Comparison of Conventional Surgical Tracheostomy and Percutaneous Dilatational Tracheostomy in the Intensive Care Unit

Reda Sherif¹, Mostafa Eisa², Khalid Yahya³, Engy Abdallah³, Mostafa Gooda³, Anass Alnil³, Mohammed Allam³, Essa Muallemi⁴, Esraa Gaafar⁵, Islam Masadeh⁵, Lubaba Jawad⁶, Joumana Jawad⁷, Mohamed H. Badawy⁸

*Corresponding author: Reda Sherif Email: sherifre@gmail.com

Abstract

Background: Percutaneous dilatation tracheostomy (PDT) is a minimally invasive and blind procedure, whereas conventional surgical tracheostomy (CST) is an open procedure. CST is accompanied by intraoperative and postoperative complications, whereas PDT can reduce the associated risks and has the benefits of reducing costs and being relatively simple.

Objective: To compare between CST and PDT in ICU.

Design: Retrospective research.

Setting: The Intensive care unit (ICU) at Kuwait Hospital Sharjah (KHS).

Patients and Methods: The patients enrolled were those who underwent PDT by intensivists, and patients who underwent CST performed by ENT physicians. The collection of data related to PDT cases was done from October 2021 to September 2023, whereas that of CST cases was done from January 2018 to July 2021. The collected data included demographics, laboratory tests, comorbidities, and outcomes.

Main outcomes and measure: Recovery, adverse outcomes and complications were the primary outcomes, where adverse outcomes, included mortality.

Sample size: 110 subjects, where categorized into 55 subjects in PDT and 55 subjects in CST group.

Results: There was age, gender, and APACHEII match between both groups. Significant variations were found between both groups regarding delay time (P=.001), airway protection indication (P=.002), bleeding (P=.01), bleeding diathesis (P=.02), and days of mechanical ventilation (P<.001).

¹ Critical Care Consultant, Kuwait Hospital, Sharjah

² ICU specialist, Kuwait hospital Sharjah

³ Intensivist, Kuwait Hospital, Sharjah

⁴ Surgical consultant, Kuwait Hospital, Sharjah

⁵ Anesthesia and ICU resident, Kuwait hospital, Sharjah

⁶ ICU senior nurse, Kuwait Hospital, Sharjah

⁷ICU senior nurse, Nursing Department, Kuwait Hospital, Sharjah

⁸ ICU and Anesthesia Consultant, Kuwait Hospital, Sharjah

Conclusion: PDT was superior to CST regarding delay time, mechanical ventilation days, bleeding, and usage of blood and blood components. However, both interventions displayed no superiority regarding mortality and length of stay.

Limitations: The retrospective design.

Conflict of interest: None.

Keywords: Tracheostomy, PT, ICU.

Introduction

Tracheostomy is a common procedure required for Intensive Care Unit (ICU) patients.¹ It is performed in neurosurgery or neurocritically ill cases for many causes, such as airway protection, prolonged intubation, or prevention of aspiration risk caused by brain injuries.^{2,3}

Tracheostomy facilitates mechanical ventilation weaning off and has benefits in managing secretions in the lower airway.⁴ It is usually performed either by intensivists percutaneously at the bedside or by ENT physicians surgically or percutaneously. When compared to endotracheal intubation, tracheostomy is linked with better comfort, less sedation, and helping in faster weaning from ventilation.¹

Percutaneous dilatation tracheostomy (PDT) is a minimally invasive, blind procedure that is preferred when neck anatomy is suitable and the trachea is safely accessible blindly, while conventional surgical tracheostomy (CST) is an open procedure that is preferred when the trachea is difficult to access blindly.^{5,6} CST was the gold standard until the mid-2000s.⁷

CST involves full dissection of pre-tracheal tissue and tracheostomy tube insertion into the trachea under direct vision. CST is accompanied by intraoperative and postoperative complications such as stomal infection, bleeding, and cellulitis. Additionally, critically ill subjects require transportation to the operative room from the ICU. Furthermore, its elective usage is not preferred by most otolaryngologists due to consequences such as vocal cord paralysis and subglottic stenosis; therefore, CST is recommended for emergent situations only. 11. 12

PDT was first presented by Ciaglia in 1985,¹³ and it involves blunt dissection of pretracheal tissue followed by tracheal dilation over the guidewire and tracheal cannula placement with the Seldinger approach.^{14, 15} PDT can be underwent directly in the ICU, and it can reduce the associated risks. It also has the advantages of reducing costs and being relatively simple.¹⁶ PDT has been increasingly adopted due to its ease of use and lower rates of clinically considerable bleeding and infection.³ It also provides increased patient comfort, reduction of required sedation, ensures and shortens safer execution of the weaning process, oral hygiene improvement, oral nutrition, and airway care outside the ICU.^{17, 18}

Despite the presence of studies comparing CST and PDT, there was no study compared between them regarding several aspects and based on the healthcare personnel;

Reda Sherif¹, Mostafa Eisa², Khalid Yahya³, Engy Abdallah³, Mostafa Gooda³, Anass Alnil³, Mohammed Allam³, Essa Muallemi⁴, Esraa Gaafar⁵, Islam Masadeh⁵, Lubaba Jawad⁶, Joumana Jawad⁷, Mohamed H. Badawy⁸

therefore, this study was established to compare CST performed by ENT physicians and PDT performed by intensivists regarding conditions of the intervention, indications, delay time, and outcomes including complications, mortality, and ICU stay.

Subjects and Methods:

Design and settings:

This retrospective study was conducted at the ICU at Kuwait Hospital Sharjah (KHS). The data related to PDT cases was collected from October 2021 to September 2023, and that of CST was collected from January 2018 to July 2021. The collected data included demographics, laboratory tests, tracheostomy indications, comorbidities, and outcomes. The inclusion criteria for PDT were adult cases in the ICU who underwent PDT by intensivists, whereas PDT cases by personnel other than intensivists were excluded. CST included adult cases in the ICU who underwent CST by ENT physicians, whereas those who underwent combined surgical procedures and those lacking the required information in the medical record were excluded.

Technique and Steps for the Procedure:

Under complete aseptic technique, bedside PDT was performed with guidance from a bronchoscope. The endotracheal tube was repositioned under bronchoscopic guidance to ensure proper placement just above the vocal cords. Sedation was administered, and the patient was placed in a supine position with a rolled towel under the shoulders to facilitate neck hyperextension. A commercial kit for percutaneous tracheostomy (Portex) was used. After positioning and cleaning the surgical area with chlorhexidine, a needle with a cannula was inserted into the trachea, followed by the introduction of a guide wire. The correct position of the needle and guide was confirmed, and a small skin incision was made vertically before passing the dilator. The tracheal wall was dilated, and an obturated tracheostomy tube was placed over the guide wire. The connection to the ventilator was established, and the patient's oxygen saturation and hemodynamic status were monitored. A chest X-ray was performed post-procedure to assess for complications. Precautions for the procedure included a routine ultrasound of the neck to check for anatomical abnormalities and a complete blood count and anticoagulation profile assessment before the procedure.

Statistical analysis:

Data analysis was established using SPSS version 25; qualitative data was represented as a number (%), whereas quantitative data was represented as median and range. Comparisons were made by applying a T-test or Chi-square based on the data type; a P-value \leq .05 was defined as significant.

Results:

The study included 110 participants, categorized equally into 55 CST cases and 55 PDT cases. There were age, gender, and APACHE II matches between both groups. Less than half of the participants (43.6%) were aged ≥65 years, and nearly two-thirds of the participants (67.3%) were male. The median APACHE II score was 40 (range: 15-95). Regarding comorbidities, the most frequent comorbidities among the total subjects were hypertension (56.4%), diabetes (50.9%), and coronary disease or cardiac failure (40%), with no considerable difference in comorbidities between the percutaneous and surgical groups. However, bleeding diathesis or antiplatelet/anticoagulant use was significantly higher in the surgical category than in the PDT (10.9% Vs. 0%, respectively; *P*-value = .027), (Table1).

Table 1: Baseline demographic and clinical data

	Total (n=110) Number (percent) / Median (range)	Percutaneous (n=55) Number (percent) / Median (range)	Surgical (n=55) Number (percent) / Median (range)	P
Age				
≤45 c years	20 (18.2%)	11 (20%)	9 (16.4%)	.868
46 – 64 years	42 (38.2%)	21 (38.2%)	21 (38.2%)	
≥65 years	48 (43.6%)	23 (41.8%)	25 (45.5%)	
Male gender	74 (67.3%)	38 (69.1%)	36 (65.5%)	.684
Comorbidities				
Diabetes	56 (50.9%)	26 (47.3%)	30 (54.5%)	.466
Hypertension	62 (56.4%)	30 (54.5%)	32 (58.2%)	.701
Coronary disease or cardiac failure	44 (40%)	20 (36.4%)	24 (43.6%)	.436
Chronic Pulmonary Disease	17 (15.5%)	7 (12.7%)	10 (18.2%)	.429
Chronic Kidney disease	17 (15.5%)	7 (12.7%)	10 (18.2%)	.429
Chronic Liver disease	3 (2.7%)	2 (3.6%)	1 (1.8%)	.560
Active Cancer	1 (0.9%)	0 (0%)	1 (1.8%)	.317
Immunocompromised	4 (3.6%)	2 (3.6%)	2 (3.6%)	1.000
Bleeding diathesis or antiplatelet/anticoagulant	6 (5.5%)	0 (0%)	6 (10.9%)	.027
APACHE II	40 (15-95)	42 (15-97)	40 (15-85)	.754

Laboratory findings displayed no considerable variations between both groups, except for HG, where the surgical group displayed significantly higher HG on the day of intent (P=.015) and at the date of the procedure (P=.001). However, no significant variations were found regarding other parameters, including INR, PTT, and PLT (**Table 2**).

Reda Sherif¹, Mostafa Eisa², Khalid Yahya³, Engy Abdallah³, Mostafa Gooda³, Anass Alnil³, Mohammed Allam³, Essa Muallemi⁴, Esraa Gaafar⁵, Islam Masadeh⁵, Lubaba Jawad⁶, Joumana Jawad⁷, Mohamed H. Badawy⁸

Table 2: Laboratory data among the participants

	Total (n=110) Median (range)	Percutaneous (n=55) Median (range)	Surgical (n=55) Median (range)	P
Investigations				
(baseline)				
INR	1.1 (0.8-37.8)	1.1 (0.9-1.4)	1.1 (0.8-37.8)	.238
PTT	35.9 (22.8-67)	36.0 (25.7-57)	35.9 (22.8-67)	.864
HG	9.9 (7-15)	9.4 (7-13.8)	10.5 (7.1-15)	.015
PLT	248.5 (9.9-715)	244 (76-715)	253 (9.9-693)	.926
Investigations (date				
of procedure)				
INR	1.1 (0.8-1.8)	1.1 (0.9-1.4)	1.1 (0.8-1.8)	.324
PTT	37.2 (22.8-70.7)	38 (23.5-50.3)	36 (22.8-70.7)	.318
HG	9.7 (7.3-14.8)	9.1 (7.3-12)	10 (8.2-14.8)	.001
PLT	276 (51-780)	244 (76-715)	253 (9.9-693)	.966

Regarding the procedures, the majority of the participants had a tracheostomy delay time of less than 10 days, and there were considerable variations between both groups as PDT significantly recorded less delay compared to CST (P= .001). Regarding indications, a higher proportion of subjects were indicated for CST for airway protection (87.3%) compared to PDT (61.8%) (P= .002), (**Table 3**).

Table 3: Procedure related data

	Total (n=110) Number (percent) / Median (range)	Percutaneous (n=55) Number (percent) / Median (range)	Surgical (n=55) Number (percent) / Median (range)	P
Tracheostomy delay time	7 (0-35)	6 (0-30)	8 (4-35)	.001
Indications of Procedures				
Weaning failure due to respiratory muscle weakness.	101 (91.8%)	48 (87.3%)	53 (96.4%)	.161
Airway protection	82 (74.5%)	34 (61.8%)	48 (87.3%)	.002

Comparing outcomes and complications between both groups revealed significant variation regarding bleeding, where a significantly higher proportion of bleeding was recorded in the surgical category compared to the percutaneous group (P= .013). Also,

the total days of mechanical ventilation were significantly higher in surgical cases compared to the percutaneous ones (P < .001). Nonetheless, there were no significant differences in mortality or ICU length of stay between both categories (**Table 4**).

Table 4: Complications

	Total (n=110) Number (percent) / Median (range)	Percutaneous (n=55) Number (percent) / Median (range)	Surgical (n=55) Number (percent) / Median (range)	P
Bleeding	7 (6.4%)	0 (0%)	7 (12.7%)	.013
Pneumothorax	1 (0.9%)	0 (0%)	1 (1.8%)	.317
Blood transfusion	10 (9.1%)	4 (7.3%)	6 (10.9%)	.507
FFP	5 (4.5%)	1 (1.8%)	4 (7.3%)	.363
Platelets	1 (0.9%)	0 (0%)	1 (1.8%)	.317
Mechanical ventilation off	45 (40.9%)	26 (47.3%)	19 (34.5%)	.175
total days on Mechanical ventilation	31.5 (9-255)	25 (10-142)	50 (9-255)	<.001
Mortality				
Three days	3 (2.7%)	0 (0%)	3 (5.5%)	.243
28 days	23 (20.9%)	10 (18.2%)	13 (23.6%)	.482
Overall mortality	41 (37.3%)	18 (32.7%)	23 (41.8%)	.324
Length of ICU stay (days)	49.5 (9-282)	47 (20-208)	50 (9-282)	.860

Discussion:

Tracheostomies are carried out in the general ICU to keep the airway from aspiration pneumonia and to secure it in subjects requiring prolonged mechanical ventilation. Despite the wide acceptance of CST, it still has several complications, with a total incidence of 36%–41%, including subcutaneous emphysema, pneumothorax, bleeding, stoma infections, and, less commonly, mortality.^{19, 20}

The safety and feasibility of PDT have already been proven in previous prospective studies and meta-analyses. Nonetheless, its relative or absolute contraindications remain controversial. Factors such as cervical spinal injury, pediatric age, coagulopathy, emergency airway necessity, the anomaly of the aortic arch branches, difficult anatomy, and severe respiratory disease have been considered contraindications in various studies.^{13, 21} In this work, we compared PDT and CST approaches in terms of

Reda Sherif¹, Mostafa Eisa², Khalid Yahya³, Engy Abdallah³, Mostafa Gooda³, Anass Alnil³, Mohammed Allam³, Essa Muallemi⁴, Esraa Gaafar⁵, Islam Masadeh⁵, Lubaba Jawad⁶, Joumana Jawad⁷, Mohamed H. Badawy⁸

tracheostomy delay time, consumption of blood components, ventilator days, mortality, and length of hospital stay.

Our patients displayed no considerable variations regarding comorbidities, and such findings were in agreement with previous studies that reported no considerable variations between both groups regarding comorbidities, including diabetes, hypertension, and other comorbidities. 9, 22, 23

There has been no definite consensus on tracheostomy timing so far.²⁴⁻²⁶ Therefore, caution should be considered while deciding the time of tracheostomy as early intervention might lead to unnecessary procedure in some cases, whereas late intervention might lead to prolonged endotracheal intubation and associated consequences leading to considerable prolonged weaning from mechanical ventilation.¹⁹

In the current study, PDT subjects displayed considerably less delay time compared to surgical intervention. This difference could be explained by the implementation of early tracheostomy and the bedside nature of the procedure, which reduces preparation and prerequisites.^{1, 5, 6} In contrast to our findings, PDT patients in one study significantly tended to spend more days before tracheostomy compared to surgical ones.²²

A previous analysis enrolled 41 studies that declared that defining early tracheostomy as that done within seven days of intubation resulted in better results than those defining early tracheostomy as that done within 14 or 21 days of intubation.²⁷ Late tracheostomy was found to be significantly associated with longer ICU stays and longer mechanical ventilation among neurosurgical cases.¹⁹

Regarding indications in the present study, despite the higher proportion of surgical cases who reported weaning failure, the variation between both groups wasn't significant (P= .1). However, the surgical approach was considerably indicated for airway protection rather than the percutaneous approach. Such findings were in line with that reported in similar research, where no considerable variations between both groups were found regarding ventilator weaning, but surgical subjects significantly tended to be indicated for airway protection. 22

In contrast to our findings, one study demonstrated no considerable variations between PDT and CST regarding indications of tracheostomy. However, airway protection was slightly and non-significantly higher for CST cases.²³

The current research revealed favorable findings of the percutaneous approach regarding bleeding and total days of mechanical ventilation; none of the subjects who underwent PDT experienced bleeding, and the total days on mechanical ventilation were significantly fewer compared to those who underwent the surgical approach.

Also, consumption of blood-related components was much lower in the percutaneous group. This difference may be attributed to the smaller incision, ultrasound guidance, and use of fiberoptic bronchoscopy in the percutaneous group, whereas in the surgical group, the higher incidence of bleeding could be attributed to incision and dissection of

paratracheal tissue, retraction, or division of the isthmus, and proximity of the vessels supplying the thyroid. 28,29 Total days of mechanical ventilation were significantly lower in the percutaneous group compared to the surgical group (P-value < .001), which could be explained by early tracheostomy and early weaning trials in the percutaneous group. 30

Similar to our findings, PDT cases in one study reported no major bleeding, whereas a considerable proportion of CST cases reported bleeding, revealing the tendency of surgical intervention to cause bleeding compared to the percutaneous one.²² In contrast to our findings, a previous study revealed no considerable variations between both groups regarding intraoperative and postoperative minor and major bleeding.⁹ Another study also displayed no variations in bleeding, involving major, minor, and moderate bleeding between both groups.²³

Our findings revealed that both categories of patients reported no significant variations in mortality rate and length of ICU stay. Similarly, previous research found that CST and PDT categories didn't display significant variations in total ICU mortality, length of ICU, or hospital stay.^{9, 22, 23}

Conclusion:

PDT performed by intensivists was associated with fewer delay times and mechanical ventilation days, less bleeding, and lower use of blood and blood components compared to CST performed by ENT. However, both interventions were comparable in terms of mortality and length of stay. Therefore, the selection of the intervention should be based on the case conditions.

Limitations, strengths and recommendations:

The retrospective design of the study is a limitation, whereas the comparison between PDT and CST regarding various aspects was a strength point. Further studies are recommended to determine the delaying time and criteria for patients who are appropriate for PDT and those appropriate for CST.

Funding/support Disclosure:

No financial support was received.

References:

- 1- Freeman BD, Morris PE. Tracheostomy practice in adults with acute respiratory failure. Crit Care Med. 2012;40(10):2890-6.
- 2- Lee DH, Jeong J-H. Safety and Feasibility of Percutaneous Dilatational Tracheostomy in the Neurocritical Care Unit. J Neurocrit Care 2018;11:32–38.
- 3- Seder DB, Lee K, Rahman C, Rossan-Raghunath N, Fernandez L, Rincon F, et al. Safety and feasibility of percutaneous tracheostomy performed by neurointensivists. Neurocrit Care 2009;10:264–268.

- Reda Sherif¹, Mostafa Eisa², Khalid Yahya³, Engy Abdallah³, Mostafa Gooda³, Anass Alnil³, Mohammed Allam³, Essa Muallemi⁴, Esraa Gaafar⁵, Islam Masadeh⁵, Lubaba Jawad⁶, Joumana Jawad⁷, Mohamed H. Badawy⁸
- 4- Heffner JE. The technique of weaning from tracheostomy. Criteria for weaning; practical measures to prevent failure. J Crit Illn;1995: 10:729-733.
- 5- Rashid AO, Islam S. Percutaneous tracheostomy: a comprehensive review. J Thorac Dis. 2017;9(10):S1128.
- 6- Andriolo BN, Andriolo RB, Saconato H, Atallah ÁN, Valente O. Early versus late tracheostomy for critically ill patients. Cochrane Database Syst Rev. 2015;1.
- 7- Nieszkowska A, Combes A, Luyt CE, Ksibi H, Trouillet JL, Gibert C, et al. Impact of tracheotomy on sedative administration, sedation level, and comfort of mechanically ventilated intensive care unit patients. Crit Care Med;2005:33(11): 2527-2533.
- 8- McWhorter AJ. Tracheotomy: timing and techniques. Curr Opin Otolaryngol Head Neck Surg. 2003; 11: 473-479.
- 9- Rai S, Adhikari S, Bhandari P, Koirala KP, Karmacharya B, Yogi N. Percutaneous dilatational tracheostomy compared with conventional surgical tracheostomy in neurosurgery intensive care unit. Asian J Med Sci. 2020;11(5):18-23.
- 10- Al-Ansari MA, Hijazi MH. Clinical review: Percutaneous dilatational tracheostomy. Crit Care 2005;10:202.
- 11- Griggs WM, Myburg JA, Worthley LIG. A prospective comparison of a percutaneous tracheostomy technique with standard surgical tracheostomy. Intensive Care Med 1991; 17:261-263.
- 12- Türkmen A, Altan A, Turgut N, Yildrim G, Erosy A, Koksal C, et al. Comparison of percutaneous dilatational tracheostomy with surgical tracheostomy. Middle East J Anesthesiol 2008; 19(5): 1055-1067.
- 13- Freeman BD, Isabella K, Lin N, Buchman TG. A meta-analysis of prospective trials comparing percutaneous and surgical tracheostomy in critically ill patients. Chest;2000: 118:1412-1418.
- 14- Ciaglia P, Firsching R, Syniec C. Elective percutaneous dilatational tracheostomy. A new simple bedside procedure; Preliminary report. Chest 1985;87:715–9.
- 15- Raimondi N, Vial MR, Calleja J, Quintero A, Cortes A, Celis E, et al. Evidence-based guidelines for the use of tracheostomy in critically ill patients. J Crit Care 2017;38:304–18.
- 16- Browd SR, MacDonald JD. Percutaneous dilational tracheostomy in neurosurgical patients. Neurocrit Care;2005: 2:268-273.
- 17- Mahmood K, Wahidi MM. The changing role for tracheostomy in patients requiring mechanical ventilation. Clin Chest Med 2016;37:741–51.
- 18- Mota LA, de Cavalho GB, Brito VA. Laryngeal complications by orotracheal intubation: Literature review. Int Arch Otorhinolaryngol 2012;16:236–45.

- 19- Rai S, Sharma P, Makajoo S, Karmacharya B, Yogi N. Early versus late tracheostomy in outcome of patients admitted in neurosurgical intensive care unit. Eastern Green Neurosurgery. 2020;2(2):21-5.
- 20- Melloni G, Muttini S, Gallioli G, Carretta A. Surgical tracheostomy versus percutaneous dilatational tracheostomy: a prospective-randomized study with long-term follow-up. J Cardiovasc Surg. 2002;43(1):113.
- 21-Hashimoto DA, Axtell AL, Auchincloss HG. Percutaneous tracheostomy. N Engl J Med. 2020 :383:e112.
- 22-Lim S, Park H, Lee JM, Lee K, Heo W, Hwang SH. Comparison of conventional surgical tracheostomy and percutaneous dilatational tracheostomy in the neurosurgical intensive care unit. Korean J Neurotrauma. 2022;18(2):246.
- 23-Kwon J, Kim YO, Ryu JA. Safety and feasibility of percutaneous dilatational tracheostomy performed by a Neurointensivist compared with conventional surgical tracheostomy in neurosurgery intensive care unit. J Neurointensive Care. 2019;2(2):64-9.
- 24-Heffner J E. Timing tracheostomy: calendar watching or individualization of care? Chest 1988;114:361-363.
- 25-Marsh HM, Gillespie DJ, Baumgartner AE. Timing of tracheostomy in the critically ill patient. Chest 1989;96:190-192.
- 26-Plummer AL, Gracey DR. Consensus conference on artificial airways in patients receiving mechanical ventilation. Chest 1989;96:178-180.
- 27-Adly A, Youssef TA, El-Begermy MM, Younis HM. Timing of tracheostomy in patients with prolonged endotracheal intubation: a systematic review. Eur Arch Otorhinolaryngol. 2018; 275(3):275:679-90.
- 28- Rajajee V, Fletcher JJ, Rochlen LR, Jacobs TL. Real-time ultrasound-guided percutaneous dilatational tracheostomy: a feasibility study. Crit Care. 2011;15(1):15:1-0.
- 29- Shin HI, Jang KI, Kim KM, Nam IC. Comparison of surgical tracheostomy and percutaneous dilatational tracheostomy in intensive care unit patients. Korean J Otorhinolaryngology-Head Neck Surg. 2019;62(5):288-93.
- 30- van der Lely AJ, Veelo DP, Dongelmans DA, Korevaar JC, Vroom MB, Schultz MJ. Time to wean after tracheotomy differs among subgroups of critically ill patients: retrospective analysis in a mixed medical/surgical intensive care unit. Respir Care. 2006;51(12):1408-15.