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1. Introduction: 

Mapping is a crucial technique for understanding topological concepts and creating new 

topological spaces out of pre-existing ones. The broad idea of mapping is overly focused 

on topology and analysis. Imagine a topological space as a set from which all structures 

that are not essential to the continuity of mappings defined on it have been swept away. 

The notions of continuous, open, and closed mappings in fuzzy topological spaces were 

expanded by Chang (1968)[`7]`. Fuzzy semi continuity was first described by K. K. Azad 

[3] in 1981. Generalized fuzzy continuous functions were introduced by G. 

Balasubramaniam and P. Sundaram [2] in 1997, while fuzzy semi-pre continuity was 

introduced by S. S. Thakur and S. Singh [9] in 1998. And fb-continuity, fgb and fbg-

continuity were introduced by S. S. Benchalli and Jenifer Karnel [4,5,6] in 

2010.Andrijevic was the first to develop the concept of b-open sets in general topology 

[1]. Jenifer and Megha introduced the concept of fuzzy strongly generalized b-open and 

closed sets in [8]. 

This article introduces the concepts of fsgb-closure ,fsgb-interior and fsgb-fsgb-

continuous, fsgb- irresolute mapping, fsgb-open, and fsgb-closed maps in FTS. Their 

properties are determined as well as some characterizations. 

2.  Preliminaries: 

Throughout this study(𝐿,𝜏),(𝑀, 𝜎) and,(𝑁, 𝛾) (or simply L,M,and N) are fuzzy topological 

spaces (in short, fts). The interior, closure, and compliment of a fuzzy subset P of (L,𝜏) are 

denoted by Int(P) , Cl(P), and Pcrespectively. Unless otherwise specified, no separation axioms 

are expected.  

2.1 Definition[4] A fuzzy setP in a fts L is called fb-open iff 𝑃 ≤ (IntCl(𝑃) ∨ ClInt(P)). 

2.2 Definition[4]Fb-interior and Fb-closure of afuzzy set Pis  as follows 

(i)bInt(P) =˅{𝑄: 𝑄 is a fb-open set of 𝐿 and 𝑃 ≥ 𝑄}. 

(ii) bCl(P) =˄{𝑅: 𝑅 is a fb-closed set of 𝐿 and 𝑅 ≥ 𝑃}. 

2.3Defintion [2] A fuzzy set(f-set) P in a FTS L is known as fuzzy generalized closed set(in 

short(fg-CS) if Cl(𝑃) ≤ 𝑄, whenever 𝑃 ≤ 𝑄 and Q is fuzzy open set(f-OS) in L. 
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2.4Definition [8]A f-OS P in a fts L  is called a fsgb-CS if bCl(𝑃) ≤ 𝑄, whenever 𝑃 ≤ 𝑄and 

Qis fg -open set inL. 

2.5Definition [8]A f-OS P in a fts L is called a fsgb-open set if bInt(𝑃) ≥ 𝑄, whenever 𝑃 ≥
𝑄and Q is fg -open set in L. 

2.6Definition: A fuzzy set P in a FTS (L,𝜏) is known as 

i)fuzzy generalized b-closed set[3](in short fgb-CS) if bCl(𝑃) ≤ 𝑄 where 𝑃 ≤ 𝑄 and Q is f-

OS in L. 

ii)fuzzy semi open set[3](in short fs-OS) if  𝑃 ≤ Cl(Int𝑃). 

iii)fuzzy α-open set[3](in short fα-OS) if 𝑃 ≤ IntCl(Int𝑃). 

iv)fuzzy pre-open set[3](in short fp-OS) if  𝑃 ≤ Int(Cl𝑃). 

2.7 Definition: Let M, N be two fts. A mapping ℊ: 𝐿 → 𝑀 is called 

i)fuzzy continuous map(in short f- ℂℕ map)[7] if ℊ−1(𝑃) is f-OS  in L ,for every f-OS P of M. 

ii)fuzzy generalized continuous map(in short fg- ℂℕ map)[2] ifℊ−1(𝑄)is fg-closed in L, for 

every f-CS Q of M. 

iii)fuzzy b-continuous map(in short fb-ℂℕ map) [5] if ℊ−1(𝑃) is fb-CS in L, for every f-CS P 

of M. 

iv)fuzzy b*-continuous map(in short fb*- ℂℕ map) [5] ifℊ−1(𝑃) is fb-CS in L , for every fb-

CS P of M. 

v)fuzzy b-closed map(fb-CM)[5] if  ℊ(𝑃) is fb-CS in M , for every f-CS P in L. 

vi)fuzzy b*-closed map(fb*-CM)[5] if  ℊ(𝑃) is fb-CS in M , for every fb-CS P in L. 

3. Fuzzy Strongly Generalized b-closure and interior. 

The definitions of fsgb-interior(fsgb- 𝐼𝑛𝑡) and fsgb-closure (fsgb- 𝐶𝑙) of a f-set are defined and 

their characteristics are established in this section. 

Definition 3.1. If 𝑃 is a f-set in a fts, then fsgb − 𝐶𝑙(𝑃) =∧ {𝑄: 𝑄 is a fsgb-𝐶𝑆 and 𝑃 ≤
𝑄} fsgb-𝐼𝑛𝑡(𝑃) =∨ {𝑄: 𝑄 is a fsgb-𝑂𝑆 and 𝑃 ≥ 𝑄}. 

Theorem3.2. If 𝑃 be a fsgb-CS in a fts (𝑌, 𝜏), then 𝑃 = fsgb-𝐶𝑙(𝑃). 

Proof: Consider 𝑃 be a fsgb-𝐶𝑆 in a fts (𝑌, 𝜏). Then we have fsgb-𝐶𝑙(𝑃) ≤ 𝑃. But 𝑃 ≤
fsgb-𝐶𝑙(𝑃) always, thus 𝑃 = fsgb-𝐶𝑙(𝑃). 

Theorem3.3. The following results hold for fsgb-𝐶𝑙 in fts 𝑌. 

(i) fsgb-𝐶𝑙(0) = 0,fsgb-𝐶𝑙(1) = 1. 

(ii) 𝑃 ≤ fsgb-𝐶𝑙(𝑃) ≤ f-𝐶𝑙(𝑃). 

(iii) fsgb-𝐶𝑙(fsgb-𝐶𝑙(𝑃)) = fsgb-𝐶𝑙(𝑃). 

Proof. Consider 𝑃 be a f-set in a fts (𝑌, 𝜏). 

(i) Obvious. 

(ii) Every f-CS is an fsgb-𝐶𝑆 by property fsgb-𝐶𝑙(𝑃) ≤ f-𝐶𝑙(𝑃) and by definition, 𝑃 ≤
fsgb-𝐶𝑙(𝑃), Thus 𝑃 ≤ fsgb-𝐶𝑙(𝑃) ≤ f-𝐶𝑙(𝑃). 

(iii) Since fsgb-𝐶𝑙(𝑃) is fsgb-closed. 

Remark3.4. For any 2 f-sets 𝑃 and 𝑄, fsgb-𝐶𝑙(𝑃) = fsgb-𝐶𝑙(𝑄) does not imply that 𝑃 = 𝑄. 

The following example illustrates this. 

Example3.5. Consider 𝑌 = {𝑑, 𝑒, 𝑓} 

𝑅 = {(𝑑, 1), (𝑒, 0), (𝑓, 0)} 

𝑆 = {(𝑑, 1), (𝑒, 0), (𝑓, 1)} 

𝑃 = {(𝑑, 0), (𝑒, 0), (𝑓, 1)} 

𝑄 = {(𝑑, 0), (𝑒, 1), (𝑓, 1)} be f-sets of 𝑌. 

Consider 𝜏 = {0, 𝑅, 𝑆, 1}, Then fsgb-𝐶𝑙(𝑃) = fsgb-𝐶𝑙(𝑄) = 1. 

It implies that fsgb-𝐶𝑙(𝑃) = fsgb-𝐶𝑙(𝑄) but 𝑃 ≠ 𝑄. 

Theorem3.6. The following results hold for fsgb-closure in a fts 𝑌. 

(i) fsgb-𝐶𝑙(𝑃) ≤ fsgb-𝐶𝑙(𝑄) if 𝑃 ≤ 𝑄. 
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(ii) fsgb-𝐶𝑙(𝑃) ∨ fsgb-𝐶𝑙(𝑄) ≤ fsgb-𝐶𝑙(𝑃 ∨ 𝑄). 

(iii) fsgb-𝐶𝑙(𝑃 ∧ 𝑄) ≤ fsgb-𝐶𝑙(𝑃) ∧ fsgb-𝐶𝑙(𝑄). 

Proof .Consider 𝑃 and 𝑄 be a f-sets in fts (𝑌, 𝜏) 

(i) Since 𝑃 ≤ 𝑄), a fsgb-CS containing 𝑄, contains 𝑃 also. Thus fsgb-𝐶𝑙(𝑃) ≤ fsgb-𝐶𝑙(𝑄). 

(ii) Since 𝑃 ≤ 𝑄), a fsgb-CS containing 𝑄, contains 𝑃 also. Thus fsgb-𝐶𝑙(𝑃) ≤ fsgb-𝐶𝑙(𝑄). 

(iii) Consider 𝑃 ∧ 𝑄 ≤ 𝑃 and 𝑃 ∧ 𝑄 ≤ 𝑄. This implies fsgb-𝐶𝑙(𝑃 ∧ 𝑄) ≤ fsgb-𝐶𝑙(𝑃) and 

fsgb-𝐶𝑙(𝑃 ∧ 𝑄) ≤ fsgb-𝐶𝑙(𝑄) by (i) Thus fsgb-𝐶𝑙(𝑃 ∧ 𝑄) ≤ fsgb-𝐶𝑙(𝑃) ∧ fsgb-𝐶𝑙(𝑄). 

Theorem 3.7: The following results hold for fsgb-Interior in fts 𝑌. 

(i) fsgb-𝐼𝑛𝑡(0) = 0,fsgb-𝐼𝑛𝑡(1) = 1. 

(ii) f-𝐼𝑛𝑡(𝑃) ≤ fsgb-𝐼𝑛𝑡(𝑃) ≤ (𝑃). 

(iii) fsgb-𝐼𝑛𝑡(fsgb-𝐼𝑛𝑡(𝑃)) = fsgb-𝐼𝑛𝑡(𝑃). 

Proof. Consider 𝑃 be a f-set in a fts (𝑌, 𝜏). 

(i) Obvious. 

(ii) Every f-OS is a fsgb-𝑂𝑆 By theorem f-𝐼𝑛𝑡(𝑃) ≤ fsgb-𝐼𝑛𝑡(𝑃) and 

bydefinitionfsgb-𝐼𝑛𝑡(𝑃) ≤ 𝑃, Thus f-𝐼𝑛𝑡(𝑃) ≤ fsgb-𝐼𝑛𝑡(𝑃) ≤ 𝑃. 

(iii) By theorem fsgb-𝐼𝑛𝑡(fsgb-𝐼𝑛𝑡(𝑃)) = fsgb-𝐼𝑛𝑡(𝑃), as fsgb-𝐼𝑛𝑡(𝑃)fsgb-𝑂𝑆. 

Remark 3.8. For any 2 f-sets 𝑃 and 𝑄, fsgb-𝐼𝑛𝑡(𝑃) = fsgb-𝐼𝑛𝑡(𝑄) does not imply that 𝑃 = 𝑄. 

The following example illustrates this. 

Example3.9. Consider 𝑌 = {𝑑, 𝑒, 𝑓} 

𝑅 = {(𝑑, 1), (𝑒, 0), (𝑓, 0)} 

𝑆 = {(𝑑, 1), (𝑒, 0), (𝑓, 1)} 

𝑃 = {(𝑑, 0), (𝑒, 0), (𝑓, 1)} 

𝑄 = {(𝑑, 0), (𝑒, 1), (𝑓, 1)}Be f-sets of 𝑌. 

Consider 𝜏 = {0, 𝑅, 𝑆, 1}, then fsgb-𝐼𝑛𝑡(𝑃) = fsgb-𝐼𝑛𝑡(𝑄) = 1. 

It implies that fsgb-𝐼𝑛𝑡(𝑃) = fsgb-𝐼𝑛𝑡(𝑄) but 𝑃 ≠ 𝑄. 

Theorem3.10. The following results hold for fsgb-Interior in a fts 𝑌. 

(i) fsgb-𝐼𝑛𝑡(𝑃) ≤ fsgb-𝐼𝑛𝑡(𝑄) if 𝑃 ≤ 𝑄. 

(ii) fsgb-𝐼𝑛𝑡(𝑃) ∨ fsgb-𝐼𝑛𝑡(𝑄) ≤ fsgb-𝐼𝑛𝑡(𝑃 ∨ 𝑄). 

(iii) fsgb-𝐼𝑛𝑡(𝑃 ∧ 𝑄) ≤ fsgb-𝐼𝑛𝑡(𝑃) ∧ fsgb-𝐼𝑛𝑡(𝑄). 

Proof. Consider 𝑃 and 𝑄 be a f-sets in fts (𝑌, 𝜏) 

(i) Since 𝑃 ≤ 𝑄, a fsgb-CS containing 𝑄, contains 𝑃 also. Thus fsgb-𝐼𝑛𝑡(𝑃) ≤ fsgb-𝐼𝑛𝑡(𝑄). 

(ii) Consider 𝑃 ≤ 𝑃 ∨ 𝑄 and 𝑄 ≤ 𝑃 ∨ 𝑄. Thus, implies fsgb-𝐼𝑛𝑡(𝑃) ≤ fsgb-𝐼𝑛𝑡(𝑃 ∨ 𝑄) and 

fsgb-𝐼𝑛𝑡(𝑄) ≤ fsgb-𝐼𝑛𝑡(𝑃 ∧ 𝑄) by (i). Thus fsgb-𝐼𝑛𝑡(𝑃) ∨ fsgb-𝐼𝑛𝑡(𝑄) ≤ fsgb-𝐼𝑛𝑡(𝑃 ∨ 𝑄). 

(iii) Consider 𝑃 ∧ 𝑄 ≤ 𝑃 and 𝑃 ∧ 𝑄 ≤ 𝑄. This implies fsgb-𝐼𝑛𝑡(𝑃 ∧ 𝑄) ≤ fsgb-𝐼𝑛𝑡(𝑃) and 

fsgb-𝐼𝑛𝑡(𝑃 ∧ 𝑄) ≤ fsgb-𝐼𝑛𝑡(𝑄) by (i) Thus fsgb-𝐼𝑛𝑡(𝑃 ∧ 𝑄) ≤ fsgb-𝐼𝑛𝑡(𝑃) ∧ fsgb-𝐼𝑛𝑡(𝑄). 

4. Fsgb-neighbourhood and fsgb-q-neighbourhood. 

 

fsgb-neighbourhood and fsgb-q-neighbourhood of a fuzzy point is introduced along with its 

characteristics. 

Definition4.1. Consider 𝑄 be a f-set in fts 𝑌 and 𝑦𝑃 be a fuzzy-point in 𝑌, the 𝑄 is called fsgb-

neighborhood (briefly fsgb-n) of 𝑦𝑃 iff there exists a fsgb-OS 𝑅 such that 𝑦𝑃 ∈ 𝑅 ≤ 𝑄. 

Theorem4.2. A f-set 𝑄 is a fsgb-OS in 𝑌 iff for every fuzzy-point 𝑦𝑃 ∈ 𝑄, 𝑄 is a fsgb-n of 𝑦𝑃. 

Proof. Consider 𝑄 be fsgb-OS in 𝑌.For every 𝑦𝑃 ∈ 𝑄, consider 𝑄 ≤ 𝑄. Hence 𝑄 is a fsgb-n of 

𝑦𝑃. 
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 Conversely, consider 𝑄 be a fsgb-n of 𝑦𝑃 then by definition, there exists a fsgb-OS 𝑅 

such that 𝑦𝑃 ∈ 𝑅 ≤ 𝑄. Thus 𝑄 is fsgb-OS in 𝑌. 

Theorem4.3. If 𝑄 an 𝑅 are fsgb-n of 𝑦𝑃 then 𝑄 ∧ 𝑅 is also a fsgb-n of 𝑦𝑃. 

Proof. Consider 𝑄 and 𝑅 be fsgb-n of 𝑦𝑃. Thus, there exist fsgb-OS 𝑀 and 𝑁 such that 𝑦𝑃 ∈
𝑀 ∧ 𝑁 ≤ 𝑄 ∧ 𝑅. Therefore 𝑄 ∧ 𝑅 is also a fsgb-n of 𝑦𝑃. 

Definition4.4. In a fts 𝐿, a f-set 𝑃 is said to be fuzzy strongly generalized b-q-neighborhood 

(in short, fsgb-q-n) of a fuzzy point 𝑙 iff there exists a fsgb-OS𝑄 in 𝐿 such that 𝑙 𝑞 𝑄 ≤ 𝑃. 

Theorem4.5. If 𝑃and 𝑄 be fsgb-n of 𝑙 then there exists fsgb-OS𝑅 and 𝑆 such that 𝑙 ∈ 𝑅 ≤ 𝑃 

and 𝑙 ∈ 𝑆 ≤ 𝑄 and 𝑙 ∈ 𝑅 ∧ 𝑆 ≤ 𝑃 ∧ 𝑄. Thus, 𝑃 ∧ 𝑄 is also fsgb-n of 𝑙. 
Theorem4.6. A f-set 𝑃 in a fts 𝐿 is fsgb-OS in 𝐿 iff, for every fuzzy point 𝑙 ∈ 𝑃, 𝑃 is fsgb-𝑛 of 

𝑙. 
Proof. Consider 𝑃 be fsgb-OS in 𝐿 and fuzzy point 𝑙 ∈ 𝑃. Since 𝑃 ≤ 𝑃, thus 𝑙 ∈ 𝑃 ≤ 𝑃. 

Therefore, 𝑃 is fsgb-n of 𝑙. 
 Conversely, consider 𝑃 be fsgb-n of 𝑙. There exists a fsgb-OS𝑅 in 𝐿, such that 𝑙 ∈ 𝑅 ≤
𝑃. Thus, 𝑃 is fsgb-OS in 𝐿. 

Theorem4.7. Let 𝑃 be f-set in 𝐿. Then, a fuzzy point 𝑙 ∈ fsgb 𝐶𝑙(𝑃) iff each fsgb-q-n of 𝑙 is 

quasi-coincident with 𝑃. 

Proof. Let 𝑙 ∈ fsgb 𝐶𝑙(𝑃). Let 𝑄 be fsgb-q-n of 𝑙 such that 𝑄𝑞𝑃. There exist fsgb-OS𝑅 in 𝐿 

such that 𝑙 𝑞 𝑅 ≤ 𝑄. This implies 𝑅 𝑞 𝑃. Thus, 𝑃 ≤ 1 − 𝑅, 1 − 𝑅 is fsgb-CS in 𝐿 and 

fsgb 𝐶𝑙(𝑃) ≤ 1 − 𝑃. Since 𝑙 ∈ 1 − 𝑅 implies, 𝑙 ∉ fsgb 𝐶𝑙(𝑃) which is a contradiction. 

 Conversely, since every fsgb-q-n of 𝑙 is quasi-coincident with 𝑃. Let 𝑙 ∉ fsgb 𝐶𝑙(𝑃). Then 

there exists a fsgb-CS𝑄, such that 𝑃 ≤ 𝑄 and 𝑙 ∉ 𝑄. Therefore, 1 − 𝑄 is fsgb-OS such that 

𝑙 𝑞(1 − 𝑄) and (1 − 𝑄) 𝑞 𝑃 which is not true. 

Theorem4.8. Let 𝑃 be a f-set in fts 𝐿. Then, 𝑃is fsgb-CSiff𝑃 𝑞𝑄 ⇒ fsgb 𝐶𝑙(𝑃)𝑞𝑄, for each 

fb-CS in 𝐿. 

Proof. Consider 𝑃 be fsgb-CS and 𝑄 be fb-CS so that 𝑃 𝑞𝑄. Then, from the definition of quasi-

coincident 𝑃 ≤ 1 − 𝑄 where 1 − 𝑄 is fb-OS in 𝐿. Since 𝑃 is fsgb-CS, fsgb 𝐶𝐿(𝑃) ≤ 1 − 𝑄. 

Thus,fsgb 𝐶𝑙(𝑃)𝑞 𝑄. 

 Conversely, consider 𝐷 be fb-OS in 𝐿 and 𝑃 be f-set in 𝐿, such that 𝑃 ≤ 𝐷. Since 𝑃𝑞̅(1 −
𝐷) where 1 − 𝐷 is fb-CS in 𝐿, this implies that fsgb 𝐶𝑙(𝑃)𝑞(1 − 𝐷), from the definition 

fsgb 𝐶𝑙(𝑃) ≤ 𝐷 obtained. Therefore, 𝑃 is fsgb-CS in 𝐿. 

Theorem4.9. For fsgb-CS𝑃 in 𝐿 and fuzzy point 𝑙 of 𝐿, such that 𝑙 𝑞 fsgb 𝐶𝑙(𝑃), then 

fsgb 𝐶𝑙(𝑙)𝑞𝑃. 

Proof. Let 𝑃 be fsgb-CS and 𝑙 be fuzzy point of 𝐿. If fsgb 𝐶𝑙(𝑙)𝑞𝑃, then by definition 

fsgb 𝐶𝑙(𝑙) ≤ 1 − 𝑃, this implies 𝑃 ≤ 1 fsgb 𝐶𝑙(𝑙). Thus, fsgb 𝐶𝑙(𝑃) ≤ 1 − fsgb 𝐶𝑙(𝑙) ≤ 1 −
𝑙. As 1 − fsgb 𝐶𝑙(𝑙) is fb-OS in 𝐿 and 𝑃 is fsgb-CS in 𝐿. Thus, 𝑙 𝑞fsgb 𝐶𝑙(𝑃) which is a 

contradiction. 

5.Fsgb-Continuous maps in fts. 

Definition5.1. A map ℊ: 𝐿 → 𝑀 is known as fsgb-ℂℕ map that is fsgb-continuous map if 

ℊ−1(𝑃)  is fsgb-closed set in L, for every f-CS P in M. 

Theorem 5.2. A function ℊ: 𝐿 → 𝑀is fsgb-ℂℕ map iff the inverse image of every fg-OS of M 

is fsgb-OS of  L. 

Proof. Let Q be a fsgb-OS of M. 1 − 𝑄 is fsgb-CS in M. Since ℊ: 𝐿 → 𝑀 is fsgb- ℂℕ 

map,ℊ−1(1 − 𝑄) = 1 − ℊ−1(𝑄)  is fsgb-closed set of L .Hence ℊ−1(𝑄) is fsgb-open set of L. 

The converse is obvious. 

Definition 5.3. A map ℊ: 𝐿 → 𝑀is known as fsgb-ℂℕ map if the inverse-image of each fg-OS 

in M is fsgb-OS in L. 

Theorem 5.4. Every f- ℂℕ map is fsgb- ℂℕ map. 

Proof: Let ℏ: 𝐿 → 𝑀 be a f-ℂℕ map. Let P be f-OS in M. Since ℏ is fuzzy- ℂℕ map, ℏ−1(𝑃)is 

f-OS in L. Also ℏ−1(𝑃) is fsgb-OS in L. Hence ℏ is fsgb- ℂℕ map. 

The below example shows the opposite of this theorem is incorrect. 
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Example 5.5. Let 𝐿 = 𝑀 = {𝑒, 𝑓}  and let = {(𝑒, 1), (𝑓, 0.9)} , 𝑄 = {(𝑒, 0.5), (𝑓, 0.4)} 

Consider 𝜏 = {0,1, 𝑃}  and 𝜎 = {0,1, 𝑄} 

𝑏𝑂(𝐿) = {0,1, 𝑃, (𝑒, 𝜆), (𝑓, 𝜅)}   where 𝜆 > 0 or 𝜅 > 0.1 

𝑏𝐶(𝐿) = {0,1, 𝑃, (𝑒, 𝜆), (𝑓, 𝜅)} where 𝜆 = 0 or 𝜅 < 0.1 

Then ( ),L   and ( ),M   are fts. Let ℊ: 𝐿 → 𝑀 be an identity map. Then  ℊ  is fsgb-ℂℕ map 

but not f-ℂℕ map, as f-OS Q in M, ℊ−1(𝑄)is not f-CS in L but it is fsgb-CS in L. 

Theorem 5.6. Every f-ℂℕ(fs-ℂℕ , fα- ℂℕ, fp- ℂℕ , fb- ℂℕ , fgb- ℂℕ,fbg- ℂℕ,) map is fsgb-ℂℕ 

map. 

Proof. Let ℊ: 𝐿 → 𝑀 is f-ℂℕ( fs-ℂℕ , fα- ℂℕ, fp- ℂℕ , fb- ℂℕ , fgb- ℂℕ, fbg- ℂℕ) map. Let P 

be f-CS in Since ℊ is f-ℂℕ( fs-ℂℕ , fα- ℂℕ, fp- ℂℕ , fb- ℂℕ , fgb- ℂℕ, fbg- ℂℕ) map, ℊ−1(𝑃) 

is a f-CS ( fs-CS , fα-CS, fp-CS, fb-CS, fgb-CS, fbg- ℂℕ) in L . And so ℊ−1(𝑃) is a fsgb-CS in 

L. Therefore ℊis fsgb-ℂℕ map. 

The below illustration shows that the inverse implication of the theorem 5.6 is not true. 

Example 5.7. Let 𝐿 = {𝑑, 𝑒} and 𝑀 = {𝒾, 𝒿}.  

Then 𝑃 = {(𝑑, 0.3), (𝑒, 0.4)}, 𝑄 = {(𝑑, 0.7), (𝑒, 0.5)}, 𝑅 = {(𝑑, 0.7), (𝑒, 0.7)}.  

Let = {0,1, 𝑃} , 𝜎 = {0,1, 𝑄} 

Then function ℊ: 𝐿 → 𝑀 defined by ℊ(𝑑) = 𝒾  andℊ(ℯ) = 𝒿. 

Then the fuzzy set R is a f-CS in M and ℊ−1(𝑅) is not a f-CS (fs-CS, fα-CS, fp-CS, fb-CS, fgb-

CS) in L  , but a fsgb-CS in L. Hence ℊ is a fsgb- ℂℕ map but not fuzzy- ℂℕ map. 

Theorem 5.8. Consider  ℊ: (𝐿, 𝜏) → (𝑀, 𝜎) be fsgb-ℂℕ. Then [fsgb-𝐶𝑙(𝑃)] where 𝑃 is any f-

set in 𝐿. 

Proof. Consider 𝑃 be any f-set in 𝐿. So that 𝐶𝑙[ℊ(𝑃)] is a f-CS in 𝐿. Since ℊ is fsgb-ℂℕ, 

ℊ−1(𝐶𝑙(ℊ(𝑃))) and so fsgb-𝐶𝑙(𝑃) ≤ ℊ−1(𝐶𝑙(ℊ(𝑃))).  

Therefore ,ℊ[fsgb-𝐶𝑙(𝑃)] ≤ 𝐶𝑙[ℊ(𝑃)]. 
 

Theorem 5.9. Consider ℊ: (𝐿, 𝜏) → (𝑀, 𝜎) be a fsgb-ℂℕ and 𝐿 is fsgb𝑇1

2

 space, then ℊ is a 

f-ℂℕ map. 

Proof. Consider ℊ: (𝐿, 𝜏) → (𝑀, 𝜎) is fsgb-ℂℕ. Let 𝑃 be f-CS in 𝑀. Then ℊ−1(𝑃) is a fsgb-CS 

in 𝐿, since ℊ is fsgb-ℂℕ. As 𝐿 is fsgb𝑇1

2

 space, ℊ−1(𝑃) is a f-CS in 𝑀. Thus,  ℊ is f-ℂℕ. 

Theorem 5.10. Consider ℊ: 𝐿 → 𝑀 be a fsgb-ℂℕ, 𝒽: 𝑀 → 𝑁 is fsgb-ℂℕ and 𝑀 is fsgb𝑇1

2

 space, 

then ℎ ∙ ℊ: 𝐿 → 𝑁 is a fsgb-ℂℕ map. 

Proof. Consider 𝑄 be a f-CS in 𝑁, then 𝒽−1(𝑄) is a fsgb-CS in 𝑀, as 𝒽 is fsgb-ℂℕ. Since 𝑀 

is fsgb𝑇1

2

 space, 𝒽−1(𝑄) is a f-CS in 𝑀. And then ℊ−1[𝒽−1(𝑃)] is a fsgb-CS in 𝐿 as ℊ is 

fsgb-ℂℕ. Now (𝒽 ∙ ℊ)−1(𝑃) = ℊ−1[𝒽−1(𝑃)] is a fsgb-CS in 𝐿. Thus,  𝒽 ∙ ℊ: 𝐿 → 𝑁 is fsgb-ℂℕ 

map. 

Definition 5.11. A mapping  ℊ: 𝐿 → 𝑀 is known as fsgb-irr that is fsgb-irresolute map, if 

ℊ−1(𝑃) is fsgb-CS in L for every fsgb-CS P in M. 

Theorem 5.12. A mapping ℊ: 𝐿 → 𝑀  is fsgb-irr iff the inverse of every fsgb-OS in M is fsgb-

OS in L. 

Proof. It follows from definition 5.11. 

Theorem 5.13. Every fsgb-irresolute mapping is fsgb-ℂℕ map. 

Proof. Let ℏ: 𝐿 → 𝑀 is fsgb-irr. Let P be fuzzy closed in M, it follows that P is fsgb-CS in M. 

Since ℏ is fsgb-irr then the inverse image of P is fsgb-CS in L. Therefore ℏ is fsgb-ℂℕ𝑀. 

The below example shows the opposite of this theorem is incorrect. 

Example 5.14. Let 𝐿 = 𝑀 = {𝓍, 𝓎}  and the fuzzy sets P, Q, R, S and T be defined as follows, 

𝑃 = {(𝓍, 0.8) , (𝓎, 0.8)}, 𝑄 = {(𝓍, 0.7), (𝓎, 0.4)} , 𝑅 = {(𝓍, 0.6) , (𝓎, 0.4)}, 𝑆 =
{(𝓍, 0.4), (𝓎, 0.1)}and 𝑇 = {(𝓍, 0.4), (𝓎, 0.5)}. 

Let 𝜏 = {0,1, 𝑃, 𝑄, 𝑅, 𝑆}  and 𝜎 = {0,1, 𝑇}  then (𝐿, 𝜏) and(𝑀, 𝜎) are fts. 
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Define  ℊ: 𝐿 → 𝑀 by ℊ(𝓍) = 𝓏  ,ℊ(𝓎) = 𝓍 and ℊ(𝓏) = 𝓎.  

Then ℊ is fsgb-ℂℕ map but not fsgb-irr map, as the fuzzy set T is fsgb-CS in M  

But ℊ−1(𝑇) = 𝑅 is not fsgb-CS in L. 

Theorem 5.15. Let ℊ: 𝐿 → 𝑀and 𝒽: 𝑀 → 𝑁 be two mappings then 

(i) 𝒽 ∙ ℊ: 𝐿 → 𝑁 is fsgb-ℂℕ map , if  ℊ is fsgb-ℂℕ map and 𝒽 is fuzzy-ℂℕ map. 

(ii) 𝒽 ∙ ℊ: 𝐿 → 𝑁 is fsgb-irr map , if ℊ and ℏ are fsgb-irr map. 

(iii) 𝒽 ∙ ℊ: 𝐿 → 𝑁 is fsgb- ℂℕmap , if ℊ is fsgb-irr map and ℏ is fsgb-ℂℕ map. 

Proof.  

(i) Suppose that P be f-CS of N. As 𝒽: 𝑀 → 𝑁 is f-ℂℕ, so ℊ−1(𝑃) is f-CS of M. And ℊ: 𝐿 →
𝑀 is fsgb-ℂℕ , ℊ−1(𝑃) is f-CS of M, thus by definition 3.3 ℊ−1(𝒽−1(𝑃)) = (𝒽 ∙ ℊ)−1(𝑃) is 

fsgb-CS in L. Therefore 𝒽 ∙ ℊ: 𝐿 → 𝑁 is fsgb-ℂℕ map. 

(ii) Consider 𝒽: 𝑀 → 𝑁 is fsgb-irr and let P be fsgb-CS of N. As 𝒽 is fsgb-irr by definition 

3.9 𝒽−1(𝑃) is fsgb-CS of M. And ℊ: 𝐿 → 𝑀 is fsgb-irr, then ℊ−1(𝒽−1(𝑃)) = (𝒽 ∙ ℊ)−1(𝑃) is 

fsgb-CS. Hence 𝒽 ∙ ℊ: 𝐿 → 𝑁 is fsgb-irr map. 

(iii) Suppose that P be f-CS of N. As 𝒽: 𝑀 → 𝑁  is fsgb-ℂℕ , 𝒽−1(𝑃) is fsgb-CS of M. And 

ℊ: 𝐿 → 𝑀 is fsgb-irr, so every fsgb-CS of M is fsgb-CS in L. Thus ℊ−1(𝒽−1(𝑃)) =
(𝒽 ∙ ℊ)−1(𝑃) is fsgb-CS of L. Therefore 𝒽 ∙ ℊ: 𝐿 → 𝑁 is fsgb-ℂℕ map. 

Theorem 5.16. If  ℊ: 𝐿 → 𝑀 be a fsgb-ℂℕ, 𝒽: 𝑀 → 𝑁 be fsgb-irr mapping and 𝑀 is fsgb𝑇1

2

 

space, then 𝒽 ∙ ℊ: 𝐿 → 𝑁 is a fsgb-irr mapping. 

Proof. Consider 𝑄 be fsgb-CS in 𝑁, then 𝒽−1(𝑄) is a fsgb-CS in 𝑀 as 𝒽 is fsgb-irr. Since 𝑀 

is fsgb𝑇1

2

 space, 𝒽−1(𝑄) is a f-CS in 𝑀. Since ℊ is fsgb-ℂℕ, ℊ−1[𝒽−1(𝑄)] is a fsgb-CS in 𝐿. 

Now (𝒽 ∙ ℊ)−1(𝑄) = ℊ−1[𝒽−1(𝑄)] is a fsgb-CS in 𝐿. Now (𝒽 ∙ ℊ)−1(𝑄) = ℊ−1[𝒽−1(𝑄)] is 

a fsgb-CS in 𝐿. Thus 𝒽 ∙ ℊ: 𝐿 → 𝑁 is a fsgb-irr mapping. 

Theorem 5.17. Consider 𝐿 and 𝑀 be fsgb𝑇1

2

 space. Then ℊ: (𝐿, 𝜏) → (𝑀, 𝜎) the following are 

equivalent: 

(i) ℊ is a fgb-irr mapping. 

(ii) ℊ is a fsgb-irr mapping. 

Proof: 

(i)→(ii) Consider ℊ: (𝐿, 𝜏) → (𝑀, 𝜎) be fsgb-irr map. Let ℊ be fsgb-CS in 𝑀. As 𝑀 is fsgb𝑇1

2

 

space, then 𝑄 is a fgb-CS in 𝑀. Since ℊ is fgb-irr, ℊ−1(𝑄) is a fgb-CS in 𝐿. And every fgb-CS 

is fsgb-CS and hence, ℊ−1(𝑄) is a fsgb-CS in 𝐿. Thus, ℊ is a fsgb-irr mapping. 

(ii)→(i) Consider ℊ: (𝐿, 𝜏) → (𝑀, 𝜎) be fsgb-irr map. Consider 𝑅 be fgb-CS in 𝑀 and so 𝑅 is a 

fsgb-CS in 𝑀, as every fgb-CS is fsgb-CS. Since ℊ is fsgb-irr, ℊ−1(𝑅) is a fsgb-CS in 𝐿. But 

𝐿 is fsgb𝑇1

2

 space, ℊ−1(𝑅) is a fgb-CS in 𝐿. Thus,  ℊ is a fgb-irr mapping. 

6. Fsgb-Open Map and Fsgb-Closed Maps in FTS. 

Definition 6.1. A mapping ℊ: 𝐿 → 𝑀  is known as fsgb-OM that is fsgb-open map if the image 

of every fuzzy-OS in L is fsgb-OS in M. 

Definition 6.2. A mapping ℊ: 𝐿 → 𝑀  is known as fsgb-CM that is fsgb-closed map if the image 

of every fuzzy-CS in L is fsgb-CS in M. 

Definition 6.3. A mapping ℊ: 𝐿 → 𝑀   is known as fsgb*-OM that is fsgb*-open map if the 

image of every fsgb-OS in L is fsgb-OS in M. 

Definition 6.4. A mapping ℊ: 𝐿 → 𝑀 is said to be fsgb*-CM that is fsgb*-closed map if the 

image of every fsgb-CS in L is fsgb-CS in M. 

Example 6.5. Consider = {𝑑, 𝑒, 𝑓}𝑀 = {𝑑, 𝑒, 𝑓}. 

Let the f-sets be 𝑃 = {(𝑑, 0.5), (𝑒, 0.4), (𝑓, 0.7)},  
𝑄 = {(𝑑, 0.8), (𝑒, 1), (𝑓, 0.4)} and 𝑅 = {(𝑑, 0.5), (𝑒, 0.5), (𝑓, 0.3)} 

Let 𝜏 = {0, 𝑃, 1} and 𝜎 = {0, 𝑄, 1} 
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Define the mapping ℊ: (𝐿, 𝜏) → (𝑀, 𝜎) by ℊ(𝑑) = ℊ(𝑒) = 𝑑 and ℊ(f) = f.Then the only f-CS 

in 𝐿 is 𝑅 and ℊ(𝑅) is fsgb-CS in 𝑀. Thus,  ℊ is a fsgb-CM. 

Remark 6.6. Every fsgb*-open (fsgb*-closed) map is fsgb-open (fsgb-closed) map. 

The converse of this theorem is incorrect. 

Example 6.7. Let 𝐿 = {𝑑, 𝑒} and 𝑀 = {𝒾, 𝒿}.  

Then 𝑃 = {(𝑑, 0.2), (𝑒, 0.4)}, 𝑄 = {(𝑑, 0.6), (𝑒, 0.7)}, 
𝑅 = {(𝑑, 0.6), (𝑒, 0.7)}.  

Let= {0,1, 𝑃} , 𝜎 = {0,1, 𝑄} 

Then functionℊ: 𝐿 → 𝑀 defined by ℊ(𝑑) = 𝒾 and ℊ(ℯ) = 𝒿  is fsgb-OM ,but not fsgb*-OM. 

Theorem 6.8. If ℊ: 𝐿 → 𝑀 is fg-CM and 𝒽: 𝑀 → 𝑁is fsgb-CM then is 𝒽 ∘ ℊ is fsgb-CM. 

Proof: For a fg-CS in L, ℊ(𝑃)is fg-CS in M. Since 𝒽: 𝑀 → 𝑁 is fsgb-CM, 𝒽(ℊ(𝑃)) is fsgb-

CS in N. 𝒽(ℊ(𝑃)) = (𝒽 ∘ ℊ)(𝑃) is fsgb-CS in N. Hence 𝒽 ∘ ℊis fsgb-CM. 

Theorem 6.9. Let ℊ: 𝐿 → 𝑀, 𝒽: 𝑀 → 𝑁 be two mappings then 𝒽 ∘ ℊ: 𝐿 → 𝑁 is fsgb-CM. 

(i) If ℊ is f-ℂℕ and surjective then 𝒽 is fsgb-CM. 

(ii) If 𝒽 is fsgb-irr and injective, then ℊ is fsgb-CM. 

Proof: 

(i) Let Q be fuzzy-CS of M. Then ℊ−1(𝑄) is f-CS in L as ℊis f- ℂℕ map. Since 𝒽 ∘ ℊ is fsgb-

CM,(𝒽 ∘ ℊ)(ℊ−1(𝑄)) = 𝒽(𝑄) is fsgb-CM in N. Hence 𝒽: 𝑀 → 𝑁 is fsgb-CM. 

(ii) Let Q be f-CS in L. Then (𝒽 ∘ ℊ)(𝑄) is fsgb-CS in N and hence 𝒽−1(𝒽 ∘ ℊ)(𝑄) =
ℊ(𝑄)  is fsgb-CS in M. Since 𝒽 is fsgb-irr and injective. Therefore ℊ is fsgb-CM. 

Theorem 6.10. If P is fsgb-CS in L and ℊ: 𝐿 → 𝑀 is bijective fuzzy- ℂℕ map and fsgb-CM, 

then ℊ(𝑃) is fsgb-CS in M. 

Proof. Let ℊ(𝑃) ≤ 𝑄 where Q is f-OS in M .Since ℊ is fuzzy- ℂℕ map, ℊ−1(𝑄)is f-OS 

containing P. Therefore bCl(𝑃) ≤ ℊ−1(𝑄) as P is fsgb-CS. since ℊ is fsgb-CM, ℊ(bCl(𝑃)) is 

fsgb-CS containing in the f-OS in Q, which implies bCl(ℊ(bCl(𝑃))) ≤ 𝑄 and 

hencebCl(𝑃)(ℊ(𝑃) ≤ 𝑄. So ℊ(𝑃)is fsgb-CS in M. 

Theorem 6.11. If  ℊ: 𝐿 → 𝑀 is fsgb-CM and 𝒽: 𝑀 → 𝑁 is fsgb*-CM then 𝒽 ∘ ℊ is fsgb*-CM. 

Proof. For a fuzzy closed set in L,  ℊ(𝑃) is fsgb-CS in M . Since𝒽: 𝑀 → 𝑁 is fsgb*-CM 

and 𝒽(ℊ(𝑃)) is fsgb-CS in N. 𝒽(ℊ(𝑃))= (𝒽 ∘ ℊ) (P) is fsgb-CS in  N. Hence  𝒽 ∘ ℊ is fsgb*-

CM.. 

Theorem 6.12. Let ℊ: 𝐿 → 𝑀, 𝒽: 𝑀 → 𝑁 be two maps such that 𝒽 ∘ ℊ: 𝐿 → 𝑁 is fsgb*-CM. 

(i) If ℊ is fsgb-ℂℕ map and surjective, then 𝒽 is fsgb-CM. 

(ii) If 𝒽 is fsgb-irr and injective, then ℊ is fsgb*-CM. 

 

Proof. 

(i) Let P be fuzzy-CS of M. Then ℊ−1(𝑃) is fsgb-CS in L as ℊ is fsgb- ℂℕ. Since 𝒽 ∘ ℊ is 

fsgb*-CM, (𝒽 ∘ ℊ ) (ℊ−1(𝑃)) =  𝒽(P) is fsgb-CS in N. Hence 𝒽: 𝑀 → 𝑁 is fsgb-CM. 

(ii) Let P be a fsgb-CS in L. Then (𝒽 ∘ ℊ ) (P) is fsgb-CS in N. Since 𝒽 is fsgb-irr and 

injective 𝒽−1(𝒽 ∘ ℊ)(𝑃) = ℊ(𝑃)  is fsgb-CS in M. Hence ℊ is fsgb*-CM. 

Theorem 6.13. Every fb-closed (fgb-closed, fbg-closed) map is fsgb-closed. 

Proof. Consider ℊ: (𝐿, 𝜏) → (𝑀, 𝜎) be a fb-closed (fgb-closed, fbg-closed) map. Consider 𝑄 

be f-CS in 𝐿. Then ℊ(𝑄) is a f-CS in 𝑀, as ℊ is a fb-closed (fgb-closed and fbg-closed) map. 

Thus ℊ(𝑄) is a fsgb-CS in 𝑀, as every fb-closed (fgb-closed and fbg-closed) set is a fsgb-CS. 

Therefore ℊ is fsgb-CM. 

The below illustration shows that the inverse implication of above theorem is untrue. 

Example 6.14. Consider  𝐿 = {𝑑, 𝑒, 𝑓}, 𝑀 = {𝑑, 𝑒, 𝑓} 

Let the f-sets be  

𝑃 = {(𝑑, 0.5), (𝑒, 0.2), (𝑓, 0.6)} 

𝑄 = {(𝑑, 0.7), (𝑒, 0), (𝑐, 0.4)} and 𝑅 = {(𝑑, 0.5), (𝑒, 0.8), (𝑐, 0.4)} 
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Let 𝜏 = {0, 𝑃, 1} and 𝜎 = {0, 𝑄, 1}. Define ℊ: (𝐿, 𝜏) → (𝑀, 𝜎) by ℊ(𝑑) = ℊ(𝑒) = 𝑑 and 

ℊ(f) = f. Then the only f-CS in 𝐿 is 𝑅 and ℊ(𝑅) is not a fb-CS and fgb-CS in 𝑀. Therefore ℊ 

is a fsgb-CM but not a fbg-CM and a fbg-CM. 

7. Conclusions: 

It is curious to work on the compositions of weaker and stronger forms of mappings, as well 

as other properties of fsgb-closed set. Other forms of generalized closed fuzzy sets can be tried 

with mapping compositions. 
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