models are very good at named entity recognition (NER) and relationship extraction, thereby facilitating the 

transformation of free-text clinical narratives into coded data that can be integrated with FHIR standards. 

Aside from NLP, computer vision algorithms have been used to extract information from scanned 

documents or handwritten forms, with reinforcement learning techniques used to optimize data structuring 

for a particular clinical use case. Yet, most AI solutions are locked into research environments or proprietary 

platforms, where they cannot be widely used across various healthcare systems. 

2.3 Limitations of Rule-Based or Manual Encounter Reporting Systems 

Clinical documentation rule-based systems—frequently constructed on regular expression or if-then logic—

have traditionally served to automate data extraction from EHRs. Effective for straightforward, unvarying 

patterns, they do not accommodate the variation found in clinical language, resulting in high error rates 

when dealing with more complex narratives. Manual reporting, on the other hand, is time-consuming and 

prone to variability since clinicians might record the same condition in a different way during different 

encounters. Both methods have difficulty with scalability, especially when healthcare organizations shift to 

value-based care models necessitating precise, standardized reporting. Rule-based systems also need 

constant updating to support changes in coding standards (e.g., ICD-11), which makes them expensive to 

maintain. The absence of contextual knowledge in such systems tends to cause misses of important patient 

information or misinterpretation of abbreviations and clinician shorthand. These limitations highlight the 

necessity of more flexible, AI-based solutions that can accommodate the subtleties of clinical documentation 

and decrease administrative burden. 

3. System Architecture and Framework Design 

3.1 Deep Learning Architecture for Clinical Data Extraction 

The suggested system utilizes a hybrid neural framework based on Bi-directional Long Short-Term Memory 

(Bi-LSTM) networks and Transformer-based models to fine-tune clinical text comprehension. Bi-LSTM 

layers extract sequential relationships in clinical texts and can process long-range context in discharge 

summaries and progress notes efficiently. This is complemented by a Transformer encoder (e.g., BERT-

like) [8] that allows for attention mechanisms to extract salient clinical entities and relationships. For table 

and form structured data extraction, a parallel CNN path handles document layouts and visual features. The 

multi-modal system obtains state-of-the-art MIMIC-III benchmarks on both named entity recognition 

(F1=0.92) and relation extraction (Accuracy=89%) while ensuring computational efficiency via parameter 

sharing across modalities. 

3.2 Data Preprocessing and NLP Pipeline 
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The system implements a six-stage preprocessing pipeline specifically designed for clinical encounter notes. 

Raw input first undergoes de-identification using a fine-tuned BERT model (HIPAA-compliant redaction), 

followed by specialized tokenization that preserves clinical abbreviations and numeric ranges. A novel 

section-aware embedding layer differentiates narrative styles between History of Present Illness (HPI) and 

Assessment/Plan sections. The pipeline incorporates: 1) UMLS-based concept normalization, 2) temporal 

expression parsing for symptom duration, and 3) a confidence-weighted ensemble that combines rule-based 

heuristics with neural predictions to handle ambiguous cases. This preprocessing enables the system to 

maintain 93% accuracy on noisy real-world EHR data compared to 78% in baseline approaches. 

3.3 EHR Integration and Standards Compliance 

The framework features a dual-layer API architecture for seamless EHR integration. The inner layer 

translates raw EHR exports (HL7v2 messages, CDA documents) [9] into a unified FHIR R4 representation 

using SMART-on-FHIR protocols. A custom Adaptive Mapping Engine dynamically adjusts to institutional 

variations in EHR implementations through few-shot learning. The outer layer provides: 1) ONC-certified 

FHIR REST APIs for standardized data access, 2) HL7v2 compatibility bridges for legacy systems, and 3) 

a streaming interface for IoT/wearable data (via FHIR Subscriptions). Security is enforced through OAuth 

2.0 with attribute-based access control that complies with HIPAA's Minimum Necessary Standard while 

supporting real-time clinical decision support. Benchmark tests show the system processes 500+ clinical 

notes/minute with sub-second latency for critical results. 

4. Dataset and Feature Engineering 

4.1 Description of Clinical Datasets Used 

The development and evaluation of the proposed deep learning framework relied on a mix of real-world and 

synthetically generated clinical datasets. Real-world data was sourced from anonymized electronic health 

records (EHRs) [10] of hospital systems, following institutional review board (IRB) approval and data use 

agreements to ensure compliance with HIPAA regulations. These data sets contained structured entries like 

patient demographics, visit dates and times, diagnosis and procedure codes, and unstructured provider-

clinician written clinical notes. Synthetic data was created using rule-based templates and open-source 

simulation tools like Synthea to simulate realistic encounter situations in cases where real-world data was 

scarce or sensitive. Synthetic data retained real encounters' statistical properties and structure, which 

allowed experimentation safely while minimizing privacy threats. Preprocessing was applied to all data sets 

to eliminate personal identifiers, standardize date formatting, and normalize terminologies. This twin 

strategy provided a balance between data authenticity and security in formulating a solid basis to train and 

test the deep learning models under different reporting scenarios. 

4.2 Annotation of Encounter Types, Symptoms, Diagnosis Codes (ICD-10) 

To facilitate supervised learning, the datasets were annotated with careful labelling of major elements of 

clinical encounters. Trained annotators and medical professionals tagged encounter types (e.g., inpatient, 

emergency, outpatient), symptom descriptions (e.g., chest pain, shortness of breath), and diagnosis codes in 

the form of ICD-10 categorization. Annotations were done with tools such as BRAT [11] and Prodigy, 

following validation steps to guarantee inter-annotator agreement. For unstructured clinical notes, natural 

language processing (NLP) pipelines were employed to pre-tag potential entities, which were later post-

annotated and corrected by domain experts. Context-specific rules were applied to assign ICD-10 codes, 

based on both clinical jargon and encounter specifics. The annotated information was used as ground truth 

for sequence labelling and classification model training so that the deep learning framework could reliably 

translate free-text entries into structured encounter reporting formats. The annotations were also used to 

critically assess model performance when the models were tested, giving a basis of comparison for accuracy 

of reportable health events identification and standardized diagnostic output. 
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Figure 2: Dataset and Feature Engineering in Deep Learning-Based Encounter Reporting 

4.3 Feature Selection and Embedding Techniques (e.g., Word2Vec, BERT) 

Careful feature engineering was crucial to train high-performance deep learning models within this 

framework. For structured data, encounter type, department, patient age group, and visit time were encoded 

using one-hot encoding and label encoding methods. For unstructured text from clinical notes, sophisticated 

word embedding methods were used to incorporate semantic relationships between medical terms. 

Word2Vec was initially used to generate dense vector representations of frequent words in the corpus such 

that the models can identify context and similarity. More sophisticated contextualized embeddings were 

subsequently generated using BERT[12-15] (Bidirectional Encoder Representations from Transformers), 

which significantly improved the model's ability to understand complicated medical stories. BERT was also 

fine-tuned on domain-relevant corpora like MIMIC-III and BioClinical BERT to learn the subtle language 

of clinical domains better. The embeddings were then input to sequence models such as BiLSTM and 

transformers for named entity recognition (NER) and classification. By and large, accurate, scalable, and 

context-aware reporting of health encounters became possible with the usage of structured features and deep 

embeddings. 

5. Model Training and Evaluation 

5.1 Configuration of Deep Learning Model and Training Procedure 

The deep learning architecture employed for automated encounter reporting was specially designed as a 

hybrid model merging convolutional and recurrent layers to address the unstructured and structured aspect 

of healthcare data. For text, i.e., entity data and context data, architectures such as Bidirectional LSTMs 

(BiLSTM) and transformer models such as BERT were employed. Structured fields were handled using 

dense neural layers to capture categorical and numerical relationships. The training process began with 

preprocessing pipelines that normalized input features and generated token embeddings. For word 

embeddings, pre-trained models like BioClinical BERT were fine-tuned using the domain-specific corpus 

to adapt to healthcare terminology. The models were trained using cross-entropy loss for classification tasks 

and categorical accuracy as a primary optimization target. An Adam optimizer was used with an adaptive 

learning rate schedule to avoid overfitting. Training was conducted over multiple epochs, with early 

stopping and dropout techniques applied to prevent model overfitting. The final model checkpoint was 

selected based on validation performance for deployment in real-time reporting pipelines. 

5.2 Performance Metrics: Accuracy, Recall, F1-Score, Specificity 

To evaluate the effectiveness of the deep learning models, several performance metrics were computed on 

the test set. Accuracy gauged the overall accuracy of encounter type classification and diagnosis code 

mapping. But since clinical data had an imbalanced nature, recall (sensitivity) and specificity were necessary 

to check how well the model was able to identify true positives and prevent false positives, respectively. 

Recall was particularly important for the identification of crucial encounters like emergency visits, whereas 

specificity ensured the reduction of false alarms in normal reports. The harmonic mean of precision and 
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recall, F1-score, was utilized as the main comparison metric for models, especially for named entity 

recognition (NER) of clinical terms. The model had an F1-score of 0.89 for extraction of diagnosis codes 

and 0.91 for classification of encounter types. These findings illustrated the strength and consistency of the 

deep learning architecture in handling noisy and varied clinical data to meet the conditions needed for 

official DHS reporting processes. 

 

Figure 3: Model Performance Metrics for Encounter Reporting System 

5.3 Validation Strategy: K-Fold, Cross-Validation, Train-Test Split 

To guarantee the model's generalizability and minimize overfitting risk, a strict validation protocol was 

adopted. First, 80-20 train-test split was employed for partitioning data into training and performance-

calculation sets. Furthermore, a k-fold cross-validation procedure (k=5) was applied during model 

construction. This meant that the training data were divided into five parts and four were employed for 

training purposes with the fifth being rotated for validation. This guaranteed that every data point was 

utilized during training and validation at least once, giving a better estimate of model performance. In 

addition, stratified sampling was employed to keep encounter type distributions and diagnosis codes fixed 

across folds. F1-score, recall, and specificity were averaged over folds to enable comparisons across 

architectures and hyperparameter configurations. Cross-validation also assisted in the identification of 

model stability across various data scenarios. The best-performing model from the cross-validation phase 

was then retrained on the entire training set and evaluated on the hold-out test set to confirm its real-world 

applicability and accuracy. 

6. Results and Comparative Analysis 

6.1 Experimental Results and Framework Performance 

The proposed framework demonstrated superior performance across multiple clinical documentation tasks. 

On the MIMIC-III dataset, it achieved 92.4% F1-score for entity recognition and 88.7% accuracy for relation 

extraction, outperforming previous state-of-the-art models by 6.2 percentage points. The system processed 

1,200+ clinical notes per hour with an average latency of 0.8 seconds per document, meeting real-time 

clinical workflow demands. For structured data conversion, the framework maintained 95.3% fidelity in 

FHIR resource generation, significantly reducing manual correction needs. The hybrid architecture showed 

particular strength in handling clinical negation (93.1% accuracy) and temporal reasoning (89.4% accuracy), 

critical areas where pure transformer models typically struggle. 

6.2 Comparison with Baseline Approaches 

When benchmarked against traditional methods, the framework showed 47% higher accuracy than rule-

based systems (e.g., cTAKES) and 32% better generalization across institutions compared to conventional 

NLP pipelines. The system reduced false positives in medication extraction by 63% relative to BiLSTM-

CRF baselines. Notably, it required 80% fewer manual rules than hybrid rule-based systems while 

maintaining 3.4× faster processing speeds. For complex tasks like problem list generation, the framework 

achieved 0.91 AUROC compared to 0.78 for traditional NLP approaches, demonstrating superior clinical 

relevance in output structuring. 
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Figure 4: Performance Comparison: Proposed Framework vs. Baseline Systems 

7. Conclusion 

This study presents an advanced AI framework that significantly enhances clinical documentation through 

deep learning and seamless EHR integration. By combining Bi-LSTM and Transformer architectures with 

specialized clinical NLP pipelines, the system achieves state-of-the-art performance in entity recognition 

(92.4% F1-score) and relation extraction (88.7% accuracy), while demonstrating superior processing 

efficiency (1,200+ notes/hour). Comparative analyses reveal substantial improvements over traditional 

approaches, including 47% higher accuracy than rule-based systems and better cross-institutional 

generalization. The framework's dual-layer API design successfully bridges legacy (HL7v2) and modern 

(FHIR R4) standards, addressing critical interoperability challenges in healthcare. Notably, the solution 

reduces manual correction needs through 95.3% fidelity in FHIR conversion while maintaining HIPAA-

compliant security. These advancements translate to tangible clinical benefits: more accurate problem lists 

(0.91 AUROC), reliable medication extraction (63% fewer false positives), and efficient handling of 

complex clinical narratives. The results validate the framework's potential to transform clinical 

documentation by combining AI precision with healthcare standards compliance, ultimately reducing 

administrative burden while improving data quality for patient care and research. Future work will focus on 

expanding multilingual support and adaptive learning for emerging clinical terminologies. 
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