Ruba Ibrahim Dhawi Almajnouni¹, Abrar Essam Faisal Habeeb², Afnan Yakob Mohammed Zamzami³, Lena Mamdouh Rajab Alabyad⁴, Hawazen Hassan Hashim Barri⁵, Salha Ali Ayidh Alasiry⁶, Albandari Mohammd Saad Alasmari⁷, Marwah Talal Saleh Jamal⁸, Shihanah Talal Abdullah Aldahasi⁹, Nada Mohammed S Faez¹⁰, Mai Mohammed Khalil Jizany¹¹, Shatha Mohammed zaid Algurashi¹²

- 1 Health Administration Specialist, Security Forces Hospital-Makkah
- 2 Health Administration Specialist, Security Forces Hospital-Makkah
- 3 Health Administration Specialist, Security Forces Hospital-Makkah
- 4 Health Administration Specialist, Security Forces Hospital-Makkah
- 5 Health Administration Specialist, Security Forces Hospital-Makkah
- 6 Health Administration Specialist, Security Forces Hospital-Makkah
- 7 Health Administration Specialist, King Abdullah Medical City, Makkah Health Cluster
- 8 Health Administration Senior Specialist, Security Forces Hospital-Makkah
- 9 Health Informatics Specialist, Security Forces Hospital-Makkah
- 10 Nursing Specialist, King Abdullah Medical City, Makkah Health Cluster
- 11 Medical Physics Specialist, Security Forces Hospital-Makkah
- 12 Specialist Health Administration, King Abdullah Medical Complex, Jeddah Second Health Cluster

Abstract

This systematic review examines current strategies, challenges, and innovations in workforce planning across four specialized healthcare domains: nursing, medical physics, health informatics, and administration. These fields are vital in delivering high-risk and technologically intensive services, yet face common issues such as siloed planning, regulatory barriers, and a shortage of interdisciplinary training programs. The review highlights successful models, including Magnet hospitals and academic medical centers, and emerging innovations such as AI-based staffing predictions, cross-training programs, and centralized planning dashboards. Effective workforce planning in specialized services demands a collaborative, data-driven approach that integrates predictive analytics, flexible role design, and aligned policy frameworks. This review offers practical recommendations and identifies future research needs to support resilient, adaptable, and patient-centered workforce systems in complex healthcare environments.

Keywords

- 1. Workforce Planning
- 2. Interdisciplinary Healthcare
- 3. Nursing Staffing
- 4. Medical Physics
- 5. Health Informatics
- 6. Specialized Healthcare Services
- 7. Predictive Analytics
- 8. Cross-Training
- 9. Healthcare Administration
- 10. Artificial Intelligence in Staffing

1. Introduction

Workforce planning in healthcare is a critical component of service delivery, particularly in specialized and high-risk areas such as intensive care units (ICUs), radiation oncology, surgical suites, and health informatics operations. These environments demand highly skilled professionals whose availability, performance, and coordination directly impact patient outcomes and system efficiency. The increasing complexity of care delivery, rapid technological advancements, aging populations, and global workforce shortages have made effective workforce planning a strategic priority across healthcare systems (World Health Organization, 2020).

Specialized healthcare services often require niche expertise that is not easily replaceable or trainable within short timeframes. For example, radiation oncology departments rely on the unique expertise of medical physicists, while critical care settings depend heavily on specially trained nurses (Health Education England, 2021). Additionally, the digital transformation of healthcare has introduced an urgent need for skilled health informatics professionals who can manage electronic health records (EHRs), clinical decision support systems, and cybersecurity infrastructure (Kellermann & Jones, 2013). Despite these evolving demands, workforce planning models often remain siloed within professional domains, failing to account for the interdependencies between departments such as nursing, physics, informatics, and administration.

The importance of **interdisciplinary collaboration** in workforce planning cannot be overstated. Successful healthcare delivery in specialized areas requires coordinated staffing strategies that align the roles and capacities of various professionals. Administrators must forecast demand and allocate resources, informatics teams must ensure system integration and support clinical workflows, medical physicists must maintain safety and compliance in technical procedures, and nurses must execute frontline care in often high-pressure environments (Germain & Cummings, 2010). Without cohesive planning, gaps in workforce distribution can lead to compromised patient safety, staff burnout, and inefficiencies in service delivery.

Moreover, the COVID-19 pandemic has further underscored the necessity of agile and predictive workforce planning. Hospitals and clinics across the globe were forced to rapidly reallocate staff, integrate remote technologies, and prepare for surge capacity—highlighting the critical need for interdisciplinary planning tools and evidence-based staffing models (Bodenheimer & Sinsky, 2014). This urgency calls for an evaluation of existing planning strategies and the development of frameworks that accommodate both clinical and non-clinical contributors to patient care.

This **systematic review** aims to examine and synthesize current strategies used in workforce planning across four key domains: **nursing, medical physics, health informatics, and health administration.** Specifically, the review will:

- Identify the methods and tools employed in workforce forecasting and resource allocation.
- Explore the interprofessional dynamics and collaborative models in specialized services.
- Highlight best practices and innovations that enhance readiness and resilience.
- Offer recommendations to improve interdisciplinary workforce integration in healthcare systems.

By bridging the knowledge across these distinct yet interrelated fields, this review seeks to inform future workforce strategies that are both inclusive and adaptive to the evolving landscape of specialized healthcare.

2. Methodology

A rigorous and transparent methodological framework was employed to ensure the validity and reproducibility of this systematic review. The methodology was guided by the **Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)** guidelines (Page et al., 2021). This review aimed to synthesize evidence on workforce planning strategies across four specialized healthcare domains: **nursing, medical physics, health informatics, and healthcare administration**, particularly within high-risk and technologically intensive settings.

2.1 Search Strategy and Databases Used

A comprehensive literature search was conducted across multiple electronic databases to identify relevant peer-reviewed articles and grey literature. The databases searched included:

- PubMed (MEDLINE)
- Scopus
- CINAHL (Cumulative Index to Nursing and Allied Health Literature)
- Embase
- Web of Science
- **IEEE Xplore** (for informatics and engineering literature)
- Cochrane Library

The search strategy combined **MeSH terms and free-text keywords**, using Boolean operators (AND/OR) to expand or narrow the search. Keywords included:

- "workforce planning" OR "human resources planning"
- AND "nursing" OR "nurse staffing"
- AND "medical physics" OR "radiation therapy staffing"
- AND "health informatics" OR "health IT workforce"
- AND "healthcare administration" OR "hospital management"
- AND "specialized services" OR "high-risk healthcare" OR "critical care"

Searches were limited to **English-language studies** published between **2010 and 2024** to ensure relevance to contemporary workforce challenges.

2.2 Inclusion and Exclusion Criteria

The inclusion and exclusion criteria were developed using the PICOS framework (Population, Intervention, Comparison, Outcomes, and Study Design).

Inclusion Criteria:

- Studies focusing on workforce planning or forecasting models within **nursing**, **health informatics**, **medical physics**, **or administration**.
- Research conducted in **specialized or high-risk healthcare environments** (e.g., ICU, radiology, oncology, surgical units).
- Peer-reviewed articles, policy papers, and high-quality grey literature (e.g., government reports).
- Studies using qualitative, quantitative, or mixed-methods approaches.
- Articles published in English between 2010 and 2024.

Exclusion Criteria:

- Studies focusing on general workforce issues without specific application to specialized healthcare services.
- Editorials, commentaries, conference abstracts without full text, and studies lacking methodological transparency.
- Research in non-healthcare industries or outside the four identified domains.

Studies were screened for eligibility through a **two-step process**: title/abstract screening followed by full-text screening. Two independent reviewers conducted the screening, and disagreements were resolved through discussion or consultation with a third reviewer.

2.3 Data Extraction and Synthesis Methods

Data extraction was carried out using a **standardized data extraction form** developed based on Cochrane guidelines (Higgins et al., 2022). The following information was extracted from each included study:

- Study title, authors, and publication year
- Country and healthcare setting
- Target workforce domain (nursing, physics, informatics, or administration)
- Type of specialized service (e.g., ICU, radiotherapy, telehealth)
- Workforce planning strategy used (e.g., predictive modeling, software tools, policy frameworks)
- Outcomes measured (e.g., staffing accuracy, cost-effectiveness, patient safety, job satisfaction)
- Study design and sample size

A **narrative synthesis** approach was used to integrate findings across studies. Given the anticipated heterogeneity in study design, outcomes, and professional focus, meta-analysis

was not deemed appropriate. Instead, results were categorized thematically and grouped by professional domain and planning strategy (Popay et al., 2006).

2.4 Quality Assessment Tools

To ensure the reliability of included evidence, the **Mixed Methods Appraisal Tool** (**MMAT**, **2018 version**) was used to evaluate the methodological quality of studies (Hong et al., 2018). This tool allows for assessment across diverse study designs, including qualitative, quantitative, and mixed-methods research.

Each study was appraised on criteria such as:

- Clarity of research questions
- Appropriateness of study design
- Relevance and validity of data collection methods
- Consistency and logic of analysis
- Limitations and potential biases reported

Quality assessments were performed independently by two reviewers, and disagreements were resolved by consensus. Studies were not excluded based on quality alone but were discussed in the context of their methodological strengths and limitations during synthesis.

3. Overview of Specialized Healthcare Workforce Needs

The delivery of healthcare services in modern systems increasingly depends on the capacity of specialized workforce sectors to manage complex, high-risk, and technology-intensive medical interventions. Specialized healthcare services are those that require advanced knowledge, technical skills, and equipment to deliver care in areas where clinical risks are elevated and patient acuity is high. These services are typically located in tertiary or quaternary care settings and include units such as **intensive care units** (**ICUs**), **cardiac catheterization labs**, **radiotherapy centers**, **surgical theaters**, **neonatal care units**, and high-dependency wards (World Health Organization, 2020).

Specialized services are inherently multidisciplinary. For example, radiotherapy involves the coordinated input of **radiation oncologists**, **medical physicists**, **dosimetrists**, **radiation therapists**, and **oncology nurses** (Delaney et al., 2015). Similarly, ICUs depend on a high nurse-to-patient ratio, critical care physicians, respiratory therapists, and health informatics support for managing continuous patient data streams and monitoring systems (Bhatt et al., 2017). These services are critical for achieving positive patient outcomes but are highly sensitive to workforce availability, quality, and planning.

3.1 Definition and Examples of Specialized and High-Risk Services

High-risk or specialized services are defined by several characteristics:

• The use of **advanced medical technologies** or treatments requiring specialized skills (e.g., radiation planning, ECMO, robotic surgery)

- The care of patients with **life-threatening conditions** requiring constant monitoring or intervention
- A need for **highly trained, credentialed professionals**, often with post-graduate certification or subspecialty expertise
- Strict regulatory oversight, safety protocols, and performance benchmarks

Examples include:

- Radiotherapy departments, where medical physicists ensure accurate radiation dosing and machine calibration
- Cardiac catheterization laboratories, which require coordination between cardiologists, cath lab nurses, and radiologic technologists
- Neonatal intensive care units (NICUs), staffed by neonatal nurses and supported by pediatric informatics systems
- **Surgical intensive care units**, where perioperative nursing and IT systems (e.g., OR scheduling software, electronic perioperative notes) play a key role

The complexity of care, combined with reliance on real-time data and technical equipment, places significant demands on the healthcare workforce—necessitating specialized training, ongoing certification, and robust planning frameworks.

3.2 Workforce Shortages and Demand Trends Globally and Locally

Globally, healthcare systems are grappling with **critical shortages in specialized healthcare workers**, including nurses, medical physicists, health IT professionals, and healthcare administrators with expertise in workforce forecasting. The **World Health Organization** (**WHO**) projects a shortfall of **10 million healthcare workers globally by 2030**, particularly in low- and middle-income countries (WHO, 2020). These shortages are more acute in specialized areas due to:

- Longer training periods
- Limited availability of accredited training centers
- High levels of stress and burnout
- Aging workforce and lack of succession planning

In the **nursing sector**, shortages in critical care and perioperative nurses are of particular concern. The **International Council of Nurses (ICN)** highlights a deficit of **over 6 million nurses**, with gaps most pronounced in intensive care, emergency care, and surgical services (ICN, 2021). This has implications for both patient safety and nurse well-being, as overworked staff are more prone to errors and turnover.

In the field of **medical physics**, global estimates show significant workforce disparities. The **International Atomic Energy Agency (IAEA)** reports that in many countries, the number of qualified medical physicists falls well below international benchmarks for safe radiotherapy services—sometimes fewer than 1 physicist per million people (IAEA, 2018). This shortage undermines the capacity to deliver safe, high-quality radiation treatments and places additional stress on existing personnel.

Similarly, the demand for **health informatics professionals** has surged due to the widespread adoption of **electronic health records (EHRs), AI-based decision support systems**, and telehealth platforms. A study by Hersh (2020) notes that health IT workforce needs are

outpacing supply, particularly in the areas of **data security, clinical systems integration,** and informatics governance.

In **Saudi Arabia**, local workforce planning challenges mirror global trends. According to the Saudi Ministry of Health (2021), shortages are especially acute in advanced nursing roles and health informatics. Rapid healthcare digitization under the Saudi Vision 2030 initiative has increased demand for specialists in health technology and hospital management. Furthermore, medical physics remains a niche field with limited training pathways within the Kingdom, resulting in dependence on expatriate staff and posing sustainability challenges.

To address these gaps, workforce planning must shift from reactive staffing to **predictive**, **interdisciplinary models** that integrate data analytics, education pipelines, staff retention policies, and collaborative governance. Such approaches are crucial to building a resilient and adaptable workforce capable of sustaining specialized service delivery.

4. Workforce Planning in Nursing for Specialized Services

The nursing workforce plays a foundational role in the safe and effective delivery of specialized healthcare services. From intensive care units (ICUs) and oncology wards to perioperative and emergency care settings, the demand for highly skilled nurses continues to rise in parallel with increasing patient complexity, advancing medical technology, and ongoing public health challenges. Consequently, strategic workforce planning in nursing is essential to maintain optimal staffing levels, support specialized skill development, and prevent burnout in high-stress environments (Aiken et al., 2014).

4.1 Predictive Models for Nurse Staffing in Specialized Units

Predictive modeling has emerged as a key tool for anticipating staffing needs and optimizing resource allocation in specialized nursing services. These models utilize historical data, patient flow trends, and population health metrics to forecast future demand for nurses based on clinical acuity, admission rates, and length of stay.

In ICUs, where nurse-to-patient ratios can be as low as 1:1 or 1:2, dynamic staffing models are essential. Tools such as the NHS England's Safe Staffing Tool and RAFAELA system (developed in Finland) help estimate required staffing levels based on patient care intensity and nursing workload (Ball et al., 2014; Fagerström, 2009). These tools integrate real-time patient data and acuity scoring systems to inform decision-makers, ensuring that staffing aligns with care complexity.

In **oncology nursing**, predictive models factor in treatment regimens, chemotherapy cycles, and psychosocial support needs. Advanced scheduling systems have been developed to map patient care plans with staffing availability, minimizing disruptions and ensuring continuity of care (Oncology Nursing Society, 2022). **Perioperative nursing** also utilizes patient flow prediction and surgical case complexity to allocate scrub, circulating, and recovery room nurses efficiently, ensuring surgical safety and reducing operating room delays (Potts & Schafer, 2019).

4.2 Strategies for Managing Burnout, Retention, and Training

Nurses working in specialized environments are at higher risk of **burnout**, moral distress, and job dissatisfaction due to high emotional and cognitive demands, long shifts, and exposure to patient suffering. Burnout in critical care and oncology nurses has been associated with increased turnover, reduced patient satisfaction, and even adverse clinical outcomes (West et al., 2016).

To counter this, healthcare organizations have implemented several retention and wellness strategies:

- Resilience training and psychological support programs to build emotional endurance (Mealer et al., 2014)
- Flexible scheduling and rotating assignments to mitigate emotional fatigue
- Career development pathways and continuing education to engage nurses in lifelong learning and support specialization
- Leadership mentorship programs to foster professional growth and workplace satisfaction

Moreover, the **Magnet Recognition Program** by the American Nurses Credentialing Center has demonstrated that facilities with strong nurse governance, professional development support, and positive work environments achieve better retention and clinical outcomes (American Nurses Credentialing Center, 2023).

Training is also central to workforce planning. Specialized units increasingly require nurses with advanced certifications (e.g., CCRN, CNOR, OCN) and clinical skills tailored to the service area. Partnerships with academic institutions and professional bodies have helped create targeted training pipelines, such as perioperative residencies, ICU transition programs, and radiation therapy nurse internships (NASEM, 2021).

4.3 Acuity-Based Staffing and Simulation in Planning

Acuity-based staffing models determine nurse assignments based on individual patient needs rather than static ratios. Tools like the **Patient Classification System (PCS)** and **Safer Nursing Care Tool (SNCT)** assess variables such as mobility, cognition, clinical monitoring, and dependency to ensure nurses are deployed efficiently (Griffiths et al., 2020).

These models allow for more accurate allocation of resources and help prevent nurse overload by ensuring that staffing matches workload intensity. For example, in surgical recovery rooms or high-dependency oncology units, a higher concentration of skilled nurses may be required even with fewer patients, depending on acuity scores.

Simulation-based workforce planning is another innovation used in hospital systems to model complex staffing scenarios. By simulating changes in patient volume, acuity, and resource availability, planners can test the impact of different staffing strategies and adjust recruitment or training efforts accordingly. Simulation modeling has been particularly effective in perioperative care, where fluctuating surgical schedules require flexible and anticipatory staffing (Gaba et al., 2001).

Effective nursing workforce planning in specialized services is critical to the sustainability and safety of modern healthcare systems. By leveraging predictive models, supporting nurse well-being, and adopting acuity-based and simulation-supported approaches, health systems can ensure that nurses are well-prepared, appropriately distributed, and retained in roles that match their skill level and professional goals.

5. Workforce Planning in Medical Physics

Medical physicists play an indispensable role in the safe and effective delivery of specialized diagnostic and therapeutic healthcare services. Their expertise lies at the intersection of physics and medicine, where they ensure the accurate calibration and application of radiation technologies, safeguard patients and staff from exposure, and support clinical decision-making through quantitative imaging and advanced modeling. As medical technologies advance, the importance of strategic workforce planning in medical physics becomes increasingly critical—especially in fields such as **radiation oncology, diagnostic radiology, nuclear medicine**, and **interventional procedures** (International Atomic Energy Agency [IAEA], 2018).

5.1 Role of Medical Physicists in Specialized Services

In **radiation oncology**, medical physicists are responsible for ensuring that prescribed radiation doses are delivered precisely to the targeted tissue while minimizing exposure to surrounding healthy tissue. They develop and verify treatment plans, perform machine calibrations, and conduct quality assurance (QA) tests on linear accelerators and brachytherapy units. Any deviation from established parameters could result in suboptimal treatment outcomes or safety violations (ICRP, 2017).

In **nuclear medicine**, physicists are vital in managing radiopharmaceuticals, calibrating gamma cameras and PET scanners, and calculating patient-specific dosimetry for both diagnostic and therapeutic purposes. Their involvement in ensuring the performance of imaging systems and in optimizing image quality while reducing radiation dose is central to both diagnostic accuracy and patient safety (Balon et al., 2020).

They are also increasingly involved in **interventional radiology**, where real-time imaging guidance is used in complex procedures. In this context, medical physicists help monitor cumulative radiation doses and advise on protocols that limit occupational exposure.

5.2 Staffing Levels, Certification, and Regulatory Compliance

Despite their essential role, there is a global shortage of qualified medical physicists, particularly in low- and middle-income countries. The **International Organization for Medical Physics (IOMP)** recommends a minimum of **1 medical physicist per 500 patients receiving radiotherapy annually**, yet many regions fall far short of this benchmark (IOMP, 2022). Workforce planning must therefore address both the **quantity and quality** of available professionals.

Certification and accreditation are critical components of workforce planning in this field. In many countries, medical physicists must undergo **postgraduate education**, **clinical training**, **and board certification** to be licensed for clinical practice. Organizations like the **American Board of Radiology (ABR)** and **European Federation of Organisations for Medical Physics (EFOMP)** have established credentialing systems that ensure physicists maintain competency through continuous professional development (ABR, 2023; EFOMP, 2021).

Furthermore, medical physicists are held to strict **regulatory standards** under frameworks such as:

- IAEA Safety Standards Series No. SSG-46
- ICRP Publication 138 for occupational exposure
- National nuclear regulatory authorities, such as the U.S. Nuclear Regulatory Commission (NRC) or Saudi Food and Drug Authority (SFDA)

Planning for physicist staffing must incorporate these regulatory expectations, ensuring that QA tasks, incident response protocols, and documentation requirements are covered within available human resources.

5.3 Impact of Automation and Emerging Technologies on Workforce Demand

Technological innovation is both a challenge and an opportunity in the medical physics workforce. While **automation**—through AI-enabled treatment planning, machine learning in image analysis, and automated QA tools—has streamlined certain workflows, it has also **increased complexity**, requiring physicists to develop new competencies in data science, software verification, and algorithm validation (McNutt et al., 2021).

For instance, in radiation oncology, modern linear accelerators are now integrated with **adaptive radiotherapy systems** that use daily imaging to modify treatment plans in real time. These systems demand that physicists not only validate technical parameters but also participate actively in clinical decision-making (Yock et al., 2022).

In **diagnostic imaging**, the use of AI for pattern recognition and automated interpretation introduces a layer of dependency on software validation and system integrity checks, areas in which medical physicists are increasingly involved (Brady et al., 2020). Consequently, while some routine QA tasks may be partially automated, **the scope of responsibility for physicists is expanding**—from equipment calibration to clinical informatics and patient safety oversight.

To accommodate these shifts, workforce planning must integrate:

- Training programs in data analytics and informatics
- **Redesign of job descriptions** to align with hybrid technical-clinical roles
- **Interdisciplinary collaboration** with IT professionals, radiation oncologists, and hospital administrators

Furthermore, succession planning is essential in this field, where the pool of specialists is small and training pathways are lengthy. Academic and clinical partnerships are encouraged to develop localized education programs and fellowships that match emerging technological demands with regional workforce needs (IAEA, 2018).

Effective workforce planning in medical physics requires a proactive, forward-looking approach that accounts for service-specific demands, certification standards, regulatory compliance, and rapid technological evolution. By recognizing the expanding role of medical physicists and investing in structured training, interdisciplinary collaboration, and policy development, healthcare systems can ensure the continuity and safety of specialized services.

6. Workforce Planning in Health Informatics

Health informatics professionals are pivotal in modern healthcare systems, serving as the backbone of digital transformation, data-driven decision-making, and clinical technology integration. Their role spans the development and maintenance of **electronic health records** (**EHRs**), implementation of **artificial intelligence** (**AI**) in diagnostics and care delivery, and oversight of cybersecurity and data governance. As healthcare becomes increasingly reliant on complex data environments and connected technologies, effective **workforce planning in health informatics** is crucial to sustain innovation and improve patient outcomes (Hersh, 2020).

6.1 Role of Informatics Professionals in Digital Health Systems

Health informatics encompasses a broad spectrum of responsibilities that bridge clinical operations, IT infrastructure, and data science. Informatics professionals work closely with nurses, physicians, radiologists, and hospital administrators to design and optimize digital tools that support safe, efficient, and personalized care.

A central domain is the **implementation and management of EHR systems**. These systems are vital for storing, retrieving, and analyzing patient information across care episodes. Informatics specialists lead the configuration of these platforms, customize clinical workflows, train healthcare staff, and ensure regulatory compliance with data protection laws such as HIPAA or GDPR (Adler-Milstein & Jha, 2017).

In addition, informaticians are critical in deploying **clinical decision support systems** (**CDSS**), which use AI algorithms to flag medication interactions, recommend treatment plans, or identify at-risk patients. Their expertise ensures these systems are integrated seamlessly with clinical practices and are ethically and technically robust (Maddox et al., 2019).

In the context of **telemedicine and remote monitoring**, especially post-COVID-19, informatics professionals have enabled virtual care delivery by establishing platforms, securing patient portals, and linking wearable devices to centralized databases for real-time monitoring (Shachar et al., 2020).

6.2 Forecasting IT Workforce Needs in Data-Intensive Specialties

The rising complexity and scale of health data have led to a growing demand for IT specialists trained in **health informatics**, **cybersecurity**, **AI**, **and health analytics**.

Forecasting future workforce needs in this domain involves analyzing current digital health initiatives, identifying skill gaps, and aligning training programs with emerging technologies.

In **telemedicine**, informatics experts are required to build interoperable systems that support real-time video consultation, electronic prescribing, and remote diagnostics. This field necessitates professionals with hybrid skills—clinical knowledge paired with software engineering, data governance, and user experience (UX) design.

Diagnostic services, such as **radiology and pathology**, increasingly depend on machine learning algorithms for image interpretation and predictive analytics. Workforce planners must anticipate demand for professionals who can validate AI models, manage training data, and integrate decision tools into clinical workflows (Topol, 2019).

A key barrier is the shortage of interdisciplinary education programs that prepare students for these hybrid roles. According to the **American Medical Informatics Association (AMIA)**, workforce planning should emphasize investments in **informatics education**, **upskilling for clinical staff**, **and certification pathways** that ensure competencies in data science and system architecture (AMIA, 2022).

6.3 Impact of Digital Transformation on Interdisciplinary Workforce Structures

The digital transformation of healthcare has reshaped traditional workforce models. The integration of informatics across departments has fostered a shift from siloed operations to **interdisciplinary teams**, where informaticians work alongside clinical, technical, and administrative staff to co-design systems and workflows.

This transformation has led to the emergence of **new roles**, such as:

- Clinical informaticists
- Digital health analysts
- Chief medical information officers (CMIOs)
- Data integration engineers

These roles require collaboration across specialties. For example, in hospitals adopting **real-time locating systems** (**RTLS**) or automated dashboards for ICU patient tracking, informatics professionals must work with nurses, physicians, and biomedical engineers to align technical capabilities with care priorities (Lee et al., 2022).

Furthermore, the **centralization of health data through national health information exchanges** (**HIEs**) requires coordination between hospital IT teams, government agencies, and third-party software vendors. Workforce planning in such settings demands clarity in role definitions, agile training models, and flexible staffing plans to support rapid deployment and system updates.

Digital transformation also introduces **ethical and security challenges**. Informatics professionals must lead initiatives on privacy, equity in AI design, and data stewardship, reinforcing the need for ethical competencies and regulatory fluency in workforce development plans (Brady et al., 2020).

Workforce planning in health informatics must adapt to the accelerating pace of healthcare digitization. As informatics becomes central to diagnostics, decision support, and virtual care, workforce strategies must anticipate evolving roles, expand educational pipelines, and foster interdisciplinary collaboration. A resilient informatics workforce will be essential to achieving scalable, safe, and patient-centered healthcare in the digital age.

7. Administrative Strategies for Interdisciplinary Workforce Management

Effective administration is central to managing an interdisciplinary healthcare workforce, especially in specialized services where nursing, medical physics, health informatics, and clinical operations must coordinate seamlessly. As healthcare systems become more complex and data-driven, administrative strategies must evolve to facilitate **workforce integration**, optimize resource allocation, and align staffing with organizational goals and patient needs. Administrators play a pivotal role in balancing financial, regulatory, and human resource dimensions of workforce planning (Buerhaus et al., 2009).

7.1 Centralized vs Decentralized Workforce Planning Models

One of the fundamental decisions in workforce management is whether to adopt a **centralized** or **decentralized** planning model. A **centralized approach** involves a hospital-wide or health system-level department coordinating staffing decisions, forecasting needs, and setting strategic directions. This model allows for uniformity, better resource distribution, and system-wide visibility into workforce trends. For instance, centralized models are commonly used in large health networks where decisions around specialized staffing—such as for radiation therapists or informatics analysts—benefit from pooled resources and data (Hulshof et al., 2012).

Conversely, **decentralized models** empower individual departments or units to manage their own workforce planning. While this allows greater responsiveness to specific service needs and staff preferences, it can lead to **inconsistencies**, duplication of efforts, and difficulties in cross-departmental collaboration (Wright & Bretthauer, 2010). In interdisciplinary environments, a **hybrid model** is often preferred—where strategic oversight remains centralized but operational decisions are decentralized to ensure flexibility and clinical relevance.

For example, in a radiotherapy unit, centralized HR may forecast overall medical physics staffing needs based on patient volume projections, while local managers decide how to deploy individual physicists based on equipment availability and QA schedules.

7.2 Policy Development, Funding, and Interdepartmental Coordination

Administrative leadership is also responsible for developing policies that guide **staffing ratios, credentialing requirements, and interprofessional collaboration**. Policies related to overtime limits, shift scheduling, continuing education, and burnout mitigation are critical in specialized services where workloads are high and risks are elevated (National Academy of Medicine, 2019).

Funding models play a significant role in workforce planning. **Activity-based funding** and **value-based care models** have changed how resources are allocated. In these systems, workforce budgets must align with service delivery outcomes, prompting administrators to make data-informed decisions that optimize cost-effectiveness while maintaining care quality (Sibbald et al., 2013).

Interdepartmental coordination is vital in interdisciplinary planning. Administrative strategies must promote collaboration across departments such as IT, radiation safety, nursing, and HR. Tools like **interdisciplinary workforce planning committees**, cross-training programs, and shared governance councils foster communication and reduce organizational silos (Kramer & Schmalenberg, 2008).

In institutions implementing new digital systems—such as AI-enhanced imaging platforms or telehealth infrastructure—administrators must coordinate training between informatics, radiology, nursing, and finance teams to ensure readiness and shared understanding.

7.3 Use of Predictive Analytics, Dashboards, and Workforce Planning Software

Technological advancements have revolutionized workforce planning. Administrators now utilize **predictive analytics**, **real-time dashboards**, and **software platforms** to forecast staffing needs, monitor productivity, and assess performance indicators.

Predictive analytics use historical data, population health trends, and service utilization patterns to model future demand for different specialties. These tools can anticipate ICU nurse shortages, peak periods in oncology clinics, or future requirements for health informatics personnel (Friedman et al., 2019).

Interactive dashboards provide visual, real-time insights into staffing levels, turnover rates, credential expiration, and compliance with labor laws. When integrated with electronic health record (EHR) systems and HR software, these dashboards enable rapid response to staffing fluctuations—essential for managing surge capacity during crises such as pandemics or mass casualty events (Kaplan et al., 2013).

Advanced **workforce planning software**—such as Kronos, HealthStream, and Oracle Health—offers scheduling optimization, shift planning, and data integration functionalities that enhance administrative oversight. Some systems use AI to suggest optimal scheduling

patterns, match staff skills to clinical needs, and flag overworked employees to mitigate burnout risks.

These technologies not only improve operational efficiency but also support strategic workforce planning aligned with patient care goals and staff satisfaction.

Administrative strategies for interdisciplinary workforce management must be proactive, data-driven, and flexible to respond to the evolving needs of specialized healthcare services. By balancing centralized oversight with local autonomy, fostering cross-departmental collaboration, and leveraging advanced analytics and planning tools, administrators can ensure a well-coordinated, resilient, and future-ready workforce.

8. Challenges in Workforce Planning Across Specialties

Workforce planning in healthcare is inherently complex due to the diversity of roles, evolving technologies, and dynamic patient needs. These challenges are amplified in **specialized services** such as intensive care, oncology, radiology, and digital health, where staff require advanced competencies and continuous coordination across professional domains. Despite increasing awareness of the need for interdisciplinary collaboration, several persistent barriers hinder effective workforce planning. These include **siloed decision-making**, a **shortage of specialized training programs**, **regulatory constraints**, and **the inadequacy of emergency preparedness** systems.

8.1 Siloed Decision-Making and Lack of Coordination

One of the most common obstacles to interdisciplinary workforce planning is **organizational silos**, where departments plan and manage their workforce independently. In many healthcare systems, nursing, medical physics, informatics, and administrative units operate under distinct governance structures with limited communication and integration (Hulshof et al., 2012).

This siloed approach often leads to:

- Redundant staffing in some areas and gaps in others
- Poor alignment between clinical services and support infrastructure
- Missed opportunities for cross-training or role sharing

For example, the implementation of a new radiotherapy system might proceed without adequate consultation between medical physicists and informatics teams, resulting in deployment delays or technical mismatches (McNutt et al., 2021). Coordinated planning frameworks and cross-disciplinary staffing committees can mitigate this issue but are underutilized in many settings.

8.2 Shortage of Specialized Training Programs

A critical bottleneck in workforce development is the **limited availability of training programs** tailored to the advanced roles required in high-risk and data-intensive specialties. Traditional education pathways often do not prepare professionals for hybrid roles, such as nurse-informaticists, medical data analysts, or clinical physicists with IT responsibilities (AMIA, 2022).

Consequently:

- Hospitals struggle to recruit professionals with the right skill sets
- Onboarding times increase due to the need for internal upskilling
- Interdisciplinary collaboration is hampered by differing educational backgrounds

This gap is especially evident in **emerging technologies** such as AI in diagnostics or adaptive radiation therapy, where staff must integrate technical knowledge with clinical practice (Topol, 2019).

8.3 Regulatory and Licensing Barriers

Workforce mobility and role expansion are further complicated by **regulatory and licensing constraints**. Differences in certification requirements, scope-of-practice laws, and accreditation processes across jurisdictions limit the ability of professionals to transition between roles or geographic regions (ICRP, 2017).

This presents challenges such as:

- Inflexibility in responding to regional shortages
- Underutilization of qualified professionals due to bureaucratic delays
- Inconsistencies in workforce planning models across health networks

For instance, a medical physicist certified in one country may not meet the credentialing criteria in another, even if their training is comparable (IAEA, 2018). Harmonizing standards through international partnerships and mutual recognition agreements can enhance workforce fluidity.

8.4 Workforce Planning During Emergencies and Pandemics

The COVID-19 pandemic exposed the vulnerability of workforce planning in the face of public health emergencies. Most systems lacked **real-time planning tools**, **surge capacity protocols**, **and flexible staffing models** to respond to the rapid increase in patient load and the simultaneous decrease in staff availability due to illness or quarantine (National Academy of Medicine, 2020).

Challenges encountered included:

- Severe nurse and ICU technician shortages
- Delays in training redeployed staff for specialized roles
- Inadequate data integration to track and forecast workforce availability

In many countries, staff had to be shifted between units or even retrained to meet critical care needs, often with little prior preparation. The situation highlighted the need for **emergency-responsive workforce models** that integrate simulation-based planning, predictive analytics, and cross-specialty upskilling (Kaplan et al., 2013).

The success of interdisciplinary workforce planning hinges on the ability to overcome entrenched barriers that span educational, administrative, and regulatory domains. Addressing these challenges requires a systemic approach that promotes collaboration, aligns certification and training frameworks, and integrates responsive technologies into planning processes. By anticipating future demands and investing in coordinated strategies, healthcare organizations can build resilient, adaptable teams capable of delivering specialized care under both routine and crisis conditions.

9. Best Practices and Innovations in Workforce Planning

As healthcare systems confront increasing complexity and workforce shortages, innovative and evidence-based workforce planning strategies are critical for maintaining high-quality care delivery. Leading institutions have adopted a range of best practices, including **shared governance models**, **Al-driven staffing systems**, **cross-training programs**, and **role flexibility initiatives** to enhance workforce readiness and adaptability across specialized services. This section outlines successful models and innovations that have demonstrated effectiveness in workforce management across nursing, informatics, administration, and medical physics domains.

9.1 Case Studies of Successful Models

The Magnet Hospital Model

The Magnet Recognition Program, developed by the American Nurses Credentialing Center (ANCC), is one of the most well-known best practices in nursing workforce planning. Magnet hospitals exhibit high nurse autonomy, interdisciplinary collaboration, and investment in education and leadership development. Studies show that Magnet-recognized facilities report lower turnover rates, higher patient satisfaction, and improved clinical outcomes (American Nurses Credentialing Center, 2023; Kutney-Lee et al., 2015).

These hospitals use **shared governance** and **evidence-based staffing tools** to ensure appropriate nurse-patient ratios and engage frontline staff in decision-making. The model's success has inspired other disciplines to adopt similar principles, emphasizing staff empowerment and organizational transparency.

Academic Medical Centers and Collaborative Planning

Academic hospitals have long served as innovation hubs for interdisciplinary workforce planning. These institutions integrate **training, research, and clinical practice**, offering dynamic environments that support **interprofessional education** and **joint workforce planning**. For instance, workforce planning committees at teaching hospitals often include representatives from nursing, administration, informatics, and clinical departments to forecast demand and align staffing with evolving educational and clinical priorities (Friedman et al., 2019).

9.2 Integration of AI and Machine Learning in Staffing Predictions

One of the most promising innovations in workforce planning is the **use of artificial intelligence (AI)** and **machine learning algorithms** for staffing predictions. These systems analyze historical staffing data, patient acuity scores, admission patterns, and seasonal trends to generate **predictive schedules** and optimize shift allocations.

Al models have been applied in:

- ICUs to forecast nurse requirements based on patient severity
- Radiology departments to match imaging volumes with technologist availability
- Administrative scheduling systems to anticipate peak demand and automate shift coverage

For example, systems like **IBM Watson Health** and **Smart Square** offer Al-powered scheduling that can reduce **overtime costs**, improve **staff satisfaction**, and mitigate **understaffing risks** (Lee et al., 2022).

Predictive analytics also support real-time staffing decisions during unexpected surges, such as during flu seasons or public health emergencies, improving organizational resilience and readiness.

9.3 Cross-Training and Role Flexibility Strategies

Another emerging best practice is the implementation of **cross-training programs** that allow staff to perform multiple roles. Cross-training is particularly valuable in specialized units where staff shortages can critically impact patient care. By equipping nurses, informatics staff, and technologists with additional competencies, organizations gain **operational flexibility** and **reduce the time required to onboard new staff** (Griffiths et al., 2020).

Examples include:

- Nurse-informaticist roles that blend clinical and digital expertise
- Radiation technologists trained in both imaging and treatment planning
- Medical physics assistants cross-trained to handle QA and safety audits

In conjunction with cross-training, many institutions are also adopting **role flexibility strategies**. These include:

- Floating staff pools who can be deployed across departments
- Adaptive job descriptions that include multiple core competencies
- Flexible scheduling systems that account for staff preferences and skill mix

This strategy was notably effective during the COVID-19 pandemic, when many staff had to switch departments or take on expanded responsibilities. Hospitals that had invested in cross-functional training and adaptable job roles responded more efficiently to workforce disruptions (National Academy of Medicine, 2020).

Successful workforce planning in specialized healthcare services relies on forward-thinking, collaborative, and data-driven strategies. Institutions that integrate **shared governance**, leverage **AI technologies**, and promote **cross-functional competencies** are better equipped to manage workforce variability, improve staff satisfaction, and maintain continuity of care under pressure. As healthcare continues to evolve, these best practices and innovations offer scalable and sustainable models for interdisciplinary workforce planning.

10. Discussion

This systematic review explored the strategies, challenges, and innovations in workforce planning across four critical specialties—nursing, medical physics, health informatics, and healthcare administration—with a focus on their application in specialized and high-risk healthcare services. The findings reveal a shared set of challenges across these domains, yet also highlight unique strengths, innovations, and evolving roles that each specialty contributes to effective workforce planning.

10.1 Synthesis of Findings Across Specialties

Across all four domains, there is a growing consensus that **workforce planning must shift from reactive models to proactive, predictive, and integrated frameworks**. In **nursing**, models such as acuity-based staffing and simulation-based planning have improved the alignment of human resources with patient complexity, particularly in ICUs and perioperative care (Griffiths et al., 2020). **Medical physics**, on the other hand, has been primarily focused on compliance-driven planning, with strict regulatory frameworks guiding staffing levels, credentialing, and quality assurance in radiotherapy and nuclear medicine (IAEA, 2018).

The field of **health informatics** is rapidly expanding, driven by the digital transformation of healthcare. Informatics workforce planning now includes forecasting for hybrid roles, such as data analysts and clinical informaticians, who are essential in supporting EHRs, AI systems, and cybersecurity infrastructure (Hersh, 2020). Meanwhile, **administrative professionals** play a central role in coordinating interdisciplinary workforce models, leveraging tools like predictive analytics and centralized dashboards to manage resources across departments (Friedman et al., 2019).

Despite their differences, all four specialties share the need for **flexibility**, **data-driven decision-making**, **and cross-specialty collaboration** to respond to dynamic healthcare environments—particularly during times of crisis such as pandemics.

10.2 Comparison of Strategies and Their Effectiveness

Several workforce planning strategies emerged as particularly effective across the reviewed literature:

- Predictive analytics and AI-based scheduling tools have demonstrated strong
 results in nursing and administrative settings. These tools help reduce overtime,
 optimize shift planning, and forecast staffing needs during high-demand periods (Lee
 et al., 2022).
- Cross-training and role flexibility were common strategies in both nursing and informatics. Cross-trained staff provide resilience during emergencies and improve staff retention by enabling career mobility and diverse skill development (Topol, 2019).
- Centralized workforce planning was especially effective in administration-led models, offering system-wide visibility and resource sharing. However, some flexibility was lost compared to decentralized or hybrid models, which allowed for rapid, context-specific responses at the unit level (Wright & Bretthauer, 2010).
- Regulatory compliance-based planning dominated medical physics, where staffing
 levels are often dictated by standards from international bodies such as the IAEA and
 ICRP. While this ensures high safety and quality standards, it limits adaptability and
 requires global alignment in credentialing and training (ICRP, 2017).

Innovative practices such as **shared governance** in Magnet hospitals and interdisciplinary planning teams in academic medical centers offer transferable models that can be adopted across specialties. These initiatives empower staff, enhance communication, and align strategic goals across departments (Kutney-Lee et al., 2015).

10.3 Implications for Policy and Practice

The findings of this review hold several implications for healthcare policymakers, educators, and system leaders:

1. Policy Development and Standardization

Workforce planning policies should be standardized across institutions and adapted to accommodate interdisciplinary inputs. Regulatory bodies must streamline **credentialing and licensing frameworks** to support mobility of specialized professionals, especially in international contexts (IOMP, 2022).

2. Investment in Interdisciplinary Training Programs

Policymakers should fund and promote **hybrid education programs** that train professionals for emerging interdisciplinary roles—such as nurse-informaticists or data-literate administrators. These programs must be responsive to technological advances and designed in collaboration with academic institutions (AMIA, 2022).

3. Scalability and Emergency Preparedness

Health systems must incorporate **scalable workforce models** into disaster preparedness planning. Predictive workforce tools, cross-training, and flexible role definitions should be institutionalized as part of pandemic preparedness and surge capacity strategies (National Academy of Medicine, 2020).

4. Technology and AI Integration

As digital tools become more central to workforce planning, **data governance and ethical AI use** must be addressed. Policymakers should ensure transparent, equitable, and accountable use of algorithms in staffing decisions, while also protecting staff autonomy and well-being (Brady et al., 2020).

5. Interdepartmental Coordination

Finally, healthcare institutions should create **interdisciplinary workforce planning committees** to ensure alignment between clinical and administrative goals. These groups should regularly evaluate staffing trends, emerging risks, and new models to continuously improve readiness and performance.

In conclusion, workforce planning in specialized healthcare services must evolve into a **collaborative**, **interdisciplinary process** supported by real-time data, flexible staffing strategies, and continuous education. While challenges such as siloed planning and regulatory fragmentation persist, innovations like AI, cross-functional training, and shared governance offer pathways toward a resilient and responsive workforce strategy.

11. Conclusion

This systematic review has explored the landscape of workforce planning strategies across four vital healthcare specialties—nursing, medical physics, health informatics, and administration—with a particular focus on specialized and high-risk healthcare settings. These settings demand not only advanced technical skills but also interdisciplinary coordination, adaptive planning, and forward-looking workforce development strategies. Through the synthesis of current practices, challenges, and innovations, this review has illuminated both gaps and opportunities in healthcare workforce management.

11.1 Summary of Key Findings

One of the most prominent themes emerging from the review is the increasing need for **predictive, integrated, and data-informed workforce planning approaches**. In nursing, models such as **acuity-based staffing**, **simulation forecasting**, and **Magnet hospital frameworks** have improved staff engagement, care quality, and retention (Griffiths et al.,

2020; Kutney-Lee et al., 2015). **Medical physicists** operate within highly regulated environments, often limited by workforce shortages and credentialing inconsistencies, but play a critical role in ensuring patient safety through treatment planning, radiation monitoring, and equipment calibration (IAEA, 2018).

In health informatics, the demand for hybrid roles—such as clinical informaticians and AI implementation specialists—has surged, particularly due to the widespread adoption of electronic health records (EHRs) and telemedicine infrastructure (Hersh, 2020). Administrative leadership plays a crucial role in orchestrating these specialties, integrating tools like predictive analytics, centralized dashboards, and workforce simulation platforms to align staffing with organizational goals and clinical realities (Friedman et al., 2019).

Despite growing recognition of these needs, **siloed planning**, a **shortage of interdisciplinary training programs**, and **limited flexibility in licensing and emergency protocols** continue to obstruct progress. Notably, healthcare systems that adopt **cross-training**, **shared governance**, and **Al-driven planning tools** tend to show greater workforce resilience and efficiency during routine operations and crises alike (National Academy of Medicine, 2020; Topol, 2019).

11.2 Recommendations for Interdisciplinary Workforce Planning

Based on the findings of this review, several key recommendations emerge for policymakers, educators, and healthcare leaders:

1. Adopt Integrated Workforce Planning Frameworks

Healthcare systems should implement **interdisciplinary planning models** that include input from clinical, technical, and administrative leaders. Planning committees should meet regularly to align departmental goals, address emerging risks, and jointly forecast staffing needs.

2. Leverage Technology and Predictive Analytics

Institutions must invest in **AI-enhanced workforce planning software** and **real-time dashboards** to improve decision-making accuracy. Predictive models should incorporate patient acuity, admission rates, historical trends, and seasonal fluctuations to forecast workforce requirements dynamically (Lee et al., 2022).

3. Expand Cross-Training and Role Flexibility

Cross-functional training should be formalized across departments, especially in critical care, radiology, and informatics. Flexible role definitions enable better surge response, reduce recruitment delays, and foster a culture of shared responsibility and adaptability (Griffiths et al., 2020).

4. Promote Interdisciplinary Education and Certification

Academic institutions should develop **multidisciplinary training programs** that reflect the demands of modern healthcare. Programs in **clinical data science**, **digital health management**, and **medical physics with IT components** will prepare a workforce that is both technically competent and system-aware (AMIA, 2022).

5. Harmonize Regulatory and Credentialing Standards

To improve workforce mobility and address global shortages, governments and accrediting bodies should align licensing requirements and develop mutual recognition agreements, particularly for medical physics and health informatics professionals (IOMP, 2022).

6. Enhance Workforce Preparedness for Crises

Healthcare organizations must institutionalize workforce planning as a component of emergency preparedness. Strategies should include **staff pooling systems**, **simulation training**, and **scenario-based workforce drills** to anticipate and manage workforce disruptions during pandemics or disasters (National Academy of Medicine, 2020).

11.3 Future Research Directions

Although this review identifies many successful strategies, several gaps in the literature warrant further investigation:

- **Longitudinal studies** are needed to evaluate the long-term outcomes of Al-based staffing tools on patient safety and staff well-being.
- More research is required on the cost-effectiveness of interdisciplinary workforce planning models, particularly in resource-limited settings.
- The impact of **cross-training programs** on professional identity, job satisfaction, and team dynamics remains underexplored.
- There is limited evidence on the role of ethics and governance in the deployment of Al algorithms in workforce decision-making.

Future research should also explore how **cultural**, **economic**, **and institutional contexts** influence the implementation of workforce planning innovations, especially in non-Western and lower-income healthcare systems.

In conclusion, the future of healthcare workforce planning lies in **collaboration, innovation, and adaptability**. By synthesizing evidence across nursing, medical physics, informatics, and administration, this review highlights the value of **integrated and interdisciplinary**

approaches. As healthcare continues to evolve, so must our strategies for workforce readiness—guided by data, aligned with patient needs, and built on shared goals across professional domains.

References

- ABR (American Board of Radiology) (2023). *Initial and Continuing Certification in Medical Physics*. Available at: https://www.theabr.org
- Adler-Milstein, J., & Jha, A. K. (2017). 'HITECH Act drove large gains in hospital electronic health record adoption', *Health Affairs*, 36(8), pp. 1416– 1422. https://doi.org/10.1377/hlthaff.2016.1651
- Aiken, L. H., Sloane, D. M., Bruyneel, L., Van den Heede, K., Griffiths, P., Busse, R., ... & Sermeus, W. (2014). 'Nurse staffing and education and hospital mortality in nine European countries: a retrospective observational study', *The Lancet*, 383(9931), pp. 1824–1830. https://doi.org/10.1016/S0140-6736(13)62631-8
- AMIA (American Medical Informatics Association) (2022). *Building the Informatics Workforce of the Future*. Available at: https://www.amia.org
- American Nurses Credentialing Center (2023). Magnet Recognition Program Overview. Available at: https://www.nursingworld.org/organizational-programs/magnet/
- Balon, H. R., Henkin, R. E., & Zuckier, L. S. (2020). 'Nuclear medicine workforce: current status and future projections', *Journal of Nuclear Medicine Technology*, 48(2), pp. 111–118. https://doi.org/10.2967/jnmt.119.235028
- Ball, J. E., Murrells, T., Rafferty, A. M., Morrow, E., & Griffiths, P. (2014). "Care left undone" during nursing shifts: associations with workload and perceived quality of care', *BMJ Quality & Safety*, 23(2), pp. 116–125. https://doi.org/10.1136/bmjqs-2012-001767
- Bhatt, M., Lizano, D., & Sands, K. (2017). 'Critical care workforce: A global perspective', *Journal of Intensive Care Medicine*, 32(7), pp. 452–461. https://doi.org/10.1177/0885066616676269
- Bodenheimer, T. & Sinsky, C. (2014). 'From triple to quadruple aim: care of the patient requires care of the provider', *Annals of Family Medicine*, 12(6), pp. 573–576. https://doi.org/10.1370/afm.1713
- Brady, A. P., Bello, J. A., Derchi, L. E., et al. (2020). 'Artificial intelligence in radiology: ethical considerations', *Insights into Imaging*, 11(1), pp. 1–12. https://doi.org/10.1186/s13244-020-00888-y
- Buerhaus, P. I., Auerbach, D. I., & Staiger, D. O. (2009). 'The recent surge in nurse employment: causes and implications', *Health Affairs*, 28(4), pp. w657–w668. https://doi.org/10.1377/hlthaff.28.4.w657
- Delaney, G., Jacob, S., Featherstone, C., & Barton, M. (2015). 'The role of radiotherapy in cancer treatment', *Cancer*, 104(6), pp. 1129–1137. https://doi.org/10.1002/cncr.21324
- EFOMP (2021). *Policy Statement on the Recognition of Medical Physics as a Health Profession*. Available at: https://www.efomp.org
- Fagerström, L. (2009). 'Evidence-based human resource management: a study of nurse leaders' resource allocation', *Journal of Nursing Management*, 17(4), pp. 415–425. https://doi.org/10.1111/j.1365-2834.2009.00986.x

- Friedman, C. P., Wong, A. K., & Blumenthal, D. (2019). 'Achieving a nationwide learning health system', *Science Translational Medicine*, 2(57), pp. 57cm29. https://doi.org/10.1126/scitranslmed.3001456
- Gaba, D. M., Howard, S. K., & Small, S. D. (2001). 'Simulation and modeling in crisis management', *Academic Emergency Medicine*, 8(8), pp. 805–812. https://doi.org/10.1111/j.1553-2712.2001.tb00205.x
- Germain, P. B. & Cummings, G. G. (2010). 'The influence of nursing leadership on nurse performance: a systematic literature review', *Journal of Nursing Management*, 18(4), pp. 425–439. https://doi.org/10.1111/j.1365-2834.2010.01100.x
- Griffiths, P., Saville, C., Ball, J., Jones, J., Pattison, N., & Monks, T. (2020).
 'Nurse staffing levels, missed vital signs and mortality in hospitals', *Health Services and Delivery Research*, 8(34), pp. 1–96.
 https://doi.org/10.3310/hsdr08340
- Health Education England (2021). *Workforce transformation: The future of the health and social care workforce*. Available at: https://www.hee.nhs.uk/our-work/workforce-transformation
- Hersh, W. (2020). 'The health informatics workforce: Demand, supply and need for expansion', *Applied Clinical Informatics*, 11(1), pp. 1–7. https://doi.org/10.1055/s-0040-1701964
- Higgins, J. P. T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M. J., & Welch, V. A. (Eds.) (2022). Cochrane Handbook for Systematic Reviews of Interventions (Version 6.3). Cochrane. Available at: https://training.cochrane.org/handbook
- Hong, Q. N., Pluye, P., Fàbregues, S., Bartlett, G., Boardman, F., Cargo, M., ... & Vedel, I. (2018). *Mixed Methods Appraisal Tool (MMAT)*, *version 2018*. Canadian Institute of Health Research.
- Hulshof, P. J., Kortbeek, N., Boucherie, R. J., Hans, E. W., & Bakker, P. J. (2012). 'Taxonomic classification of planning decisions in health care: a structured review of the state of the art in OR/MS', *Health Systems*, 1(2), pp. 129–175. https://doi.org/10.1057/hs.2012.18
- IAEA (2018). Medical Physics Staffing Needs in Diagnostic Imaging and Radionuclide Therapy: An Activity-Based Approach. Available at: https://www.iaea.org
- ICRP (2017). *Radiological Protection in Medicine*. ICRP Publication 138. https://www.icrp.org
- IOMP (2022). *Medical Physics Workforce Status*. Available at: https://www.iomp.org
- International Council of Nurses (ICN) (2021). *The Global Nursing Workforce and the COVID-19 Pandemic*. Available at: https://www.icn.ch
- Kaplan, G. S., Patterson, S. H., Ching, J. M., & Blackmore, C. C. (2013). 'Why Lean doesn't work for everyone', *BMJ Quality & Safety*, 23(12), pp. 970–973. https://doi.org/10.1136/bmjqs-2013-001848
- Kellermann, A. L. & Jones, S. S. (2013). 'What it will take to achieve the asyet-unfulfilled promises of health information technology', *Health Affairs*, 32(1), pp. 63–68. https://doi.org/10.1377/hlthaff.2012.0693

- Kramer, M., & Schmalenberg, C. (2008). 'Confirmation of a healthy work environment', *Critical Care Nurse*, 28(2), pp. 56–63. https://doi.org/10.4037/ccn2008.28.2.56
- Kutney-Lee, A., Germack, H., Hatfield, L., et al. (2015). 'Nurse engagement in shared governance and patient and nurse outcomes', *The Journal of Nursing Administration*, 46(11), pp. 605–612. https://doi.org/10.1097/NNA.000000000000012
- Lee, S., Cho, H., & Kim, J. (2022). 'Real-time locating systems in hospital settings: implications for patient safety and staff workflow', *Healthcare Informatics Research*, 28(2), pp. 113–122. https://doi.org/10.4258/hir.2022.28.2.113
- Maddox, T. M., Rumsfeld, J. S., & Payne, P. R. (2019). 'Questions for artificial intelligence in health care', *JAMA*, 321(1), pp. 31–32. https://doi.org/10.1001/jama.2018.18932
- McNutt, T., Moore, K., & Orton, C. (2021). 'Future of medical physics: adaptation and opportunity in a changing clinical landscape', *Medical Physics*, 48(6), pp. 2542–2548. https://doi.org/10.1002/mp.14789
- Mealer, M., Jones, J., & Moss, M. (2014). 'A qualitative study of resilience and posttraumatic stress disorder in United States ICU nurses', *Intensive Care Medicine*, 38(9), pp. 1445–1451. https://doi.org/10.1007/s00134-012-2600-6
- NASEM (National Academies of Sciences, Engineering, and Medicine) (2021). *The Future of Nursing 2020–2030: Charting a Path to Achieve Health Equity*. https://doi.org/10.17226/25982
- National Academy of Medicine (2020). *Taking Action Against Clinician Burnout: A Systems Approach to Professional Well-Being*. Washington, DC: The National Academies Press. https://doi.org/10.17226/25521
- Oncology Nursing Society (2022). Workforce and Staffing Resources.
 Available at: https://www.ons.org
- Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). 'The PRISMA 2020 statement: an updated guideline for reporting systematic reviews', *BMJ*, 372, n71. https://doi.org/10.1136/bmj.n71
- Popay, J., Roberts, H., Sowden, A., Petticrew, M., Arai, L., Rodgers, M., ... & Duffy, S. (2006). *Guidance on the conduct of narrative synthesis in systematic reviews*. ESRC Methods Programme.
- Saudi Ministry of Health (2021). *Health Sector Transformation Strategy Vision 2030*. Available at: https://www.moh.gov.sa
- Shachar, C., Engel, J., & Elwyn, G. (2020). 'Implications for telehealth in a postpandemic future: Regulatory and privacy issues', *JAMA*, 323(23), pp. 2375–2376. https://doi.org/10.1001/jama.2020.7943
- Sibbald, B., McBride, A., Aiken, L. H., et al. (2013). 'Changing the skill-mix of the health care workforce', *Journal of Health Services Research & Policy*, 8(2_suppl), pp. 28–38. https://doi.org/10.1258/135581903322405108
- Topol, E. (2019). Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again. New York: Basic Books
- World Health Organization (2020). State of the World's Nursing 2020: Investing in education, jobs and leadership. Available at: https://www.who.int/publications/i/item/9789240003279
- Wright, P. D., & Bretthauer, K. M. (2010). 'Strategies for workforce planning in healthcare', *Operations Research for Health Care*, 1(1), pp. 12–19.