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Abstract 

Advancements in chip architecture and process technology have resulted in continued shrinkage 
of chip areas while integrating more and more functionality. Moreover, these chips are 
increasingly operating at higher performance and speed levels, often approaching thermal, 
power and reliability limits. This technical trend calls for new methodologies in the design 
verification of chips, especially in Exhaustive Detection of non-robust chips, since the costs of 
not detecting these chips early in their design life are becoming prohibitively expensive. This 
paper describes a systematic design methodology and new software tools that enable efficient 
use of predictive modelling and predictive analytics within the design cycle during 
implementation, compilation and verification. The predictive modelling relies on a combination 
of procedural and neural network based analytical models to estimate performance metrics 
early in the design cycle, preferably during synthesis. Then these predictive models are 
dynamically modified and further optimized during design compilation and data placement 
verification using a combination of predictive analytics and automated design convergence 
techniques to ensure chip quality-of-results. 

In order to address the issue of Exhaustive Detection of thermal, power and thus reliability non-
robust chips, we propose the design methodology and tools for verification that are crucial to 
the success of new Robust Design concepts, such as Adaptive Speed and Adaptive Voltage 
designs which are known to alleviate thermal and power non-robustness during normal chip 
operation. This paper illustrates the methodology with both analog and digital examples and 
discusses its implementation in a number of tools and systems. 

Key Words : Enhancing chip performance, predictive analytics, automated design verification, 
semiconductor optimization, machine learning, performance tuning, hardware acceleration, 
real-time monitoring, error detection, design automation, verification tools, fault prediction, 
reliability analysis, design efficiency, AI-driven testing, chip architecture, power optimization, 
latency reduction, data-driven modeling, yield improvement, system-on-chip (SoC), 
computational efficiency, fabrication accuracy, intelligent diagnostics, performance metrics, 
predictive modeling.

1. Introduction

With the increasing use of telemetry in modern System-on-Chip designs, many chips have ramped 

into production with custom logging/monitoring components. Test points have recently been 

added during the test phase in existing designs to track potential chip performance degeneration 

modes caused by various usage and environmental conditions. These test points are becoming 

more powerful diagnostic tools every day with the help of increasingly sophisticated onboard 

software and high-speed internal buses, enabling many chips to upload log data in real-time to the 

cloud whenever there is a performance anomaly. This availability of such large and abnormal-
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event-focused log data provides us unique opportunities to enhance chip performance and build 

better chips. We provide an overview of how predictive analytics based on chip telemetry data can 

be harnessed to enhance SoC performance. These analytics models are used to perform real-time 

as well as post-silicon predictive analytics and are also used for closed-loop chip design 

verification during production test phases, thereby improving overall SoC performance. 

In the first part of this essay, we review the ability of chip telemetry data to predict in-chip 

performance issues such as high CPU frequency, low CPU frequency, high GPU frequency, high 

memory controller queue, etc. Additionally, we also explore the potential of chip telemetry data to 

predict the following chip performance-related metrics: dram_data_pass_fail_frac, 

dram_timing_pass_fail_frac, dram_timing_strict_pass_fail_frac, dhe, dhe_pass_fail_frac, 

dhe_times, dhe_ue_size_fail_frac, dmc_timing_fail_frac, ecc_dynamic_word_errors, 

ecc_dmd_data_fail_frac, ecc_dram_data_fail_frac, esc_pass_fail_frac, esc_pass_fail_frac, and 

mc_injected_ded_error. In the second part, we explore the potential of automated design 

verification closure using predictively modeled telemetry data during production test phases to 

identify the corner cases to trigger additional test points in the design after initial test closure for 

enhancing the final SoC performance related to all the metrics above. 

2. Overview of Chip Performance Metrics 

Several chip performance metrics can be classified in three major categories: speed metrics, 

reliability metrics, and practical performance metrics. Among the speed metrics, delay is a key 

metric. Delay measures how long the chip takes to process an input. It determines the chip's 

maximum working frequency, the biggest integer that divides the number of times the delay can 

fit in 1 s. Chip designers work hard to decrease chip delay, increasing its maximum frequency. 

Chip speed delay becomes even more important when considering its effect on the frequency of 

the system in which the chip will be embedded. The system frequency is usually limited by the 

slowest of the system's components. If the chip conditions the system frequency, and the frequency 

is large, the number of operations performed by the system and therefore its performance will be 

high. The delay must be considered in light of the path delay distribution of the chip, which is 

expressed by a mathematical formula that relates the number of paths of each possible group delay 

to the total number of paths. 

 

Fig 1 : Performance Testing Types & Metrics  
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Another design objective is chip reliability. Reliability metrics establish how long the chip will 

operate without errors. The time between errors, and more generally the time to the first error and 

time to a certain number of errors, are popular reliability metrics. The time between errors of chips 

is often represented by a statistical distribution modeled by a specific law. Usually, reliability is 

not a major consideration for semiconductor manufacturers, as they have developed procedures to 

build chips which last years. Nevertheless, chips have a low long-term reliability up to a certain 

age, called the burn-in age; during this time, reliability increases. Burn-in is a procedure in which 

chips that are likely to have low reliability are stressed for some time at temperatures above normal, 

in order to eliminate them. 

3. Predictive Analytics in Chip Design 

Chips designed today are extremely complicated products that interact with each other and with 

other functions in the system. Within the chip, the original architecture usually undergoes major 

revisions before it is mapped to an actual physical layout. The actual layout of metal layers 

implementing the original components is modified through several processing steps, including 

optical proxying, etching, ion implantations, and test point addition. The finished chip may be 

manufactured using technologies like double or quadruple patterning, imprint lithography, or 

electron beam lithography. It is then interconnected to the package and substrate using solder bump 

flip-chip, wire bonding, or through-silicon vias. An integrated circuit consists of thousands of 

primitive components, which, in turn, can be modeled as nonlinear coupled dynamic systems. 

Interconnection wires are the dominant performance bottlenecks in mega-chip designs, since the 

delay on wires scales with their length rather than their width. There are multiple options and trade-

offs for the key building blocks in each chip module, and in the design integration, depending on 

the chip architecture at a specific stage in its conversion to an actual physical layout. Many of the 

wires in a mega-chip radiate electromagnetic fields that can couple to wires in nearby chips of the 

package and substrate, as well as to wires in other modules in the same chip. 

We first present the data collection methods used in the chip design process. These techniques are 

used to gather both chip-level and module-level design data, in a layout-dependent manner. This 

section starts by providing an overview of the predictive analytics applications used in chip design. 

This overview is then followed with a description of the data collection techniques, the statistical 

modeling approaches, and the machine learning foundations and applications. Predictive analytics 

has extensive applications in chip design. First, predictive analyses can lower the run-times of 

various chip tools, since predictive models can be built for most chip modules and design flows 

using both synthetic and real data, so that the time-consuming statistical simulations for those tools 

can be avoided. 

3.1. Data Collection Techniques    

Chip design has advanced through numerous stages since its inception; the process has grown in 

scale and complexity, heading towards an era of specialized chips. Chip performance is an 

important criterion that must be assessed while performing different stages in chip design, to verify 

that the design is on track with performance requirements. Predictive analytics techniques can 

exploit existing data to predict chip performance, allowing designers to focus heuristic methods 

on the designs that need it and catch problems earlier in the design flow when they are easier and 
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cheaper to fix. We describe here the initial, but critical, step in the predictive analytics process that 

allows building a model to predict outcomes of interest for new designs. Our primary interest is in 

the collection of data that allows answering key performance questions within the overall chip 

design space that designers are interested in. 

Once questions of interest are identified, data must be collected from chips designed to answer 

those questions. In principle, the most straightforward chip metric permits straightforward data 

collection. For example, to begin to establish a performance model for chip area, layout data must 

be collected from chips with area-driven layouts implemented with the same standard cell library 

and process technology. For each chip in the dataset, area may be directly measured at tapeout. To 

answer performance questions for timing, typically more work is needed. Notes or design rule 

documentation must compile the timing-critical paths throughout the design to identify which 

timing paths in the timing library are important for the chips in the dataset. Examination of timing 

report files can then identify clock definitions and timing path delays (and clock data if necessary). 

The files from the static timing analysis tools issued during RTL synthesis may contain the data. 

For complex physical effects in embedded memories or interior clocks, test chips specifically 

designed to address the effect of interest may contain the issue. 

 

Fig : Graphical Representation Of Performance Metrics 

3.2. Statistical Modeling Approaches    

The use of statistical techniques is a well-understood and widely used approach to solve design 

verification problems in chip design and is referred to here as Data Driven Design Verification. 

The goal of DDDV is to construct the desired performance model based on information conveyed 

in the given samples. This model can then be used for data inference and prediction. We have 

selected three of the popular and well-studied statistical techniques that are also widely used in 

applied settings: Polynomial Regression, Gaussian Process Regression, and Multilevel Asymptotic 

Evaluation. Each of these methods has its own basic philosophy and modeling pros and cons. 

Polynomial Regression is widely used due to its feedback and model-selection support, however 

it supports only a limited set of metrics and cannot provide accuracies for networks larger than 

those calibrated with DDDV. Gaussian Process Regression provides accurate performance 

estimates, however, it is limited to smaller networks or small sample sizes because of its 

computational overhead. Multilevel Asymptotic Evaluation is asymptotic in nature and is suitable 

for very large networks but has large input range requirements. Lastly, while these methods can 

be used to predict performance metrics like yield or delay, they cannot be used to predict the 
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variations in the performance induced by process variations, which are important for the purpose 

of accurate DfT placement. 

3.3. Machine Learning Applications    

More sophisticated methods for predictive analytics include the application of machine learning 

techniques and combining them with electrical engineering and physics-based constraints. The list 

of applications is very long and combines tasks in many areas. These include early-stage 

floorplanning evaluation, area prediction, wire length prediction, routing, timing analysis, physical 

verification. The framework performs a range of exploratory, predictive, and prescriptive analyses, 

aiming to improve design decisions. The tool aims to achieve better-quality designs at lower cost 

and timescale through an easy-to-use, consolidated ML tool. 

Some of the knowledge embedded in these ML tools is based on what knowledge-based systems 

were applying in the past. The listing indicated a huge interest in software adopting ML-based 

accelerator chips, probably due to the sheer business value of these domains. However, there are 

also encumbrances with all the related activities such as: Design Rule Checking, Electrical Rule 

Checking, Optical Control, Photo-Mask, Lithographic Tuning, Deep Process Analysis, Chip 

Repair, Fast Fourier Transform, Guardband, Guardband Management. 

Time based information has often been neglected for various reasons. This is surprising because 

timing performance is a key driver of large billion dollar systems, for instance for handheld 

devices. However, the effort required to generate high-accuracy timing models is often 

underestimated; this is one of the reasons cited for the small number of timing based work. In order 

to more accurately estimate cell timing parameters, the models could also be combined with 

additional or more advanced methods such as machine learning capabilities. Another possibility is 

Knowledge-Centric Design. 

4. Automated Design Verification Techniques 

Verify that the parameterized IP is free from logic, unintentional functionality mismatch with 

respect to the specification, and is equivalent to the most specification. The most common types 

of bugs are logic bugs, which are unintentional logical function mismatch, and how those bugs are 

dealt with. Automated Design Validation (ADV) is the procedure used for comparing one’s design 

with that of another design. ADV is implemented as either Design Verification (DV) or Design 

Design Verification (DDV). One way of doing DV is through formal verification; an alternative is 

simulation-based verification. The advantage of the first method is that it uses less resources and 

the disadvantage is its inability to capture all bugs. The other method suffers from major resource 

overhead, but also ensures a higher level of correctness. 
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Fig 2 : Design verification & design validation for medical device developers 

In this chapter, we will briefly present a collection of the most common verification techniques. 

Note that in the past, some approaches have been called different names. However, we will try to 

stick with commonly accepted terminology to help readers who wish to expand their knowledge 

on the subject. The automated design validation is the procedure used for comparing one design 

with another. Automated design validation is implemented either as design verification (DV) or 

design design verification (DDV). Design verification is the comparison between a design and a 

specification. Design design verification is the procedure for comparing a design to a refined 

version of an existing design. 

A design often operates in collaboration with its surrounding environment. Modeling the full 

environment is generally unfeasible and thus simulation must observe a design operating in a 

specific environment. Depending on the phase of the design flow and the still-open tolerable error 

types, one can choose another type of simulation; gate, behavioral, cycle accurate, or register 

transfer level. 

4.1. Formal Verification Methods    

The exploding popularity of deep learning and hardware accelerators has increased demand for 

building ASICs and custom chips to accelerate the training and inference of various different 

neural networks for a wide range of applications. The design and production of these chips is very 

difficult. Just building a complex chip can take more than a billion dollars and two or more years 

of time. If there is a bug in the chip, the company designing it has to restart the tape-out process 

and fabricate another chip, which can take several months and several hundred million dollars. 

Formal verification methods are a collection of techniques that help design engineers verify the 

correctness of the chips before sending them out for fabrication. These techniques are well-

established and have been used in production for around 30 years now. 

Formal verification techniques attempt to prove that the RTL model satisfies the properties defined 

using temporal logic or equivalent. Formal verification algorithms represent the state space of the 

design and the properties space in a solvable format such as binary decision diagrams or any other 

network that helps reduce the storage overhead. They then encounter computational difficulty 

when the size of designs and the number of properties becomes very large. This phenomenon is 
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known as state space explosion, and this results in a majority of verification jobs on real-world 

designs requiring the use of simulation verification. However, recently proposed symbolic 

techniques have pushed the state space boundaries, and many properties for large designs can be 

verified using these techniques. Additionally, highly optimized commercial tools can now easily 

validate the properties of designs with a few hundred thousand gates and a few properties. 

4.2. Simulation-Based Verification    

One simulation-based verification approach comprises stimulus generation that generates random 

input values that are exercised on the design under consideration to test for its functionality. These 

values can be in the form of separate test cases or full-fledged tests forming stimulus generation 

test benches for thorough verification coverage. Unfortunately, it is difficult to create stimulus that 

are exhaustive enough to guarantee all potential corner cases are tested. This gap in verification 

coverage can lead to subtle bugs lingering in the chip that are triggered by corner edge-case 

conditions if the design is not properly initialized. Yet, with the recent advances in generative 

modeling with neural networks, it may be possible to use Generative Pre-Trained Transformers to 

automate the chip validation process. By using an Encoder Decoder Architecture or Transformer-

like Generative Pre-Trained Transformers, validation could be accelerated to potentially match the 

speed of the actual design running on a Field Programmable Gate Array. Generative Pre-Trained 

Transformers pre-trained on the Electronic Design Automation flow could quickly generate 

negative test cases, positive test cases, and expert validation stimuli using few-shot learning of 

only a couple expert-generated tests. Test designers could also bridge the accuracy gap of semi-

supervised Generative Adversarial Transformers by refining results with a few experiments. 

A second simulation-based approach to verifying functional accuracy employs simulation, but 

with the original design and a reference model of that design. Such simulation-based methods are 

typically faster than formal verification methods, as they rely on the user-knows-what-to-check 

assumption. This assumption hints that given an application, such as a video decoder, the 

appropriate inputs may be easily generated in a sort of black-box simulation approach. Because 

the DNNs simulated with different weights and checksums have very distinguishable similarities 

when tested with the same input, one can apply this knowledge to verify generally large DNN 

chips efficiently. 

4.3. Model Checking Approaches    

Model checking approaches are widely used in formal verification of various design artifacts either 

through direct model checking or for hardware design verification and checking of properties such 

as deadlock-freeness, liveness, and data preservation. Utilities aid in the design verification step 

by enabling automatic detection of various detected states through the process of model checking. 

Executing these checks is a cumbersome task that rests on the shoulders of the chip designer often 

leading to serious issues evaded performance tuning. These utilities then spit out the 

counterexamples highlighting the problems in the design leading to their debugging by the 

designer. 

Though techniques allow automated verification across a range of computer-aided design tools, 

they do not offer a reliable check for the underlying design's behavior hence requiring the model 
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checker to traverse all occurrences of the behavior outlined in the model checking specification. 

For the traditional model checking to be effective, it is essential that the different attributes of the 

designer, namely the states and transitions, are defined accurately to adhere strictly to the step of 

the procedure allowing the synthesis of circuits to pinpoint bugs. Additionally, the process requires 

long processing time especially for large designs due to the requirement to keep track of state-

space and transition for the entirety of the design which is one of the striking shortcomings that 

Verilog HDL and dimensional logic miss. Though efforts are constantly devised to speed up the 

process such as dynamic bit-state hashing and partial order reduction, it still defeats the purpose 

of the designer to have an automated technique to point out bugs. 

5. Integration of Predictive Analytics with Design Verification 

With the growing complexity of chips, it is becoming increasingly difficult to achieve closure on 

the exhaustive verification of chips. Solution: perform verification guided by a predictive engine 

which can point the verification team toward scenarios of high impact. This co-simulation of 

verification with predictive analytics yields the best of both worlds. There is a fine balance: too 

little data for the predictive engine to learn from, and it cannot predict; too much data and it suffers 

from idle time, not being effectively utilized. 

 

Fig 3 : Predictive Analytics steps 

This section describes our journey in getting predictive analytics to work in a verification co-

simulation and models the data and framework necessary for accomplishing this task. We also 

highlight some case studies where this co-simulation has yielded good results, both in terms of 

time saved and fewer numbers of bugs escaping the first silicon. Hence, we demonstrate that 

predictive analytics improves both time-to-market as well as time-to-hire by having pre-verified 

chips available for DFT and DFD by only verifying the scenarios identified by the predictive 

engine. Another goal of the predictive analytics is to identify difficult scenarios early (or at least 

enable the verification engineer to prioritize his investigation) so that the engineer is not put in a 

position of fire-fighting hard-to-debug scenarios. 
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5.1. Framework for Integration    

By converting it into an execution flow, we introduce a framework for a possible integration of 

various predictive analytic techniques into the design verification domain. This flow should 

review: the execution phase of the design verification tasks; the information available at each 

execution phase; the input data and need at the different design phases; how the predictive analytic 

technique is trained to produce output; how the parametric output should be used; and evaluate the 

usefulness of the technique in a practical application space. The design verification task consists 

operatively of running a sequence of checks or tests on the design to identify those that correlate 

with a metric of interest. The two most common input data types for the performed checks are 

functional traces and anomalous information. The test checkers functionally analyze the traces and 

examine various design elements or identify some anomalous behavior. Depending on the design 

phase, some inputs may or may not exist. The result data are the paths selected by the test checks 

that end up generating the detailed and executed test worklists for the design check-in and sign-

off. 

 

Eqn 1 : Integration Framework Equation

 

We utilize and restore previously generated traces specifying the checks executed on the design in 

order to add behavioral and relations information of the exe UC at the part of interest. The 

predictive output can either be a mere indication of the hits list of identified UC input criteria or 

statistical predictive knowledge derived from the hit information analysis of various choice 

metrics. The derived knowledge can provide insight on what path modification(s) can help 

improve the UC detection coverage and hence result in a better test lab UC worklist, particularly 

relative to the unique UC hits lists. 

 

5.2. Case Studies and Applications 

Proving that ideas work is essential for technology adoption. We present several case studies that 

demonstrate our approaches and tools. The case studies involve real-world integrated circuits and 

designs that are in process technology nodes of 15nm and below. The first case shows how we 

improved a critical path delay and reduced product die area in a flash memory design by predicting 

and correcting the circuit during physical design. The second case shows how predictive circuit 

analyses can break logic design deadlocks in a company by correcting the original faulty 

assumptions. The third case shows how fault injection in circuit blocks enables design for test and 

prediction of reliability metrics acceleration in graphics processing units. The fourth case shows 

how integrating physical and functional verification can dramatically reduce design verification 
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turnaround time and cost in an application-specific integrated circuit. The fifth case shows how 

process variance prediction improves 3D stacking yield in HBM packages. Lastly, we present two 

applications of predictive power analysis: power smoothing for analog-digital converters, and 

thermal safety operating area prediction for a multistage amplifier chip. Through these examples, 

we demonstrate how predictive analytics can help improve the performance of integrated circuits. 

Our main motive in presenting the above examples is to showcase the feasibility of integrating 

predictive analytics in the EDA design cycle. The potential benefits of predictive analytics for all 

other circuit subsystems in the design cycle flow are numerous. The primary benefit is de-risking 

the workflow. Predictive analytics can determine if fundamental assumptions about a circuit have 

gone wrong and what is the general effect. As such, design errors based on faulty assumptions can 

be caught before extensive engineering resources get expended. This would help shrink the random 

yield substantially, eliminate corner case failures in chips, and thus enable rapid and safe 

deployment of newer and higher problems solutions in production. 

6. Challenges in Implementing Predictive Analytics 

The increasing significance of achieving different objectives during the different stages of chip 

design while taking into account the constraints on Total Cost of Ownership and Time-To-Market 

has led to the need for implementing predictive analytics in chip design processes. However, there 

are many challenges that we must confront towards achieving that goal. Different engineering 

teams working on different stages of the chip design cycle use tools that generate huge amounts 

of data. These data are usually made up of heterogeneous data types and are of varying quality in 

terms of their relevance, accuracy, etc. Engineers have to apply their skills and domain knowledge 

to examine the data and find hidden insights that can help them build better and improved designs. 

This type of exploratory data analysis is often not only time-consuming but also limited by the 

experience of the engineers responsible for the analysis. Moreover, the predicted insights are not 

as trusted since domain experts have to interpret the results based on their own experience and 

knowledge. These limitations have triggered the need for mineable data solutions capable of 

screening, drilling, and filtering the data in ways that reveal significant outliers for further 

exploration and data visualization. 

The need for various design teams to collaborate efficiently in the design flow is a big factor 

limiting the scalability of any proposed predictive analytics solution. Multiple teams must work 

together to define their requirements and confirm the definition of the required analytic models, 

and a subset of those models will have to be run over and over for every design cycle. This 

increases the chances of complexity errors in each stage of the design flow, which would require 

redesign and recycling of all lower levels. It is crucial that the development of the predictive 

method and the aforementioned complex design flow be conducted in a closely collaborative and 

iterative process between the various design teams and the predictive analytic solution developers. 
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Fig 4 : Challenges & Requirements for Building a Predictive Analysis Model 

6.1. Data Quality and Availability   

Predictive analytics can only succeed if sufficient quantities of suitably qualified and structured 

data are available. In chip design, this is a challenge across the spectrum from data acquisition to 

data assessment and delivery. Before looking specifically at the issues around chip design for 

sufficient chip availability and performance data, we start with some general considerations that 

are important for any predictive analytics endeavor. The wider field across which predictive 

analytics operates issues challenges that affect chip design especially at the center of the chip 

design project: chip resources and chip quality metrics and their sensitivities to a variety of 

conditions. The growth of a wider range of chip capabilities, targets and conditions, across edge 

to core to cloud application spreads a wider availability of matching steady-state performance, 

reliability and sensitivity data. We find that the chip performance, quality and reliability data space 

across foundries, chip developers at extreme variations in conditions, advanced processes and 

technology is very sparsely populated. Specific availability challenges arise from the volume unit 

costs of extreme condition chips, the commercially-sensitive nature of chip failure and reliability 

data, the nature of advanced chips as comprising a smaller number of patterns and lower 

complexity dies. Further, for powerful effect research, hyperparameter tuning and optimization 

across the input parameters is needed for better prediction supported by matching data. 

6.2. Scalability Issues     

Large design data for recent chip design projects are at least an order of magnitude larger than 

earlier designs with tens of thousands or hundred thousands of physical layers in routing or cell 

layouts. For statistical analysis to be meaningful, analytical methods may require large sample 

sizes and predictions for individual chips may not be relevant unless the variation of different chips 

is small relative to the parameter variation within-chip. As a minimum requirement, statistical 

prediction methods are expected to capture the relationships between design and performance or 

yield “well” — we cannot ask for repeatability if there isn’t enough high-quality data — and so, 

generally, will forget the relationships if chips from a population are reduced significantly reducing 

the effective sample size. Unfortunately, attempts to create classified patterns among different 
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chips such as classifying chips as Good, Meh, and Bad, or using labels for keywords or factors 

don’t always yield results. Moreover for areas such as circuit reliability affected by subtle detail 

changes, it is a challenge to collect enough data that can reflect the prediction accuracy required 

by the designers. 

These data are often high dimensional and processing them for design prediction or design 

modification such as DFM correcting difficult, for example, reducing the design time for DFM-

guided design repair is NP-hard, or for knowing which physical layer changes can improve the 

prediction most quickly isn’t obvious especially due to the complicated relationships among 

copious structural factors. Even for the simplest case of a small number of design variables or 

control measures, extensive additional computations may be required to reduce or visualize the 

parameter channels when they have been determined by the interactive Design-Performance 

Model Projection method or the modified Principal or Independent Component Analysis methods. 

At the other extreme, for coarse channels with large quantization, it may not make sense to do such 

expensive additional computations. 

6.3. Interdisciplinary Collaboration    

The heterogeneous nature of electronic design automation tools and simulated datasets, and the 

unique concerns of each of the involved groups, necessitate close collaboration between several 

disciplines to make predictive analytics for design automation work in practice. For example, 

custom-design methodologies need to be augmented and tuned to either accommodate predictive 

analysis seamlessly or build and maintain high-performance predictive analysis augmented tools. 

This tight feedback loop requires insight from digital designers and chip architects to build better 

custom design flows, increased breadth of prediction techniques and faster prediction algorithms 

by the statistical analysis or failure prediction community, cost-effective, easily deployable and 

run progress reporting tools from the machine learning and big data management disciplines for 

delivery to designers and chip leads. Another greater need is for better prediction of failure tools 

capable of working with both simulated and real-world data and capture pre-post response of chips 

and process variations. Finally, ideally, predictive metrics should transfer over both domains and 

incorporate cost models of design works. 

A balanced blend of predictive tools and techniques from machine learning, data management, 

process parting community, feedback forwarding/modification from layout-checking and design 

groups, and collaboration and insights from sheet-metal design and aerospace disciplines should 

enrich the recursive loop. This combination of expertise should ultimately lead to predictive design 

automation tools that accurately estimate front-end design concepts and profitability, accounting 

for hidden implications from the implementation of those concepts and form factors. It should also 

speed up the back-end implementation workflow for concepts that predictively will be “in the 

money.” By speeding overall design to market and introducing higher reliability Silicon, the 

ultimate goal of predictive design is to introduce more “money” into chip design for principle and 

indeed society concerned on designing chips selflessly for hunger, health, education, etc. 
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7. Future Trends in Chip Design 

Emerging fields like augmentative and virtual reality, neuromorphic and photonic computing, 

DNA and quantum computing, and ubiquitous sensing, surveillance, and networking push the 

boundaries of what could be the future of chip design. Several factors contribute to the rapidly 

rising complexity of designing chips: Hierarchically stacked heterogeneous multi-chip packages, 

with each chip in the package performing different tasks, for example, photonic chips for 

communications, memory chips with hybrid bonding connecting silicon chips with chips based on 

other technologies, chips leveraging 3D NAND clouds, chips with exotic materials like graphene 

and superconductors, along with several others. With the feature size of chips quickly shrinking 

towards quantum sizes, design techniques at the edge of current capabilities would only induce 

longer turn-around times with unpredictable tape-out success rates. To this end, it's important for 

the chip ecosystem to analyze predictive data arising from design and manufacturing flows to make 

practical design decisions in tracing the fabric of hierarchy-dependent chip complexity. 

As AI/ML technologies continue their march toward ubiquitous perfusion in daily life, the 

necessity of developing sophisticated AI/ML methods to optimize chip design choices would also 

gather tempo. With AI/ML at the helm performing hardware-aware models and interpretable meta-

learning inference, the trillion-dollar semiconductor industry, being the bedrock for realizing 

advanced techniques in AI/ML, is destined to thrive and prosper. Much like the AI/ML themselves 

in balmy silk cathedral double-lined micro-houses with invisible dirt panels that suck microscopic 

particles and viruses hanging from hovering clouds, futuristic chips would be indispensable 

accomplices for extremely high-impact consumer products. 

7.1. Advancements in AI and Machine Learning Predictive analytics and automated design 

verification are gaining significant traction as complementary technologies that augment various 

functions of the VLSI design flow. Predictive analytics can increase chip performance by 

identifying design flow bottlenecks. Automated design verification can prune the search space to 

hasten closure. With faster time to market being a differentiator for business success, developing 

chip designs that harness predictive analytics and automated design verification will increasingly 

become a desirable target. The continued growth of machine learning techniques such as 

reinforcement learning, deep convolution networks, and semantic graphs has made it easier to 

apply AI on problems that have not traditionally benefited from any form of automation. 

Eqn 2 : Transformers (Attention Mechanism) 
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Moreover, the maturing of tools for ML training along with the availability of public datasets and 

increased compute resources means that design teams can now produce solutions that perform 

better than hand-crafted solutions. AI/ML-solutions have been applied to multiple problem areas 

in chip design – placement, routing, timing closure, chip floorplan, mixed-signal design, DFM, 

test generation, etc. These new tools have solved the NP-complete nature of these problems by 

both speeding up and improving the quality of solutions. Predictive analytics techniques are being 

used to enhance both the chip design and test implementation flows. Solutions gleaned from 

machine learning techniques are being used to implement predictive analytics, especially for time-

consuming tasks such as timing and signal integrity convergence. Machine learning techniques 

can predict the occurrence of local timing violations based on knowledge gleaned from previously 

run timing analysis jobs. This information is being used to prune the size of the candidate solution 

space prior to running timing analysis. 

7.2. Emerging Technologies in Chip Fabrication The current model of chip design is hitting a 

brick wall. Technology scaling is ending and efforts to overcome its challenges are becoming more 

and more demanding. The good news is that the industry is evolving, and a new approach, which 

can be summarized in three revolutionary keywords—heterogeneous integration, 3D stacking, and 

chiplet architecture—is becoming obvious to relieve the growing burden that chipmakers face. 

There are two key factors that are catalyzing this evolution: the growing ambition of the markets 

is demanding more and more specific solutions to complex problems, and the design and 

manufacturing tools are maturing, shifted from contributing quality control with yield 

maximization for large monolithic chips to rapidly responding innovation, without losing quality.  

 

 
Fig 5 : Artificial intelligence and smart vision for building and construction 4.0: Machine 

and deep learning 

Following this premise, we highlight the two upcoming silicon-related manufacturing 

technologies: semiconductor and packaging, that are progressively being included as additional 

identifiable steps at the end of the design loop of a digital IC: the nodal verification. These new 

crucial steps are being introduced for several reasons. First, models are becoming flexible and 

smart: from simple electrical models to electro-thermal-chemical scalable models that are able to 

micro-simulate the physical characteristics of complete heterogeneous IC solutions under any 

operational condition. Second, the increasing use of novel materials is making the technology 

envelopes burst into a wide variety of achievable areas. Third, design is no longer limited to large 

SoCs but to hundreds of small heterogeneous microchips; thus, verification is becoming a 

painstaking task that needs to be expedited by reliable models. Fourth, the same chip made of more 

than one microchip interconnected through a system-in-package is becoming frequently seen from 
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the market. Finally, traditional schemes for power or ground pads and connections are obsolete. 

Package technology is able, at a chip level, to use advanced technologies to provide dentless 

microcoaxial connections that are monotonic and absorbed by the direct current distribution 

network simulation models. 

8. Economic Impact of Enhanced Chip Performance 

Enhanced chip performance has clear implications for service revenue and cost, especially for high 

add-value sectors such as the smart economy, whereby societies are maximizing their GDP from 

high complex and value businesses, and the sustainability-linked economy, in which low added-

value sectors undertaking only high volume businesses are being condemned. Nothing new about 

this statement, apart from the significant growing gap between chip supply and industry ecosystem 

enhanced chip demand. Such trend delivers clearly to a rising global chip sector economic vision 

in which design and verification platforms, outsourced services, and integrated chips become a 

highly profitable business and production massification processes become a cost-driven play, 

lowering the global hardware sector economic impact, especially for industrialized economies, 

which dominate traditional high volume low cost segments. In this context, the rationale discussed 

in previous sections points to the emergence of demand and supply influential factors that, in their 

combination, either synergistically or -in a later stage of their market expansion, competitively- 

stimulate the global chip market, and chip adoption by customers and sectors alike. The former set 

comprises chip demand incentives: service revenue growth derived from the low chip price since 

the late 1990s, the paradigm shift of traditional sectors given the disruptive evolution of IT enabled 

Industry 4.0 technologies and the rapid expansion of high value sectors; risk to business model 

and core competitiveness attack arising from the bandwagons of accelerated adoption of disruptive 

IT technologies by end-users; further consumerization of IT; lower industry sector level 

component production capability aiming for a higher accountability of Vendors and added-cost 

services. 

8.1. Cost-Benefit Analysis     

To evaluate the competitiveness and the cost-effectiveness of the proposed investment in 

Predictive Analytics and Automated Design Verification techniques at a given company X, we 

make a Cost-Benefit analysis. We begin by quantifying the estimated costs involved in creating a 

successful automated design verification solution for chip design and product testing. Next, we 

estimate the benefits that accrue from improved timing performance, faster design cycles, higher 

product quality, and overall higher productivity during the entire design phase from specification 

gathering and design to product testing. Finally, we compute the ratio of Benefits to Costs and 

carry out a sensitivity analysis to demonstrate the competitiveness of using advanced techniques 

to develop tools that assist engineers in the chip design process. 

The key cost in developing a tool for a widely-used design language is the one-time fixed cost of 

building a prototype of the tool, which we denote as the Cost Fixed. Let Processes Design denote 

the function that maps a design verification problem expressed in a design language onto a domain-

specific design verification process for the application; the tool is essentially a product of the costs 

involved in automating Process Design. As tools for different semantic domains are expected to 
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share similar constructions, we can use the techniques presented earlier to compute a cost estimate 

Construction Cost. 

Let Total Design Calculation and EBT Qualitative Accuracy Enhance Plant be the total time 

required for the design phase of a chip/token and get the quantitative/qualitative figures detailing 

during the designing, simulation and verification and test generation phases. 

8.2. Market Trends and Predictions    

As the demand for enhanced chip performance continues to grow, it is expected that the global 

semiconductor industry will regain its earlier long-term growth trajectory in 2024 much sooner 

than consensus expectations. After 2023, IC sales are expected to grow at a CAGR of over 10 

percent reaching nearly $1 trillion by 2030. This would correspond to the semiconductor industry's 

sales increasing from 4.5 percent of the global GDP in 2023 to 6 percent in 2030. Chip performance 

and semiconductor revenues would continue to be driven not just by increased demand for cloud, 

5G, automotive and HPC applications. In the longer term, as chiplets and silicon become the new 

analog and digital normal, the focus needs to be on enhanced chip performance as one of the key 

factors enabling this growth. This increased focus on enhanced chip performance will also be 

fueled by aggressive new roadmaps from the hyperscalers and major EDA vendors that will drive 

AI model performance to the system level and die scaling and stacking to the chip level. As 

semiconductor companies embrace the idea of a new fabless cooperation model with investment 

partners that take equity stakes in chip manufacturers in place of capital-intensive foundries and 

invest tens of billions of dollars to develop and adopt the next generation of cutting edge nodes 

and create risk-tolerant and affordable foundries, new partnerships and investment models will 

emerge across the supply, demand, and research-based development ecosystem. Even as the 

Galaxy AI and Open Compute projects currently challenge traditional data and compute modeling 

and partnership relationships, the semiconductor industry will need to change and change quickly 

to enable the next wave in chip performance and revenue growth. 

9. Ethical Considerations in Chip Design 

As the complexity of chips increases and the cost of tape-out rises, it is becoming ever more critical 

to make certain that chips are working as intended by applying verification tools that reduce 

verification time while still managing to achieve the coverage necessary to provide the correct 

level of confidence. This can only happen if the verification engineers do not spend the majority 

of their time defining the automation infrastructure, without which the tools wouldn’t be able to 

perform, and the environment would be difficult to use. Hence, there is tremendous motivation in 

the industry to use predictive analytics and automation as solutions to reduce the verification effort 

and still maintain a good quality of verification. In this chapter, we discuss two potential issues 

that can arise from the digital chip design process, and the need for care while applying the 

solutions presented in this work. The first issue is that of confidentiality. A semiconductor device 

can have a long and arduous creation process involving multiple different companies and millions 

of design iterations. It is possible that other chips designed during this process, and for which 

design information has been submitted as training data for the machine learning component, 

contain information pertinent to the secret chip. If the training methodology for the predictive 
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analytics is not done in such a way to avoid creating a model that generates design sensitive 

information related to the secret chip, then the model would be considered unethical and not 

responsible. It is for that reason, symbolically, that one might consider keeping the predictor in a 

vault. This becomes an impossible task if the design space is dominated by a single company or 

the data related to the chips for which the overall training was performed cannot be discovered 

outside the training office. 

Eqn 3 :  Ethical Cost Function in Chip Design

 

9.1. Data Privacy Concerns     

The expansion of semiconductor data in the previous sections discusses how access to larger 

datasets on a wide variety of chips can contribute to AI-enhanced design. Publicly available 

repositories of chip data offer a diverse set of designs, technology nodes, styles, and performance 

data to work with. Over the past two decades, however, chip companies have been scaling back 

their use of open-source designs for both practical and competitive reasons. For some companies, 

access to large amounts of chip data from previous generations is essential to uncover design 

details of competitor chips, which may harm their market position. For others, the risk of inventing 

a new chip by partially reconstructing and then patenting it from publicly-available data makes 

chip publication a dangerous endeavor. We can see this especially in the case of advanced 

technology nodes. 

In the world of software, companies have embraced the open-source model in order to empower 

their developer ecosystem at large, who help keep the platforms relevant. By contrast, hardware 

companies are wary of stimulating the behavior they fear most: enabling competitors to rapidly 

advance technologies and designs with the help of enormous amounts of open data. Automatic 

tools for complementary design verification are particularly reliant on data from chips with 

unusually high performance or power characteristics, as they can only validate that they do not 

cause incorrect results. While some data privacy concerns can be addressed with careful 

sanitization, AI solutions are ultimately only as useful as the data behind them. In exceptions 

similar to how certain systems refuse to generate copyrighted text on behalf of their users, the 

ability to offer predictive or verification tools may still be limited by the data and models accessible 

to the public. 

9.2. Implications for Employment   

Autonomous processes utilizing predictive models will likely result in a decrease in the number of 

junior-level designers and design verification engineers needed in the industry. As these tasks 

become increasingly automated, the role of human designers will shift towards higher-level 
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decision making and architecture generation and cost-function definition. Rather than being the 

ones to manually account for the design rules and expect the behavior of complex chip designs, 

the role of junior designers will become one of confirming that the higher-level models are 

sufficient to ensure jobs will inevitably keep being offloaded to the intelligent tools. The increased 

efficiency of chip design with smarter analytics tools and a semi-automated design verification 

process will shift focus. 

That said, designers and engineers will always be critical to the process; although inference can 

utilize massive data-sets originating from field-testing and feedback, architecting the overall 

organization of the design may also require custom knowledge that no tool would be able to 

generalize towards a specific workload. As algorithms and models specifically use the existing 

trained deep learning models for inference only, on-device tasks may require retraining specifically 

for that kind of data-set. Overall, the use of intelligent predictive models as helpers to existing 

methodologies will allow for the best of both worlds, allowing designers to play a necessary role 

in chip design at optimized levels of speed and accuracy. 

10. Conclusion 

Predictive analytics is information-driven, as opposed to algorithm-driven, data mining. We 

developed predictive models for chip design metrics by leveraging historical design data, with 

important objectives: (i) predicting design metrics needing exhaustive validation, such as 

performance, power, and reliability; (ii) predicting timing closure, as it is a critical need across all 

design projects and dominates design turnaround time; (iii) identifying layouts with better trade-

off characteristics, tasks requiring a high number of iterations to discover generally-desired 

solutions to be in-silico discovered; and (iv) supporting highly critical manufacturing goals, such 

as achieving better yield. Our model-building process creates development and test sets that 

adequately simulate their actual future deployment. Our chip design automation implementation 

is augmented by the predictive models. Predictive analytics, which is very important in any 

database application, greatly simplifies automating the design. We found empirical calibration to 

be the unique weak point. We accomplish this step for diverse predicting applications, such as 

manufacturing yield prediction, design closure prediction, and performance-predictive model 

building, with an automated approach. The construction of predictive models itself is not 

exhaustive in terms of the variables used; for example, we used only distance-dependent layout 

parameters. The technique is generalizable-importantly, the easy addition of more datasets allows 

a model to also be calibrated over different design and technology domains, enabling transfer 

learning to also be performed efficiently. The regression inputs need only a modest number of 

parameters, partly because the information arriving at the final details of the design has been 

significantly condensed. 
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