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Abstract 

Internet Protocol (IP) networks transform entire global communication systems. The growing 
demand for IP networks with immense capacity and ultra-low latency has substantially changed 
telecommunications operators’ infrastructures. As the number of elements within these 
infrastructures has multiplied, telcos must shift from today’s profitability-driven network 
maintenance to a proactive approach. Reactive maintenance using simple indicators and 
counter levels will lead to network failure, affecting customer experience and business 
continuity. Hence, there is a growing need for Predictive Maintenance. Telco predictive 
maintenance and performance optimization efforts focus on Machine Learning models that 
leverage historical data within data warehouses. Such databases comprise both structured and 
unstructured data related to network design, operation, and performance. The use of temp-
data with new technologies represents a further breakthrough in regulatory telecom 
management. Different analysis and predictive analytics models have been developed, from 
basic statistical models to complex algorithms. 

Imperceptibly, many solutions have been implemented and used successfully. However, a 
significant challenge associated with these models, such as extreme events or unplanned IP 
element maintenance, hampers their use. Relying solely on historical data creates inherent 
limitations, as data patterns will change or disappear risk being out of service. Despite model 
advances, telecom data storage and technology create additional predictive maintenance 
challenges. As new data generation levels rise, current data warehouses will become too 
expensive. Even with cost-efficient storage, questions arise regarding data relevance. 
Additionally, as network elements become homogenized, clearly defined settings lead to 
standard behavior. Moreover, storage issues exist due to network evolution over time, data 
system merge, and tele-operational sequence changes, where the absence of historical data 
creates knowledge gaps despite passing internal and third-party regulations. 

Keywords:Predictive Maintenance,Telecom Infrastructure Monitoring,Machine Learning in 
Telecommunications,Anomaly Detection Models,Network Fault Prediction,Telecom Equipment 
Failure Forecasting,Time Series Forecasting Telecom,Performance Optimization 
Algorithms,Condition-Based Maintenance (CBM),AI-Driven Network Management,Reinforcement 
Learning Telecom Optimization,Edge Analytics for Telecom,Telecom Network Health 
Scoring,Big Data in Telecom Maintenance,Root Cause Analysis ML Models.

1. Introduction  

The telecommunications industry is a crucial part of the global economy because it lays the 

groundwork for virtually all businesses. In the last several years, the communications network has 

become increasingly sophisticated and broad, resulting in a significant rise in the quantity of data 
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and information held in this field. Telecom infrastructure must function 24 hours a day and offer 

customers a high-quality experience . Preventing downtime and ensuring maximum efficiency 

while considering growth rate and service demand are also crucial for critical customer satisfaction 

and protecting income sources. Machine learning (ML) has undergone enormous growth in recent 

years and has been utilized in various applications across several areas as the price of technology 

has dropped and processing capabilities and data have grown. ML applications in telecom 

networks or properties enable predicting failures of hardware/planned maintenance, predicting 

customer outages and providing solutions, predicting performance collapse or drop-offs, among 

many others. The industry has recognized ML's potential benefits and consequences; as a result, 

there is a booming need for more efficient telecom networks and penalized service providers. All 

this pushes the need to analyze, model, and optimize performance from a telecom infrastructure 

perspective. Telecom infrastructure that provides a general understanding of telecom infrastructure 

and its properties is heavily reliant on hardware. Different equipment requires maintenance times 

and ways, as well as information about how often they fail or run out of operational resources. 

Modeling and building ML applications based on these properties are crucial for understanding 

how much weight will play in general performance. An ML-based ecosystem that optimizes the 

operation of telecom infrastructure from hardware perspective is prototyped, explored, and 

demonstrated in this article. The novel concept of ML Model Framework is proposed for 

communication of services/sensor data and modeling resulting data. With this framework, models 

for predicting hardware utilization metrics (such as CPU/Core/Memory load) on OSS-level, and 

for failure prediction at DWDM components are created from, in total, more than 70 M time-

dependent data points from a well-known telecom network. The models assess kPI/SLAs or 

forecast the necessity of planned maintenance, pointing out optimization directions. 

 
                    Fig 1: Machine Learning  for Predictive Maintenance in Telecom Infrastructure. 

1.1. Background and Significance                                         

In telecommunications, the rapid evolution of technologies has created excitement, opportunity, 

and uncertainty about the future of the domain. Equipment vendors and service providers are 

investing significant resources to keep up with the trends and remain competitive. To adapt, 

Telecommunications Operators need to develop their understanding of data, use cases, and system 

engineering expertise. Many use cases in predictive maintenance (PM) and performance 

optimization and enhancement are still addressed in a manual fashion. There is a lack of intelligent 

or data-driven end-to-end holistic solutions with the right automation level. Currently, these use 

cases are either not addressed, poorly addressed, or ad-hoc tasks. With the increasing need for 

automated processes and optimization, there is an immense opportunity to proactively enhance the 

services of the entire operation process. 
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Given the Customer Experience and Service priority, the importance of the operation processes is 

critical. Oftentimes, these processes depend on telecommunication network data and Critical 

Product Quality monitoring. Needed improvements include precise product quality monitoring in 

order to reduce the manual effort, focus on KPI dependencies rather than individual KPIs, seamless 

visualization of results, focus on discovering genuine problems rather than outlier detection, 

actionable Big Data analysis, and integration with other operation processes. These enhancements 

will enable intelligent and automated decision making or alerting, thus boosting the overall 

efficiency. It is hoped that these intelligent solutions can boost numerous operation processes with 

rapid business returns. There is much confidence in the win-win situation these intelligent 

solutions will create, and that the company will become a data miner as well as a Business Expert 

in Telecom domain. As the first step toward this goal, initial experiences, lessons learned, and 

research on the telecom Telco Network Data Intel for predictive maintenance will be described. 

There are multiple reasons to involve machine learning (ML) technologies to enhance the telecom 

network with intelligent solutions. Telecom networks and their infrastructure are immensely 

complex, which makes it more difficult to get insights from the data and find the root cause of 

problems. Additionally, these networks generate and store massive amounts of data every day. 

Telecom infrastructure products are extremely expensive, where an edge node product costs over 

an order higher than enterprise switches from other business domains [3]. Merely monitoring 

alarms to significant events is not enough, since the level of insight is low and the information 

extracted is too late. 

2. Overview of Telecom Infrastructure 

Telecom infrastructure supports broadband communication across antennas, base stations, control 

and monitoring equipment, transmission equipment, switching equipment, etc., spanning core 

networks, backbone networks and access networks. Intelligent fault prediction for delivering 

telecom infrastructure is still a challenging problem. Deep learning models are shown to be 

promising for intelligently predicting faults over a network but can hardly be applied to telecom 

infrastructure due to the lack of contextual data. On the other hand, knowledge graphs have been 

widely adopted in various intelligent applications, including fault prediction. They can assist in 

reasoning and logic and output explainable knowledge to reflect the described knowledge. As two 

promising techniques, they are independently used but inspiring scenarios may be raised on the 

synergy of both domains. The event observation sequence can be used to compare different 

telecom infrastructure nodes. Clustering algorithms can be applied to the extracted sequence, and 

node groups can be formed with the same types of similar historical events using model-based 

approaches. Further, deep learning classification models are used to predict the occurrence 

probabilities of events. Meanwhile, knowledge graphs can be constructed to model telecom 

infrastructure nodes, events, observations, etc. On the one hand, a general knowledge graph can 

be constructed to automatically enrich the original event-interpretation pairs based on their 

embeddings or node features. On the other hand, a telecom knowledge graph can be constructed 

based on the pre-designed logical schema and commercial-internal knowledge. 

Tx Equipment types including DWDM Mux, Optical Amplifier, Wavelength Router, Mux/Demux, 

etc., representing different manufacturers, models, and numbers of subcomponents can be involved 

in generating dummy tx equipment records. For example, based on the dummy base stations, 
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telecom data including equipment monitoring thresholds, historical pm despike and forecasted pm 

records, event and geo information can be generated. Telemetry pm records are collected and 

transferred to online data engines along with other event data. In addition, the generated telecom 

data can be saved as records for testing and benchmarking purposes. Meanwhile, additional real-

world pm data are collected from telecom pm data servers for training and prediction purposes. A 

knowledge graph that describes telecom equipment, events, and monitoring records can be 

constructed based on detailed telecom domain knowledge. 

 
          Fig 2: Telecom Infrastructure Management   

2.1. Evolution and Modern Trends in Telecom Infrastructure                                                      

Telecommunication Networks (Telecom) Countries across the world are investing heavily on 

remodeling their national network infrastructure. Telecom has been one of the fastest growing 

domains across the globe. End user demand for faster connectivity, installation of Wireless Local 

Area Network (Wi-Fi) in offices, homes, metros, public zones and malls has increased the 

burden on Telecom infrastructure providers. The primary concern of Telecom Infrastructure 

Providers (TIP) is to provide and maintain quality uptime of the network so that quality of 

service to end users is not compromised. Telecom Infrastructure consists primarily of mobile 

towers or BTS (Base Transmitter Station). BTS infrastructure consists of first introduced 2G, 

which uses Frequency Division Multiple Access (FDMA) for voice and GSM 2G technology. 

The next 3G upgrade uses Code Division Multiple Access (CDMA) which is spread spectrum 

technology based. The latest 4G technology upgrade is Time Division Multiple Access (TDMA) 

based Long Term Evolution (LTE). The latest upgrade by service provider will be 5G which is a 

duty based millimeter wave technology fighting for more spectrum. Each version upgrade, 

addition of different make and added with various feeders, amplifiers, additional routers and 

switches have increased the complexity of the Telecom systems. 

The number of alarms from various devices has increased exponentially with the deployment. TIPs 

employ a large number of engineers for managing the alarms and faults bubble and 

troubleshooting. Processing of alarm and faults has thus turned into a tedious, manual and resource 

intensive activity. As mentioned above the Telecom field is evolving with the upward trend in 

growth where data network of a country is likely to contribute more than 5–7 percent of national 

GDP in the coming years. Having spent a long decade acquiring expertise in this field, it was 

intended to innovate a change in how alarms, faults, and device health are managed. Introducing 

a completely automated data intelligence alert and executive management that will track past 
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alarms and propose knowledge-based future troubleshooting concerns with graphical 

representation and correlation with historical device health. The demand-driven growth of data 

networks has significantly increased the need for management of Service Provider Network 

infrastructure. Service Providers network is geographically distributed over a very large area with 

varying topology and no. of devices which cannot be entirely manned by Technical Engineers. 

Presently Satellite and Surface earth observations are extensively used for passive and active 

fight’s, assets and activities monitoring of the Telecom Sector Infrastructure providing huge 

amounts of data in geo-referenced format which is being processed and analyzed off-line with 

images being interpreted for change detection. 

Equ 1:  Linear Regression for Failure Prediction. 

 
2.2. Core Components of Telecom Infrastructure                   

The telecommunications infrastructure has a long history, resulting in large and complex networks 

over time. Performance evaluation and monitoring require sophisticated data architecture and 

engineering knowledge, especially in cellular networks. Optimizing networks to enhance customer 

experience and reduce costs comes with many complexities, but it is necessary for effective service 

execution. Quality of service in cellular networks is highly variable, leading to the idea that service 

should be tailored for each customer through customization in the context of data mining and 

predictive analytics . That entails proactive network management to identify when the service 

should be improved or problems handled before the customer realizes it. Real-time processing and 

expert knowledge are used to evaluate these KPIs and a well-defined approach for online 

processing. Traditional processing requires data cloning in a huge working architecture that is not 

manageable. Statically stored Hadoop partitioning and processing result in a processing time that 

is not real-time. Integration of expert knowledge is difficult, time-consuming, and prone to error. 

Solutions using a unified storage for systematic and centralized data storage are required. Big Data 

results from the revolution in radio technologies and an upsurge in the number of radio devices 

providing telecommunication services. Many telecommunications key components have advanced 

in parallel for a long time with the learning and knowledge area of experts spanning over decades. 

Seeking for performance evaluation, enhancement, or monitoring require profound analytical 

competence and knowledge of current operating conditions. Nevertheless, performance numbers 

and metrics, KPIs, logging-selected data, vary considerably in style and dimensionality from one 

component vendor to the other. In addition, implementation is missing for advanced machine 

learning techniques. This leads to suboptimal design and tuning decisions based on half-digested 

raw numbers. Important business questions therefore remain unanswered. The organizational 

focus in telecommunications shifted during the past decades from network toward business 

aspects. As a result, some learning capabilities were discarded in favor of quickly applicable off-

the-shelf approaches. However, the racing tempo from one Innovation Day to the next left many 

questions regarding the industrial, economic and basic functioning of a few devices and systems 

ignored. Outside influences on performance are feared by technicians and decision makers alike, 

but not deeply enough studied to be ironically and systematically combated. Such a 

recommendation was quaint, subsequently instantly laughed at. It is recognized that phenomena 
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on a different scale impact the performance of the systems and must necessarily be included in the 

performance evaluation and tuning procedure. 

3. Importance of Predictive Maintenance 

Communication is a crucial technology that is evolving rapidly over the years with the exponential 

growth of devices that utilize wireless communication technology. Due to this unprecedented 

growth of telecommunication devices in the 5G era, biological frameworks are heavily relied on. 

Adoptive and purposefully designed APIs into Small Cells are treated as cell organs for the success 

of cellular infrastructure. Telecommunication networks are a major component of 5G, which is 

usually composed of Macrocells, Microcells and Small Cells. Each of the elements has recently 

experienced growth in scale and heterogeneous usage scenarios. Each telecom element has its own 

motivation, expectation, objective, and idea for its design. A portion of Low-Power Wide-Area 

cellular devices is designed to be ultra-low-cost, ultra-low-power, extremely small size, enormous 

scale, long coverage, and solely-connected mechanisms. Besides, Automatic Number Plate 

Detector applications are considered. Most micro-cells are co-api with the existing Macro-cell 

infrastructure; any upgrades would usually need to roll-out new Macro-cells. Modern upgrades on 

the existing Macro-cells will impact a small portion of affected devices only for a short period of 

time. Such significantly different designs need and thus should be coordinated differently. 

As such, unique and distinct Minimum Performance Targets are formulated for each of the 

telecommunication scenarios. A TL is adopted to uncover the past and current TL for each telecom 

scenario under an exponential smoothing mechanism. The predictability of the future TL is 

considered. The risk is also quantified and ranked for each major decision. Finally, a policy mix is 

proposed for the solution. It is suggested to keep the current state for Macrocells and Microcells, 

while a strict training schedule is recommended for Small Cells and Automatic Number Plate 

Detectors. This thorough performance evaluation of the telecom infrastructure across multiple 

telecom scenarios is unprecedented, and this work is expected to shed further light on the 

performance evaluation of other complex public infrastructures. 

3.1. Enhancing Equipment Reliability and Lifespan               

With the expansion in the telecom industry with a focus on edge data centers, spending on site 

equipment maintenance has also significantly increased. Telecom site equipment comprises 

different electronic and electromechanical equipment that is critical for generating revenue for 

telecom operators. Failure of such mission-critical equipment would interrupt production, hence 

revenue, and lead to monetary loss from several hundred dollars up to millions. Repair and service 

contracts with third-party vendors are expensive, and contracted repair time is often too long and 

beyond acceptable levels. Preventive maintenance can cause high manual scheduling costs with 

no guarantee on equipment failure mitigation. Given that bottom-line costs are involved, a more 

proactive approach with high return on investment is needed, to enhance equipment reliability and 

lifespan, historical failure/root-cause analysis and condition monitoring technologies would be of 

great importance. 

With attributes such as installation and maintenance dates, resulting costs and contracted service 

details for equipment, huge data is accumulated within telecom operators on equipment 
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maintenance and failures. However, little effort has been made in data mining and exploring such 

maintenance data for actionable business intelligence in telecom operators. Because of the massive 

amount of data, a testbed of a particular telecom operator with base station, microwave, data center, 

IP core and core network equipment is chosen as a research target. The 7 W’s of such maintenance 

data, on the evolution of telecom infrastructure sites/equipment in the radio access network, 

transport network and core network from procurement, installation, service, upgrades and 

decommissioning is studied. 

The tedious data preparation, processing and visualization tasks enable the building of a 

comprehensive big data analytic framework for unfilled research avenues in a telecom operator. 

Grouping of equipment for maintenance data extraction, based on attributes such as vendor, 

country of origin, maintenance contracts, series and metrics, is investigated. An EM group-based 

point-trajectory formulation for telecom maintenance expenses forecasting is proposed, along with 

a K-Means clustering approach. Holes and wastage in preventative maintenance are studied with 

Decision Tree clustering process, and actionable exploratory knowledge is derived to drive next-

year schedules and resource allocation. Root-cause analysis on equipment failures with complex 

interdependencies and Bayesian network learning and inference is proposed. 

 
            Fig 3: Equipment Reliability and Lifespan 

3.2. Reducing Operational Costs and Downtime                

Telecom service providers capture user voice and data and need to store and post-process or pre-

process them. Infrastructure providers build massive data centers full of servers and routers to 

control the distributed systems, and designers provide user equipment. Traffic compression, voice 

scraping, and other tasks related to the call need processing. The information is then stored in a 

format that allows fast access and low latency in the result. Furthermore, the Appearance 

Controller creates a DTMF signal for each request route-dependent upon the destination number. 

Small-scale complaints are mapped to different sources with multiple transformer models; event 

contexts are created as input features, and the model returns the root cause in a user-friendly way. 

Labeling the complaint may take time. The system can draw the most probable root cause first and 

give definitive candidates to real-world engineers. Human-in-the-loop promotes people retraining 

the model better. The above methods, using neural network models, improve many industry NLP 
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engineering tasks and are coping with growth energetically. Nevertheless, experiments with 

telecom data have not been made public in a preferred shareable format. The development of 

architecture will stop for now except for some efficiency improvements (on sharing embeddings 

and cached potential parts of models) to accommodate all classes. Furthermore, a study on model 

training tasks should come next with some good benchmark baseline models. 

Asset management in telecom points to querying the asset system. Using available sources to 

create good initial assets and filtering inflow bad ones is required, while classical methods usually 

rely on a lot of query rules. Instead, a set of feasibility rules are designed, among which most are 

no duplicates. Attention with hard negative mining or spanning graphs might produce better 

filtering results, as each node is a representation of a certain aspect . 

4. Machine Learning Fundamentals 

AI and ML are the driving forces behind new-age applications in every domain and play a crucial 

role in the transformation of technologies. A dataset or information obtained from ML 

surroundings can help organizations identify information, patterns, and scenarios needed in 

decision-making, business planning, area analysis, and telecommunications engineering. For 

classification, ML is generally perceived as a toolbox. However, it offers a much larger and 

generative way of working with the data, such as semi-supervised clustering and performance 

optimization. It encompasses all the skimpy gadgets and offers scopes. Understanding this working 

framework can enhance applications for potential solutions, which is often neglected in tutorials 

or classes. 

ML is generally thought of as a universal toolbox, able to assist with tools for classification 

problems and regression tasks. ML necessitates a software ecosystem, including data monitoring 

and transformation, model selection and optimization, performance evaluation, and model 

integration. The first step concerns the construction of the models and focuses on the training 

phase. The data have to be pre-processed to remove or normalize outliers, as well as handle missing 

data. The next step concerns data transformation, where relevant data features are selected, 

redundancies are minimized, and data formats adapted. Model selection is done online. The most 

important steps of model selection and behavior learning are carried out in tandem. Initial guess 

models are selected and then trained on a small proportion of the data. Thereafter, more data should 

be sampled in order to decide on model decisions (all models allocated the same data). After 

training, some data is sampled for validation; a proportion of the validation data is retained to serve 

as a test set, and the rest is used to independently verify the rules constructed in trained models. In 

this regard, it is crucial to decide when enough experimental data has been collected, ensuring that 

the ML models produced are representative of the nature of the data. The goal of validation is to 

ensure that ML models are not over- or underfitting the observed data. 

ML offers enumerable approaches depending on the objectives of the learning task. Of three broad 

categories, learning to think tackles the problem of truly understanding pattern recognition and 

identification from the data samples (clustering). More often than not, this process of learning is 

invoked and interpreted only after raw data comes in. While very few datasets are tagged, the need 

to estimate the properties of the data randomly becomes of higher priority. Therefore, this category 

of ML is needed to devote meaningful time to the understanding of the universe from the 
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anomalous data collected. Targeting induction learning, diverse types of approaches generate 

information or rules supported by data. Some of these models can flexibly switch between rules, 

thus requiring complex internal structures in learning. 

Equ 2:  Logistic Regression for Binary Failure Classification. 

 

4.1. Key Components of a Machine Learning Model Predictive models are mathematical 

models designed to provide a notion of the state of a system in the future, whether it is in a few 

seconds or days. Statistical models, signal processing, and machine learning (ML) models fall 

under this category. The output of the models is a score or a decision that feeds into actions or an 

event that drives the ML models. Actions are usually taken by trained operators. Whereas anomaly 

scores exist for automated or operator-initiated alerts to prevent further degradations of measured 

variables. This section focuses on machine learning models because of their effectiveness in 

dealing with massive datasets with numerous measurable variables. Generally, predictive models 

accept and process past data, i.e., measured variables, behavior variables, as well as contextual 

information, and predict the future state of the relevant variable. 

When deploying ML models in production systems, the focus is mainly on the signal acquisition 

and model training aspects. Once the model is trained and deployed, it continuously operates on 

the data stream. However, new data can be collected, which is most likely different from the 

training data (data drift). Also, new data increments to the datasets can degrade the performance 

of the model over time and require to be retrained and related query changes (concept drift). 

Collecting incorrect datasets, such as operation mode changes, input space changes, or 

unanticipated anomalies, can lead to unexpected model outputs. Robustness and performance 

tracking are crucial to ensure the viability of ML models in production. These mechanisms 

frequently check the behavior of ML models deployed in the real world. A performance monitoring 

system automatically tracks the changes in model performance. By measuring the model 

performance using metrics, it can automatically alert operators regarding the degradation of model 

performance in the production environment. Here are the six KPIs frequently used to monitor 

telecom workloads. These KPIs can be used for the performance tracking of other ML models. 

Lose of message metric: This metric provides the total number of lost messages, i.e., predictions 

that could not be calculated due to the absence of data regarding the input relevant variables in the 

streaming data. Monitored variables values comparison metric: This metric compares the static 

monitored variable values obtained online and the reference values (monitored variable values at 

the time of model training) offline. Hence it allows recognizing possible abrupt changes in the 

operating conditions of the monitored systems. 

5. Types of Machine Learning Models 

Different types of machine learning models are used to predict telecommunication indicators and 

to detect and predict maintenance tickets in an automated way. A big part of the models has been 
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used specifically in different industrial branches or sectors with different datasets. In order to adapt 

them to the telecommunications sector and infrastructure, models have been selected based on 

their features, applicability and outcomes. 

Regression Models and Approaches: Ticket count models belong to the regression models, as the 

expected value of the output variable is predicted in this case. ML regression approaches are the 

following: autoregressive and Auto Regressive Integrated Moving Average, Exponential 

Smoothing, Monte Carlo method, LSTM, and Random Forest. Autoregression is a linear 

regression model which models the time series yt as a function of its own previous values yt-1, yt-

2…yt-p. An ARIMA model differs from an autoregression model in that it can include differencing 

which can make a non-stationary time series more stationary, as well as variables that model short-

term deviations from average behaviour. Exponential Smoothing models time series as a function 

of its own previous values, using exponential weights on previous values, with the “forgetting 

factor” in this case leading to the “smoothing factor”. The Monte Carlo method includes random 

sampling and simulation of a stochastic model. It can be employed to generate a sequence of “worst 

case” scenarios for planning purposes. An LSTM model is based on a recurrent neural network 

that can learn long-term dependencies and produce output values with a temporal delay. Random 

Forest is an ensemble learning method for classification and regression. It constructs a multitude 

of decision trees and merges the outcomes. 

Classification Models and Approaches: Maintenance or troubleshooting ticket models belong to 

the classification models as one or more categories are predicted for the output variable (i.e. fault 

type, fault group). Classification approaches model the probability of a class assignment of a data 

sample based on textual features. Naive Bayes and Multinomial Naïve Bayes models belong to 

these group of models as well. Additionally, tree-based classification algorithms produce a model 

of decisions based on input features to classify a data sample. Decision Tree, Random Forest, and 

XGBoost are among the state-of-the-art tree-based classification algorithms. 

 
            Fig 4: Types Of Machine Learning Techniques 

5.1. Supervised Learning                                                            

The predictive maintenance models were built on a subset of data containing the time to breakdown 

of equipment along with other associated parameters such as age, scores, and so on. After the 80/20 

split of the training and testing data, several supervised models were applied. After analyzing the 

metrics, logistic regression resulted in the most accurate prediction rate in the testing phase, and 

thus it was chosen as the primary model with which further analysis was carried out. All results 

regarding the logistic regression model were found to be very encouraging. It was found that with 

the right choice of thresholds, it is possible to catch 96% of breakdowns while impacting only 7% 

of non-breakdowns. It was found possible to analyze why machines were rated with high 
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breakdown probability scores and provide the owners with a more realistic set of enforceable 

actions. Summarily except for Logistic Regression, all other tested models resulted in something 

with relatively similar accuracy with the Random Forest Classifier exhibiting a much faster rate of 

execution . The choices of both the input features and model hyperparameters impact the final 

results immensely, and a much more precise tuning strategy is necessary for a more accurate 

prediction rate. With proper tuning, perhaps another model such as the Random Forest Classifier 

has a chance of being more accurate than the Logistic Regression. Hence it would be interesting 

to study the optimization of the input features and hyperparameters to configure and train better 

predictive maintenance models. The metric used to analyze the quality of predictions also 

extensively impacts the results. There are different ways to approach the metric score optimization, 

and perhaps using the F1 score, the best results would not drop by as much. It would also be 

interesting to study if different methods of mislabeling time to breakdowns would yield a better 

result. 

5.2. Unsupervised Learning                                                       

In recent years, the telecommunication industry has become increasingly reliant on machine 

learning (ML) in many applications. This technology is expected to play an increasingly central 

role in future telecommunications networks. In particular, unsupervised machine learning (UML) 

will enable received performance self-diagnosis by identifying anomalies in a real-time manner. 

In this work, UML approaches are explored that can perform telecom infrastructure performance 

analysis while keeping the desired properties of low computational complexity and high online 

reactiveness. In particular, the approach can deduce performance anomalies in terms of time (i.e., 

fault, configuration, or network procedure changes), identification of affected areas, and a 

performance indicator root-cause determination . It can also find relationships in terms of logical 

dependencies between multiple performance indicators. 

Unsupervised learning applications can enable the performance self-diagnosis of 

telecommunication infrastructure. Since telecom infrastructure generates performance monitoring 

data that can vary with orders of magnitudes in size and number of statistics, the complexity of 

processing the telemetry data grows. Proposed applications of UML aim at diagnosing 

performance anomalies and discovering performance relationships in real-time. First, an approach 

is developed to detect anomalous performance and find its root cause in terms of whether it is due 

to faults, configuration, or network procedure failures. The approach processes performance 

deformation multi-dimensional time-series data using dimensionality reduction. Anomalies are 

detected in near-constant time complexity using well-known techniques. Then, the root cause 

identification is cast as an anomaly explanation, where a diverse set of causative temporal events 

is deduced by examining whether a performance indicator’s change-time coincides with other 

indicators’ shift times. A robust ranking technique is proposed that captures the casualties of raw 

performance time series data while keeping execution complexity low. Second, a clustering-based 

approach is proposed to learn the relationship between two performance indicators in terms of 

whether they have some logical function between them. 
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5.3. Reinforcement Learning                                                        

In the search of new solutions to handle the increasing complexity and growing size of deployed 

networks, it is necessary to explore cost-effective strategies to optimize continuous improvements 

of their performance, while guaranteeing their availability. These strategies require modelling, 

monitoring, and control steps. Given that faults manifestation and corrective actions happen over 

time, the dynamical properties of the associated information streams are among the major 

challenges when processing the huge amounts of data produced and stored along these streams. 

Telecommunication equipment events, alarms and performance management monitoring, found in 

various Network Fault Management systems, represent good candidates to be investigated. A 

Reinforcement Learning (RL) framework to the more generic Network Maintenance Problem is 

proposed. This framework allows for a sequence of optimized actions over time, as well as the 

definition of a horizon for them to take effect. Deep reinforcement learning, which combines 

classic RL reinforcement learning with deep learning, has been a recent trend in machine learning, 

achieving very good performance in training intelligent agents to play games. Together with the 

necessity of computationally feasible solutions to the Network Performance Optimization 

Problem, such technology seems promising to also tackle the long sequences of discrete actions 

that need to be chosen for telecommunication equipment maintenance. 

6. Data Collection and Preprocessing 

As a key step for most machine learning models, data collection and data preprocessing will 

determine the quality of these models. Thus, it is important to have objective criteria to evaluate 

incoming data to avoid unexpected data quality issues. To this end, the data collection and 

preprocessing tasks are described below in detail. 

Two types of data are acquired for this study. The first type includes telemetry data that are 

generated at a base station and/or a cell level every five minutes. It contains infrastructure 

performance metrics that are collected every five minutes. In the preprocessing stage, it is 

important to have a placeholder for each collected data file to avoid future data quality issues. For 

this task, a feedback mechanism is needed to plan an action in case the questions are not answered 

with a specified time period, i.e., unavailability of the data within expected time frames. In this 

framework, a historical file containing the same data is also retained to compare test run results 

with historical ones for expected data values. Furthermore, their associated metadata, e.g., for 

indexation purposes and time metrics, are also collected each time. 

The second type of data, alarm data, indicates when a problem occurred in the infrastructure. 

Together with telemetry data, it provides a valuable use case for predictive maintenance. Alarms 

are logged into a database and are indexed by their identification codes (IDs). They are collected 

daily and, in each run, the corresponding new data are processed. This is done by taking the earliest 

time of each relevant alarms and retrieving the last 24 hours of telemetry data. Each telemetry data 

reflects the performance of some infrastructure elements. Therefore, as the locating ID of an alarm 

is unknown, the appropriate IDs must be found using the alarm names. This is done by looking at 

the latest alarm collected previously and examining a subset of elements in the predisposed cells. 
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Data preprocessing steps consist of cleaning, filtering, and merging the collected telemetry and 

alarm data to train predictive models. Missing values account for the most data quality issues in 

this data. Each data recording and value is associated with a clock-time stamped time on a base 10 

min granularity. In a day, deleting a recording means losing values for each of its monitored 

metrics for 288 10 minute blocks. However, when telemetry data recording is missed, an alarm 

can also be deemed invalid. Thus, there are too many recordings and pruning invalid ones is a 

desired preprocessing step. Another anticipated data quality issue that needs to be handled is the 

outliers, specifically in the form of negative numbers in telemetry metrics. This is a domain-

specific issue, since models are trained based on what insights were gained from the data. The 

telemetry data to build the baseline models must be decided before any change occurs in the 

preprocessing pipeline. 

Equ 3:  LSTM for Sequence Modeling. 

 
6.1. Data Sources                                                 

 Telecommunications service providers collect and analyze huge volumes of customer and 

network data every day from static fixed and dynamic machine-generated sources. As part of the 

proposed analysis, in preparation for machine learning models, there is a requirement to bring data 

from multiple sources together, in a manner that a new target variable could be defined and 

calculated independently from any past calculations. Therefore, Dataframe is designed as a stacked 

transaction structure that holds transformation rules. Data definition is defined as business readable 

data structure and information system defining unified analytics. As a consequence, DataNode is 

a Transformation object holding some data related constraints. A chain of transformation rules 

based on Type and Implementation could increment potentially infinite/set transformation. 

Internal edge weight defines recursive and sequential transition types. The clear direct connection 

to DataNode Target and Source is distinguished by the DataType. 

In Telecom, business Key Performance indicators versus time models can often be made repeated 

time series augmentation based. Such functional models are restricted by present and past customer 

stream behavior or their time length. Therefore, ExternalType transformation limits its possible 

newly created grinding irrespective of affecting any historical Transformed commercial variables. 

Machine learning models outperform existing statistical and numerical model performance on real 

target variables, and on modelling at least their past error is in deviation in Telecom. 

In telecommunication domains generate huge volumes of concise, clean PCI, IP, and SIP protocol 

state logs storing the source end and the integrity check of message flows. Those multi-sourced 

logs hold information about all existing Machine to Machine Action Upon Events and the 

corresponding analytic base table preparation. A universal model creation can be shown stacking 

protocol-aware trees with indefinite tree depth or complex model depth. Recent Machine Learning 
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model performance surpasses existing statistical models as the volume, complexity, and 

dimensions of input data increases. 

6.2. Data Cleaning Techniques                                            

The data is cleaned according to the following procedures as shown in Table. Entries which are 

not Feature engineerable: Such data are irrelevant data for the goal of predictive maintenance. 

Such irrelevant data is deleted.  Useless or Neutral data: There existed some entries which 

possessed a uniform value for all the prior timestamps up to the present. Such entries guess the 

same value for all of the former timestamps without prediction. Hence entries produced uniform 

predictions in this respect are deleted. Entries with missing values: If a time step(s) data is missing 

for an entry, it will not be possible for that entry to predict it using regression and hence the entry 

will be deleted.  Noise Removal: Some entries are showing abnormal behavior. It is either due to 

communication issues or device self-damage or a possible cyber-attack. Some entries in such cases 

tend to chromatographically spread be at unjustifiable ranges. Hence such entries are eliminated 

after examining its values intelligently.  Deleting redundant data: There exist some entries of data 

per hour (60 minute). Generally speaking, the devices pinging continuously generate such data. It 

is either useless or of negligible value for predictive maintenance. Such data is hence deleted after 

examination.  Aggregation: Data aggregation is most often desired as the devices ping hourly. But 

a data-aggregation function of hourly mean (or median) for each hour of the day (24 bin 

classification) is provided to run early experiments. Changing in the inspection time range every 

14 days keeps varying seasonally. Therefore this is to avoid possible overfitting on the data 

captured within only one season (even though telecom infrastructures follow a regular standard). 

Each day of 24 hours’ data is kept in bagged format and employed in a daily round-robin sampling 

manner . 

 
            Fig 5: Data Cleaning Techniques 

6.3. Feature Engineering                                                             

As mentioned, features are of crucial importance for the models and on how they perform 

regarding QoS estimation . The general approach is to strive for the feature set that performs best. 

However, even at this early stage, one can recognize some early indications for the assessment of 

how well low-cost features can perform. Therefore, this list is thought to be very extensive and 

can be focused throughout the process. Studies have shown that part of this set of features carries 

most of the predictive power. While this was mostly based on knowledge of the area, it is desired 

to show this behavior regarding short PNG series. Another aspect of the feature set is its individual 

characteristics. Several factors, among others, are relevant. If the feature itself contains enough 
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information, what type of noise is it subjected to, can it be recreated, and how costly is it? A 

detailed exploration of the question of consistency is yet to be done. The information displayed 

within the features was analyzed to assure the building of a sound feature set. Hereby, the full 

feature set already displayed a lot of potential, outperforming even full-size bands of DX. 

Nonetheless, again relying on the knowledge of the area, it was shown that this feature set can be 

distilled even further. Part of this work was built on literature showing which features would 

emphasize more non-linearity and thus provide better predictive power. As of today, the selected 

features based on this literature displayed the best accuracy scores, emphasizing that even 

decreased costs across the board can lead to superior predictive capabilities. 

7. Training and Validation of Models 

To evaluate the trained models, three per-case datasets were defined: The training set with the first 

1200 time series, the in-the-sample dataset with the last 60 time series, and the out-of-sample 

dataset with the one-hour allocation of the in-the-sample. The labels were prepared in advance for 

all the data given training data with calculated accuracy. The evaluation got MME values for all 

the models on these datasets. As there were cases with very long time series fragments to be 

analyzed, it was decided to test how the proposed models performed on converted velocity 

distribution to fraction format. Testing is focused on evaluating the per-case evaluation for the out-

of-sample dataset. The whole validation pipeline should be tested at first. During the training, 

labels were assigned based on the behavior on the in-order sequence of the incoming time series. 

Quantification of the prediction capability of a trained model is performed by imitating the system-

wise allocation of the future time series for which performance should be quantified while waiting 

for many-labeled cases. Every day, the last hour per-cases were predicted. ML and DL estimation 

were performed in a sliding-window fashion, with the window size of 60 min. It was decided to 

predict malfunctions 30 min with 30 min. Before predictions of malfunctions, the training of the 

Zero-Algorithm and all the proposed models should end. To analyze the algorithm’s prediction 

capability, 20 out of 265 system days were selected as test sets. Detailed inspection of the oracles 

and per-case predictions for these cases should be provided. To select the cases to be analyzed and 

graphically illustrate the differences between label and prediction ground truth, the selected test 

set should be reviewed. The selected false cases should illustrate the worst performance of each α-

Algorithm. It was decided to predict malfunctions at t + 30 min from September 24. To evaluate 

the forecasting horizon of the trained models, tests were performed to quantify the prediction 

performance with different prediction horizons of t + 30 min, t + 60 min, and t + 90 min. 

It was decided to compare the per-case evaluation measure MME and σ metric on both cases with 

uniform and non-uniform PPLs. The main focus was focused on examining the cases with the mZ-

vote and t + 30 min prediction horizon. Alternative models for predicting the injection molding 

machinery faults using data from IoT sensors were compared. The results of the competing models 

were analyzed to characterize the differences between them regarding their training workload and 

performance in terms of accuracy and effort on monitoring the predicted system status with models 

of different types, complexities, and performances. 
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               Fig 6: Predictive Maintenance in Industry 

7.1. Training Strategies                                                                

The strategies discussed may be implemented to enhance the generalizability and robustness of 

machine learning models with a variety of architectures for different components of the 

countrywide telecom infrastructure. More broadly these strategies can be adopted for any 

distributed network of complex systems running in heterogeneous and dynamic environments 

while creating large streams of data. It is hoped that holistic failure prevention can be achieved for 

the world’s telecom infrastructures running in a highly competitive yet fast-growing 

communication market if a greatly flexible, adaptive, and generalizable predictive approach can 

be achieved. Such an approach can then be extended to many other application domains 

characterized by distributed systems, dynamic environments, and wide ranges of input features 

producing data streams, such as transportation system, power grid, etc. 

Adaptive learning strategies may be proposed to help build an efficient prediction model for an 

infrastructure having no fault history or limited fault data. Complex learning architectures may be 

deployed to provide accurate prediction for the small subset of predictors as compared to the very 

large set of background signals during normal operation. Techniques like attention or multi-scale 

learning may be incorporated to handle temporal variation of the input data. This can also be 

deemed as a temporal convolutional strategy to deal with very long input signals leading to 

excessive model parameters if all data are summed into a very high-dimensional input vector. It 

can be straightforwardly extended to a sequence of predictive maintenance as compared to one-

shot prediction of faults. 

Transfer Learning methods may be investigated to handle the scenario when a new infrastructure 

comes into operational state. The architecture and hyperparameters being the same, Partial 

Transfer may be achieved to learn about the new infrastructure from the data and model obtained 

through training on a different but similar infrastructure. For instance, considering the two machine 

architectures having a deeper learning architecture for model L2 and a shallow architecture for 

model L1, a L1 > L2 pre-trained model, can be executed on by level-lift prediction to a L2 transfer 

model. To learn the predictive part from L1’s training via techniques is to abandon higher weights 

of L1’s model and retrain parameters related to L2’s learning outputs. Here, knowledge obtained 

from a general architecture can be transferred to a more complex specific model through matching 

the input-output formula of the two architectures. Unmatched parameters are set to be ignored via 
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appropriately moved weight initializing or layer size computation. Transfer learning procedures 

can be initially tested on a simple toy problem based on timer estimation regards with learning 

data of incremental hardware. It can also be explained as a small-scale exhaustive hyperparameter 

optimization process applied on a limited compute resource in designing a whole chain beforehand 

on a large setup. 

7.2. Cross-Validation Techniques                                              

The statistical performance evaluation of quantitative models is a critical step in the modeling 

process, providing insight into the model's generalization power. Several models that involve a set 

of model parameters or weights must be tuned in advance to achieve adequate performance. The 

most common approach for performance estimation and tuning parameters is cross-validation 

(CV) with a training set and a test set. In this way, one can obtain an unbiased estimate of model 

performance and also select the best hyper-parameters Θ. Apart from CV, there are other variations 

to choose model hyper-parameters. These include using multiple, fixed partitions of the training 

set to estimate performance and tune parameters and using the test set to simultaneously estimate 

performance and tune parameters. 

Researchers emphasize the differences between these methods in terms of how unbiased or 

informative performance estimates are, how well model parameters can be interpreted, and how 

tunability of hyper-parameters is affected. CV and testing estimates of performance are unbiased, 

which is particularly important if the performance estimate is to be used as a quality measure for 

model comparison. In contrast, CV and testing will be predicted to generate the worst performance. 

This holds for both unbiased estimates of performance and lower average performance when those 

estimates are biased. The other two methods, cross-validation with a fixed test set and cross-

testing, are predicted to yield estimates of performance between the two extremes. CV and the 

training set are predicted to yield estimates of performance that are positively biased, while 

withhold testing will be negative. Common to both will be methods yielding less interpretable 

choices of weights and parameters. 

Unlike balance testing with datasets that are taken from an identical ensemble, CV is sensitive to 

how the data were derived. In the extreme case, prediction performance is expected to rise with 

training set size for a fixed, correctly selected, model. Since models with many fewer parameters 

can be fit to training data more closely, performance is predicted to exceed testing performance 

for that model. Fixing the assigned training set, and generating larger samples for testing, is 

expected to yield greater differences in performance. Cross-validation with data sets that are of 

different training/test sizes, without different data generation mechanisms, is predicted to yield 

greater results than with data that differ in this regard. Given multiple models, even optimal tuning 

can fail to yield genuinely comparable performance. In such cases, fixed partitions of sets are 

predicted to yield better performance comparison. Evaluation methods are usually considered to 

be meant solely for one of two purposes: estimating how well a given model generalizes to 

withhold data drawn from the same process (testing), or assessing what model to choose from a 

space of candidate models on the basis of with-hold dataset performance (model selection). 
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8. Performance Metrics for Evaluation 

Data quality, loading, and sampling impact the performance of data-driven Machine Learning 

(ML) models. Therefore, it is imperative to perform a detailed analysis of the data quality, 

treatment, and its effect on the resulting ML model. In predictive maintenance, a number of metrics 

are already defined, including false positive rate, false negative rate, precision, recall, and f1-score. 

These metrics are, however, generic and not optimized for the telecom infrastructure. Existing 

performance metrics for the telecom space mostly comprise simple average KPIs like average 

throughput, jitter, or average latency. In this study a new set of metrics is being proposed that 

addresses the telecom space and also takes the data treatment and insights gained into account. 

Overall Model Performance Use case independent requirements include model performance 

metrics (True Positive Rate (TPR), False Positive Rate (FPR), precision, recall, and f1-score) . 

Model performance data points estimate the fraction of true observations each of the states (faulty, 

watchful, or healthy) that successfully trigger each class of indicators, i.e. TPR is defined as 

R×R/(R+F), where R and F are the counts of truly positive and falsely identified positive 

observations respectively. The implementation of these performance metrics visualizes a water-

filling shape diagram where each of the states of the telecom equipment (faulty, watchful, or 

healthy) forms a corner. Further, the telecom infrastructure is large, serves hundreds of cities and 

millions of connections. Therefore before assessing a new model or data, data from a system level 

is aggregated to the core layer of telecom architecture (RAN and core independently). Core nodal 

MGs returned by a selected model are highlighted, which should lead to a more careful 

investigation. 

8.1. Accuracy and Precision                                                

 Current telecommunications networks are based on a complex set of machines, each capable of 

rendering tens or hundreds of disparate services. Over the last twenty years, network availability 

has been pushed beyond 99.99%. Each service is the output of a discrete set of machines, many of 

which are independent of one another. Altering the service as ordinarily provided means 

considerable changes to the machine network, particularly as machines age, fail, and are replaced 

with different vendors. The result is a multitude of distinct machine states, each with unique 

combinations of operating and potential failure conditions. After time service is restored, with 

considerable human intervention. These inherent rat-holes to be exploited by artificial intelligence. 

Telecommunications infrastructure consists of both critical machines that must be supervised and 

highly redundant machines that can be discarded. Historical data consists of observations at 

reduced time resolution that are largely nominal, with wakes of alarms having noted fierceness 

and idea. The infrastructure consists of a mix of machines: some are quite new and just come on 

line, some are very old and not well understood, and some are stored drums. It is crucial to collect 

and analyze the relevant data to completely understand state and path. Also, the ranking of 

importance and alignment with failure records should be established. 

Suspicious observations typically introduce pre-processor features that highlight signals to be 

trained on. New machine states and previously unobserved but possible behaviors should be 

allowed within the system. With regard to state of the art network topologies, using hierarchical 
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feature selectors should accomplish it. By building up seeds of failures and tracking over time, 

classes of possible faults can be defined. Simple timed based metrics across machines can prune 

the ensemble and bring them to a common base. 

8.2. Recall and F1 Score                                                        

Recall is a measure of sensitivity, which for a two-class classification scheme is defined as the 

ratio of correctly predicted failures to the sum of actual failures. It is computed as (TP / (TP + 

FN)), where TP refers to the number of true positives, the number of actual state changes that are 

predicted as such, and FN refers to false negatives, the number of missed failures. The recall metric 

allows the algorithm to emphasize sensitivity and to predict a class more than is strictly required. 

The in-sample recall rates as a function of class thresholds, ensembles, and history length is shown. 

The strong decline in recall rates as the decision thresholds increase fits with the development and 

application of more general ensembles of models. Through careful feature group selection and 

hyperparameter tuning, fixed and shifting time windows can be used, with thresholds giving equal 

improvement across all class sizes. In general, as the number of classes grows, the sensitivity to 

failure events is lost. This result relates to the metrics that discriminate more finely by constructing 

metrics that include the total and class-specific F1 scores. Precision is a measure of specificity, 

which for a two-class classification scheme is defined as the ratio of correctly predicted failures to 

the total number of predicted failures. It is computed as (TP / (TP + FP)), where FP refers to false 

positives, the number of normal states that are predicted as failures. Precision indicates how 

conservative the algorithm is in labeling states as a class. A low precision rate indicates that there 

is high acceptance of likely true positives together with many false-positives. Precision rates are 

of less concern in the telecom domain than recall rates, as it is better to automatically check 

hundreds of false failures rather than miss a few predicted faults. 

8.3. ROC-AUC                                                                             

To draw the ROC curve for a binary classifier, two different classes of examples (i.e., negative 

and positive) are necessary, for each of which samples have to be observed as either, and for which 

truth labels are known in order to calculate predictions. If the classifier under study returns a 

probability or score for each of the predictions, the ROC curve can be easily plotted by the Receiver 

Operating Characteristic methodology. Generally, when plots of the ROC curves are examined, 

the performance of several models can be compared using the areas under the curves (AUC) . The 

AUC is a widely used evaluation measure in the ROC analysis which is equal to the expected 

probability that the classifier scores higher on a random positive than on a random negative. 

With the traditional methods, that assumes the word occurrence is conditionally independent given 

any class label, the AUC computation may have a time complexity of O(n2) which is not feasible 

with large datasets having large numbers of documents. To therefore avoid this unimproved 

calculation burden, a random sampling method was proposed to explain the AUC statistics which, 

however, cannot be incorporated into the standard optimization framework for model training. To 

bridge this gap, an unbiased estimation of the AUC and Random Sampling Gradient (RSG) 

approaches are presented for reduced complexity estimation and efficient computation with O(m+ 

n log(n)) time and O(m+n) space, where m is number of positive documents and n is size of 
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negative document set. Moreover, by adjusting collection and processing of negative documents, 

an essentially exact greedy sampling method can be employed in reducing the complexity an order 

of magnitude. 

Experimental results have shown that the proposed methods can achieve great speed-ups with high 

estimation accuracy, much better fitting performance than traditional methods, and do favor the 

convergence of model training. Finally, it is noteworthy that the AUC estimator with a sampling 

size as low as 104 achieves better performance than existing AUC optimizers. 

9. Case Studies in Predictive Maintenance 

Telecom networks are subject to the effects of prolonged overload. Shared, multi-purpose 

equipment or a single equipment malfunction can lead to the whole network being impacted. Not 

always inoperable (or slowly executable), equipment performance can degrade in time, leading to 

one or several performance metrics being violated, which will affect customer QoE. Service 

providers need tools to identify early on the performance degradation of equipment in a network 

before customer QoE gets impacted . This study proposes building a full causal inference 

framework for telecom performance analysis. 

Each telecom equipment is submitted to a set of performance statistics per monitored metric for a 

given period of time (typically, the past 96 measuring minutes monitor one-day performance). 

Each measuring comes from a monitored equipment thesis or a set of performance statistics from 

a controlled equipment’s thesises. The latter determines the threshold value as well as the number 

of missing measuring(s) needed to provide valid analyses concerning operational types of 

equipment. Because all statistics influence performance a priori, a graphical model is built and 

subsequent analyses are applied on each species’ model. The proposed solution, Vision, is a Swiss 

Knife for telecom performance statistical analyses, conveying the graphical model, GUI-based 

performance contribution graph construction, and the relevant user-defined scope of interest. 

The solution is validated on real-life telecom performance statistics in the FTTH equipment of an 

international service provider. A voice-over-DSL equipment in a telecom service provider is 

analyzed as a context aware case study to evaluate the tool usability and track performance 

propagation paths. Lessons learned and the impact of the proposed techniques in telecom are 

discussed. 

9.1. Case Study 1: Network Equipment                                 

 This chapter presents two representative case studies for applying the proposed schemes for 

intelligent predictive insights to predictive maintenance and performance optimization in 

Integrated Fixed and Mobile Network (IFMN) applications. These schemes can be generalized to 

wider applications in other telecom infrastructure elements, thus expediting use-case development. 

The first case study is related to the telecom infrastructure maintenance in predicting equipment 

faults, while the second case study focuses on quality of experience (QoE) in video streaming 

service over telecom infrastructure optimization. 
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The stable operation of telecom network equipment is a prerequisite for ensuring telecom service 

continuity and consequently customer satisfaction. In the context of the rapid deployment of 

various telecom network equipment and services, including traditional and Cloud RAN with 

increasing complexity, telecom network operations have become an increasingly sophisticated 

business endeavor. Cost efficiency, quality control, and customer satisfaction have increased in 

challenges due to the de-monopolization and the diversification of telecom infrastructure 

ownership, which adds an additional layer of complexity. Therefore, intelligent maintenance of 

such network equipment is highly sought after and represents a dominant proportion in the cost of 

telecom operation. Preventive maintenance, corrective maintenance, and predictive maintenance 

are three types of common maintenance. 

With the rapid advancement of sensors in telecom network equipment tracking operation status 

such as input voltage, air conditioning unit rectification current, rectification equipment work 

mode, ventilation monitoring, etc., a fully sensorized equipment status observation infrastructure 

capable of generating granular real-time equipment operation data is formed. However, through 

large equipment data repositories and predictive modelling approaches based on them, feature 

extraction through temporal and spectral filtering and subsequent machine learning model based 

fault class regression, they only work on resolution time scale orders from minutes to hours due to 

their reliance on batch mode predictive model processing, which is incapable of real-time 

processing on the order of milliseconds to seconds to prevent faults. 

9.2. Case Study 2: Base Stations                                                    

In cellular infrastructures, it is hard to have the right allocation of crews, because the failures of a 

particular site are not easy to predict. With historical failure data, it is conceivable to train machine 

learning models that can output failure probabilities for sites in the network. This can boost 

resource allocation efficiency and increase the network quality. The prediction capability of 

Random Forest and XGBoost were evaluated on a dataset, which contains more than 3 years of 

historical data from 11,000 cells. The 5- and 10-days-ahead prediction accuracies were measured, 

by which Random Forest obtained satisfying results. The combination of an ARIMA prediction 

model and a Random Forest classification model is projected to not only pinpoint the major risks 

but also provide proper encapsulating measures. 

The case study is conducted on the Target Variable 1, which refers to a predefined condition that 

the Key Performance Indicators of a particular site may deviate significantly (thresholds are chosen 

based on knowledge from domain experts). In the telecommunications infrastructure, the cellular 

base station is a fundamental component of the radio access network, which ensures the quality of 

service that the subscribers access. An essential observation is that unplanned outages can happen 

randomly, but after an outage is detected by the network engineers (or automatically), it may take 

time to pinpoint the causes and escalate the proper resources needed for corrective measures. 

Hence, the effectiveness of these resources cannot be guaranteed, especially when bursts of failures 

occur and they may affect a whole area in terms of QoS degradation. Failed cases which are 

resolved without resource usage after a certain time usually carry valuable information but are 

often neglected. With more than 3 years of accumulated operational data, one essential question is 

raised: Can data analytics techniques help diagnose the outage and point out the major alarms that 

are very likely to have corresponding outage causes? With this question, it can help increase 
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resource allocation efficiency and boost the network’s health state, especially when new Advanced 

Features are deployed. 

With more than 45,000 sites, the network of a Mobile Operator involves many human-reliant 

processes and is exposed to various failure causes. These failures can be divided into two types: 

service deletions (or planned outages) and not-service deletions (or unplanned outages). The 

former is often planned ahead in advance, while the latter can happen non-randomly and are often 

protracted. After this study was discussed with high-level engineers, both were considered as 

follows: 

10. Challenges in Implementation 

One of the most challenging issues in implementing machine learning models is handling the 

exponential growth in data. In telecom networks, base stations (eNBs) may produce several 

thousand KPIs, which can be further sliced across dimensions, generating over a million readings 

every minute. This scalability issue is exacerbated by the presence of legacy mechanisms, where 

models written in a different programming language will require additional overhead for 

preprocessing. The continuous monitoring of a performance metric to detect abrupt changes in 

behavior is also difficult, due to the need for updating production models, and the time taken to 

collect enough data for meaningful analysis. 

Another significant hurdle during implementation is the lack of validation mechanisms to 

determine the accuracy of existing models. Telecom models may be constructed and evaluated in 

a contained test environment, but they can be exposed to anomalous behavior in the production 

system, leading to a loss in prediction accuracy. Producing additional performance metrics and 

feature engineering are basic steps that can help improve this, but it is vital to know when models 

need maintenance and are no longer fit for purpose. This highlights the importance of robust and 

easy-to-interpret performance metrics to evaluate credibility, adjust reactively to network changes, 

and help maintain high availability telecom systems that run 24/7 . 

Another issue is the need for more explainable models that provide a clear understanding of their 

working mechanisms. Complex DNN architectures sometimes produce amazing results, but they 

tend to behave like black boxes and do not communicate how predictions are formed. This is an 

issue for automated tasks such as root cause analysis, as the models need to guide analysts through 

the reasoning process. To ensure that the maintenance procedure succeeds, an explanation model 

is needed that provides clear insights into how the system logically reached its conclusions. Models 

with precursor finding algorithms can be customized with configurations that enhance their 

interpretability. Using models with built-in explanations is also advisable. Despite ongoing 

research, appropriate interpretable models are often needed in a telecom setting. 

10.1. Data Quality Issues                                                               

 The advent of deep learning techniques has had a profound impact on the internet of things 

ecosystem, most notably in network performance management, where mobile broadband 

infrastructure must handle a growing volume of increasingly complex traffic types. Tools based 

on machine learning concepts can augment necessary human analysis and experience by providing 
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predictions, alerts, and suggestions that will enhance operations and service quality while handling 

many times the current infrastructure with fewer overheads. While algorithm frameworks and 

simulations resulting in good analysis and predictions can be devised, they do not guarantee 

success unless specific requirements are understood and met. Such requirements include inputs, 

derived metrics, model selection, training, and evaluation. 

The telecom operator must assess its data foundations and ML algorithms. There is also a need to 

carefully assess algorithms for appropriate performance measurement to produce forecasting or 

labeling results that can assist any operational activities. This includes appropriate evaluation 

performance indicators and metrics banks, observing protocols, labeling segmentation definition 

and composition, and tagging preparation for supervised learning tasks. 

Telecommunications operators must implement several processes as their first stage to involve in 

all basics of data preparation before ML applications can happen on the data they already have. 

Performance Labelling Segmentation Processes aggregate raw performance measurements into 

derived performance metrics at different levels of granularity, which are useful inputs for 

performance-related supervised learning tasks targeting network performance forecasting and 

anomaly detection. All initial post-processing steps such as filtering labels to a desired time 

horizon can be done in-house. Performance Segmentation Labelling is aggregate and non-generic 

ML applications where a pre-definition of the label variable is mandatory. Such system processes 

delineate an ML-based paradigm for both hydrocarbon production forecasting and control. 

10.2. Integration with Existing Systems                                  

As discussed in previous sections, the approach for predictive maintenance clearly focuses on 

maintenance and performance optimization based on the efficient utilization of predictive models. 

If the resulting models do not translate into either model or outcome, then the model does not serve 

its purpose regardless of how accurate it is. On the other hand, it is vital that wherever such a 

system is implemented, it either expands into or integrates with the existing information 

technology stack. This includes but is not limited to cloud-based service enablement platforms, 

data pipelines, temporary storage, and business-related systems. This section details the approach 

and considerations for such an implementation . 

To evaluate the performance of the deployed approach, telemetry data that was previously part of 

the raw datasets must again be processed and once again filtered in terms of specific models. The 

telemetry filters then get applied against the production data obtained from the database-as-a-

service. Once again this filtered data serves for the extraction of statistics, features, and target 

variables for the ML models and the state variables for the expert systems. The concerns of this 

section regard processing telemetry data gathered in an environment external to the previous 

locally run stack. 

Telemetries provide state indicators reflecting physical or logical changes in the network elements 

which enable integer predictions of service-affecting failures. The goal is not to forecast a single 

numerical value but score these telemetries against ranges of predictions and assign a condition as 

being OK or NOT OK. The resulting states lower the chance of false negatives and create alarms 

for further disclosures for the network operations teams. The same concept can group the states 
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into an overall score that takes network segment arrangements, priorities, and criticalities into 

consideration. In order to base the state analysis on clear and interpretable criteria, expertise 

knowledge descriptions must be obtained from experts and specifically agreed upon. 

11. Conclusion 

The telecom Information and Communication Technology (ICT) sector is growing aggressively, 

but the expansion of this sector in terms of customer base burden is increasing steeply. Leading 

Telecom companies are looking at making certain improvements in their telecom infrastructures 

to efficiently cater to their growing customer base. Major telecom companies' infrastructures are 

made up of elements such as Chassis, Routers, Patching Frames, Optical Units, etc. In order to 

operate these elements accurately and efficiently, it is of utmost importance to look into their 

performance and maintenance actions. These telecom elements undergo normal wear and tear with 

time and need to be taken up for periodic maintenance to avoid step-mistakes which can lead to 

complete failure. Furthermore, there can be a sudden operational failure of some of the elements 

due to external reasons like natural calamities or man-made accidents. These unexpected failures 

account for a very huge loss not only financially but also a degradation in network quality which 

leads to loss of revenue. 

Machine Learning (ML) models are built to satisfy the need of telecommunication companies by 

keeping a tab on infrastructure performance, which enhances the expected performance of the 

telecom elements, and predicting maintenance schedules of infrastructure elements, which 

enhances the reliability of the telecom elements thereby avoiding breakdown due to unusual 

behavior. These ML models address the two-fold objective of this research. Poor performing 

telecom elements are filtered using a Multi-Linear Regression model by parsing the Routing and 

Sonic log data of network use. These telecom elements are again analyzed using ‘SURF & K-

Means Clustering’ models to provide a better understanding of the infrastructure so that corrective 

actions can be taken. Predicting maintenance tasks of these telecom elements is achieved using 

Extreme Gradient Boosting, Random Forest, Support Vector Classifier, and Light Gradient 

Boosting models. 

Ultimately, a predictive maintenance approach is presented which depicts the importance of work 

history parameters for robustness and accuracy in predicting maintenance schedules. Six ML 

models are trained that give a very high F1 score which is very much appreciable for any prediction 

task. This predictive maintenance model enables the stakeholders to focus on probable candidates 

and educate and extract knowledge from them on what may have gone wrong and what corrective 

efforts can be made. Predictive maintenance is an important dimension under asset management 

as it detects issues with equipment and machinery before failure occurs. Many industries want to 

adopt predictive maintenance for their systems to save on maintenance costs and avoid failures. 

Deciding what predictive model to use and how to implement it are important questions every 

business should ask before jumping into their predictive deployment projects. This project will 

help identify the obstacles and trade-offs, which provide clarity of decision-making trail to enable 

higher success rates in predictive maintenance implementations. 

11.1. Future Trends                                                                     
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With the penetration of 5G, the boom of the IoT, and the appreciation of virtual solutions, a new 

round of telecommunication technological revolution is around the corner. Establishing better 

performance networks at a lower cost, improving customer experience, increasing automation, and 

directing services intelligently are some of the challenges set by the telecommunication 

technological upgrade. Intelligent systems leveraging advanced analytics are critical for 

Telecommunications Service Providers (TSPs) to thrive in this new environment. This paper 

discusses the state of the art of machine learning applications for performance optimization and 

predictive maintenance of telecommunication networks. As the number of installed data sources 

increases, the leadership of advanced analytics could be deemed as a top competitive advantage. 

Time-related events in the telecommunication infrastructure such as alarms, counters, performance 

monitoring, and customer complaint tickets represent a vast array of data. Most of the knowledge 

assumed is either quantitative in nature and not proactively taken advantage of, or qualitative and 

stored in text blobs spread in multiple documents. On top of that, how to obtain the highest value 

from it is a current hot-topic of research with an important impact on decision-making. 

The reduced model of the cellular-radio network used is denoted by a homogeneous Poisson point 

process of users and base stations, with independent micro-mobility. Model parameters are the 

arrival rate, contact rate, cell residence time, and transmission range. The traffic of educational 

establishments is shown to exhibit distinct patterns considered relevant to educational planning. 

Using empirical data, an analytical model providing insights into the impact of school traffic on 

the network is derived in a mean sense. By exploiting model parameters, the model can be used to 

explore the impact of cellular network design and traffic demand on educational traffic. 

Consequently, best practices for planning cellular networks to account for educational zones are 

suggested. The plans include the upgrade of base station equipment, increase in tower height, 

and/or reduction in cell-size, jointly pursued with feasible ways of economically deploying new 

cells, in order for the initial peak-to-average of generated and offered traffic to remain invariant. 

Alternative plans should also be pursued when the latter condition does not hold, for regulating 

offered traffic, i.e., pricing schemes, transmission power requirements for users, and basic traffic 

control mechanisms. 
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