ISSN: 2576-0017 2024, VOL 7, NO S9

Hypertension: Genetic Factors, Endothelial Dysfunction, and Nursing Management Strategies

Tahani Huwaydi Aldhafeeri¹, Mashael Huwaydi Aldhafeeri¹, Mofeedah Nafe Hwas Alrawali¹, Asma Nafea Hawas Al-Ruwaili¹, Ibrahim Abdullah Aldossary², Marzouq Shabib Mohammed Aldossary³, Naila Mubarak Al-Shahrani³, Fadyah Nafea Hwas Alrowaili⁴, Mureefah Musabah Awsheeh Al Sharariy⁴

- 1. KSA, Ministry of Health, King khalid general hospital
- 2. KSA, Ministry of Health, Forensic Medical Services Center in Riyadh
- 3. KSA, Ministry of Health
- 4. KSA, Ministry of Health, Domat Al-Jandal General Hospital, Saudi Arabia

ABSTRACT

Background: Hypertension, a principal modifiable risk factor for cardiovascular morbidity and mortality, continues to pose a substantial worldwide health concern. The etiology of hypertension is complicated, encompassing a complex interaction of genetic predisposition, endothelial dysfunction, and environmental influences. Genetic variables, including polymorphisms in the renin-angiotensin-aldosterone system (RAAS) and other regulatory pathways, have been demonstrated to affect blood pressure regulation and predisposition to hypertension. Simultaneously, endothelial dysfunction, marked by diminished nitric oxide availability, heightened oxidative stress, and vascular inflammation, facilitates vascular remodeling and persistent hypertension. Despite progress in pharmacological treatments, insufficient comprehension of the underlying mechanisms has hindered the optimization of hypertension therapy. Nurses are crucial in the management of hypertension patients, especially in patient education, monitoring, and encouraging compliance with lifestyle modifications and medical treatments. Aim: This study aims to examine the genetic determinants and endothelium dysfunction associated with hypertension, highlighting their significance for disease advancement and patient care. Additionally, it aims to emphasize evidence-based nursing management practices that address both clinical and preventive dimensions of hypertension care. Methods: A comprehensive review of existing literature was performed to assess genetic and endothelium variables in hypertension and their interaction with modifiable risk factors. Evidence-based nursing strategies for the effective management of hypertension were derived from clinical guidelines, randomized controlled trials, and observational research. The review amalgamates molecular knowledge with practical nursing applications to address deficiencies in care. Results: Genetic predisposition, especially concerning RAAS polymorphisms and sodium transport gene variations, is a significant factor in hypertension risk. Endothelial dysfunction accelerates disease progression by disrupting vascular homeostasis, augmenting vascular stiffness, and fostering systemic inflammation. These processes jointly elevate cardiovascular risk. Nursing interventions, including as patient-centered education, precise blood pressure monitoring, lifestyle counseling, and assistance with medication adherence, have demonstrated a substantial reduction in the burden of hypertension and its related problems. Integrating genetic counseling and endothelial biomarkers into standard nursing care presents intriguing possibilities for customized hypertension control. Conclusion: Hypertension is a multifaceted illness affected by hereditary and endothelium factors, requiring a multidisciplinary strategy for its care. Nurses are pivotal in providing comprehensive care, emphasizing prevention, early identification, and ongoing management. By incorporating findings from genetic and endothelial studies into clinical practice, nurses can augment the efficacy of hypertension therapies and boost patient outcomes. Future research must focus on creating customized nursing techniques that utilize emerging molecular and genetic data to meet the varied needs of hypertension patients.

KEYWORDS: hypertension, genetic factors, endothelial dysfunction, renin-angiotensinaldosterone system, oxidative stress, vascular inflammation, nursing management, patient education, personalized care, blood pressure regulation.

1. Introduction

Hypertension, commonly referred to as high blood pressure, is a pervasive cardiovascular disorder that affects over 1.3 billion individuals globally, representing a considerable contributor to morbidity and mortality [1, 2]. High blood pressure, often known as hypertension, is characterized by persistently increased arterial pressure. It is linked to a wide range of poor health outcomes, including as stroke, myocardial infarction, heart failure, and chronic kidney disease [3, 4]. Hypertension continues to be a significant public health concern, despite the fact that there have been breakthroughs in understanding its etiology. Many cases of hypertension are either not recognized or are not well treated [5].

The causes of hypertension are complex and include a variety of factors, including those that are hereditary, environmental, and behavioral in nature. Numerous studies have identified particular genetic variants and mutations that are associated to the regulation of blood pressure. This indicates that genetic predisposition plays a significant role in managing blood pressure. Several genes, including those that code for angiotensin-converting enzyme (ACE), endothelial nitric oxide synthase (eNOS), and components of the renin-angiotensin-aldosterone system (RAAS), have been investigated for their potential role in the pathophysiology of hypertension [6, 7]. These hereditary factors interact with environmental influences, such as the amount of sodium consumed in one's diet, the amount of physical activity one gets, and stress, to control the risk of hypertension and the severity of its symptoms [8].

Another important element in the development of hypertension is endothelial dysfunction, which is characterized by impaired vascular homeostasis and a reduction in the bioavailability of nitric oxide (NO). The production of NO, a powerful vasodilator, by endothelial cells is an essential component in the process of

preserving vascular tone and preventing the development of atherogenesis [9]. Endothelial dysfunction that is linked with hypertension is characterized by oxidative stress, inflammation, and an imbalance between vasodilatory and vasoconstrictive mediators [10, 11]. Not only does this disruption in endothelial function contribute to high blood pressure, but it also contributes to the vascular remodeling and stiffness that is found in persons who have hypertension [12].

The management of hypertension calls for an all-encompassing, patient-centered strategy that incorporates both pharmaceutical and non-pharmacological methods of treatment. Even though pharmacological therapies like calcium channel blockers, ACE inhibitors, and diuretics are necessary for controlling blood pressure, nurse management is just as important for achieving the best possible results. The teaching of patients, the adherence to treatment regimens, the alteration of lifestyles, and the monitoring for problems are all roles that nurses play that are extremely important [13]. Nursing interventions that are effective, such as counseling on diet, stress management, and regular follow-up, have the potential to greatly improve hypertension control and lower the risk of cardiovascular events [14].

Within the context of hypertension, the purpose of this research is to investigate the complex relationship that exists between hereditary variables, endothelial dysfunction, and nurse care options. This article tries to provide a complete knowledge of the biochemical and physiological mechanisms that underlie hypertension by integrating the research that is currently available. Additionally, it seeks to highlight the crucial role that nursing care plays in alleviating the burden of hypertension. For the purpose of designing focused interventions that improve patient outcomes and progress hypertension management techniques, it is vital to address these issues.

Physiology and Pathophysiology of Hypertension

Genetic Factors

There are multiple factors that contribute to hypertension, which is a disease that is influenced by a mix of hereditary and environmental factors. Approximately thirty to fifty percent of the variance in blood pressure that occurs between individuals can be attributable to genetic heredity [15]. Although environmental and lifestyle factors play significant roles, it is essential to have a solid understanding of the genetic foundations in order to identify populations that are at risk and to develop therapies that are specifically tailored to those populations.

These complicated and polygenic inheritance patterns in essential hypertension are characterized by a large number of small-effect genetic variants that cumulatively contribute to vulnerability towards the condition. Several investigations, including those based on families and twins, have demonstrated that hypertension tends to cluster within families, highlighting the presence of a genetic susceptibility [16, 17]. There has been a significant amount of research conducted on the genes that are related with the renin-angiotensin-aldosterone system (RAAS). For example, polymorphisms in the gene that codes for the angiotensin-converting enzyme (ACE), such as the insertion/deletion (I/D) polymorphism, have been associated with

changes in the activity of the ACE enzyme and, as a consequence, with effects on the control of blood pressure [18]. Variations in the genes that code for angiotensinogen (AGT) and angiotensin II receptor type 1 (AGTR1) also have an effect on the function of the RAAS, which in turn causes an increase in vasoconstriction and salt retention [19].

Additionally, hypertension is caused by a number of other genetic markers in addition to RAAS. Specifically, salt-sensitive hypertension can be caused by mutations in genes that encode sodium channels, such as those found in SCNN1A (which encodes the α -subunit of epithelial sodium channel) [20]. This is especially true in people that consume a large amount of sodium through their diet. Additionally, mutations in the endothelial nitric oxide synthase (eNOS) gene, which is responsible for the production of nitric oxide (NO), have been linked to decreased vascular relaxation, which in turn makes individuals more likely to have high vascular resistance and hypertension [21]. In addition to highlighting the potential for personalized medical approaches, these findings shed light on the complex network of genetic variables that influence hypertension.

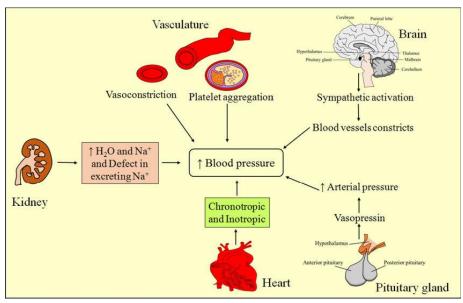


Figure 1 Pathophysiology of hypertension

Endothelial Dysfunction

Endothelial dysfunction is a hallmark of hypertension and represents a critical step in the disease's pathophysiology. The endothelium, a monolayer of cells lining the blood vessels, regulates vascular tone, hemostasis, and inflammation. In hypertensive states, the endothelium's ability to maintain vascular homeostasis is compromised, contributing to increased vascular resistance and elevated blood pressure [22].

Mechanistically, endothelial dysfunction involves oxidative stress, reduced nitric oxide (NO) bioavailability, and chronic vascular inflammation. NO, synthesized by endothelial nitric oxide synthase (eNOS), is a potent vasodilator crucial for maintaining vascular tone. In hypertension, reactive oxygen species (ROS) generated by NADPH oxidase, xanthine oxidase, and mitochondrial pathways scavenge NO, forming peroxynitrite, a cytotoxic molecule that exacerbates oxidative stress [23]. This process reduces NO bioavailability, impairing endothelium-dependent vasodilation and promoting vasoconstriction [24]. Additionally, inflammation mediated by cytokines such as tumor necrosis factor-alpha (TNF- α) and interleukin-6 (IL-6) further disrupts endothelial integrity by enhancing leukocyte adhesion and increasing vascular permeability [25].

The downstream effects of endothelial dysfunction include heightened vascular resistance, impaired blood flow, and the initiation of vascular remodeling. These changes create a positive feedback loop where elevated blood pressure further damages the endothelium, perpetuating hypertension [26].

Hypertension Development and Progression

The development and progression of hypertension involve a dynamic interplay between genetic predisposition, lifestyle factors, and environmental influences. While genetic variations establish an individual's baseline susceptibility, lifestyle factors such as excessive sodium intake, physical inactivity, and chronic stress modulate the risk and severity of hypertension [27].

Endothelial dysfunction plays a central role in the progression of hypertension by initiating vascular remodeling. Chronic exposure to high blood pressure and oxidative stress leads to structural changes in the vascular wall, including intimal thickening, smooth muscle cell proliferation, and increased extracellular matrix deposition [28]. These changes increase arterial stiffness and vascular resistance, further exacerbating blood pressure elevations. Studies have demonstrated that early endothelial dysfunction, characterized by reduced NO availability and increased ROS production, precedes detectable vascular remodeling, highlighting its role as a precursor in hypertension pathogenesis [29].

Additionally, the interactions between genetic and environmental factors can accelerate hypertension progression. For instance, individuals with RAAS polymorphisms may exhibit heightened sensitivity to dietary sodium, leading to disproportionate increases in blood pressure under high-sodium conditions [30]. Similarly, genetic variations affecting endothelial function may predispose individuals to earlier onset of vascular damage in response to oxidative stress or inflammation [31].

These multifactorial processes underscore the complexity of hypertension pathophysiology and highlight the need for integrative management approaches. Understanding the mechanisms of endothelial dysfunction and genetic predisposition offers valuable insights into novel therapeutic targets and preventive strategies.

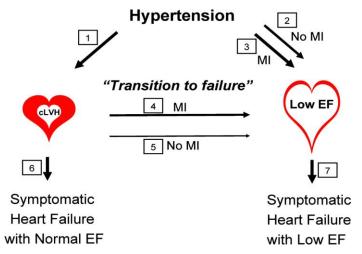


Figure 2 The 7 pathways in the progression from hypertension to heart failure.

Nursing Management Strategies in Hypertension

Patient Education and Counseling

Nursing management of hypertension begins with patient education, which is pivotal in empowering individuals to manage their condition effectively. Patients often underestimate the severity of hypertension due to its asymptomatic nature, which can lead to poor adherence to treatment plans and delayed diagnosis [31]. Educating patients about the risks of untreated hypertension, including stroke, myocardial infarction, kidney failure, and other target organ damage, is essential [32].

Counseling on lifestyle modifications forms the cornerstone of non-pharmacologic hypertension management. Nurses should emphasize the importance of a balanced diet, particularly the Dietary Approaches to Stop Hypertension (DASH) diet, which is rich in fruits, vegetables, whole grains, and low-fat dairy products and has been proven to lower blood pressure significantly [33]. Reducing sodium intake to less than 2,300 mg per day, as recommended by current guidelines, is another key focus [34]. Patients should also be educated about the benefits of regular physical activity, with recommendations including at least 150 minutes of moderate-intensity aerobic exercise per week to improve cardiovascular health [35]. Counseling on stress management and smoking cessation is equally important, as stress and tobacco use are known contributors to elevated blood pressure [36]. Nurses can also guide patients in setting realistic, achievable goals and using tracking tools, such as blood pressure diaries, to monitor progress.

Monitoring and Early Detection

Regular monitoring of blood pressure is crucial in both diagnosing hypertension and evaluating the efficacy of treatment. Nurses play a vital role in teaching patients techniques for accurate blood pressure measurement, including using validated devices, maintaining proper posture, and ensuring measurements are taken at

consistent times each day [37]. They also educate patients about potential sources of measurement error, such as cuff size and placement, to improve the reliability of readings.

Early detection of hypertension-related complications is another critical aspect of nursing care. Nurses are trained to identify signs of hypertensive emergencies, such as severe headache, visual disturbances, chest pain, or symptoms indicative of target organ damage, including renal dysfunction or neurological deficits [38]. Early recognition of these symptoms allows for prompt intervention, potentially preventing irreversible damage.

Medication Management

Medication adherence is a significant challenge in hypertension management. Nurses are instrumental in ensuring that patients understand the importance of maintaining their antihypertensive therapy, even when they feel asymptomatic. They provide education about the purpose of prescribed medications, such as ACE inhibitors, calcium channel blockers, diuretics, and beta-blockers, and their role in controlling blood pressure and preventing complications [39].

Additionally, nurses monitor patients for side effects, such as electrolyte imbalances with diuretics or cough with ACE inhibitors, and assess the efficacy of medications during follow-up visits [40]. They encourage patients to communicate any adverse effects or concerns, facilitating timely adjustments by the healthcare provider. Simplifying medication regimens and utilizing strategies like pill organizers or mobile reminders can further improve adherence [41].

Lifestyle Interventions

Lifestyle interventions are foundational to managing hypertension and complement pharmacologic treatment. Dietary modifications, particularly adherence to the DASH diet, are among the most effective non-pharmacologic strategies. The DASH diet has been shown to reduce systolic blood pressure by 8–14 mmHg, highlighting its significance in hypertension management [42]. Nurses guide patients in meal planning, reading food labels, and choosing low-sodium options to facilitate dietary adherence.

Regular physical activity is another critical intervention. Aerobic exercises, such as brisk walking, cycling, or swimming, enhance cardiovascular fitness, lower blood pressure, and improve overall health [43]. Weight management is equally important, as even modest weight loss of 5–10% of body weight can result in significant reductions in blood pressure [44]. Nurses support patients by helping them establish realistic exercise and weight loss goals, addressing barriers to physical activity, and providing motivational counseling.

Collaborative Care

Hypertension management often requires a multidisciplinary approach. Nurses serve as coordinators, ensuring seamless communication between the patient and other healthcare professionals, including physicians, dietitians, and psychologists. Collaboration with dietitians can provide patients with tailored nutritional advice,

while psychologists may assist in addressing stress, anxiety, or other mental health factors contributing to hypertension [45].

Addressing social determinants of health is also critical in achieving optimal hypertension outcomes. Factors such as income, education, access to healthcare, and cultural beliefs significantly influence patients' ability to manage their condition. Nurses advocate for policies and interventions that address these determinants, such as community-based programs for low-cost blood pressure monitoring or dietary education initiatives [46]. By understanding and addressing these broader influences, nurses can help reduce health disparities and improve outcomes for diverse populations.

2. Results and Discussion

Genetic Insights into Hypertension

Research highlights the critical role of heritability in hypertension, estimating that genetic factors contribute to 30–50% of blood pressure variability [47]. Genomewide association studies (GWAS) have identified over 1,000 loci associated with blood pressure regulation, including polymorphisms in genes related to the reninangiotensin-aldosterone system (RAAS) and sodium transport [48]. Variants in the AGT and ACE genes, for instance, have been linked to higher plasma angiotensinogen levels and increased angiotensin-converting enzyme activity, respectively, both of which contribute to hypertension [49].

Gene-environment interactions further modulate the development of hypertension. For example, individuals with genetic predispositions to salt sensitivity exhibit amplified blood pressure responses to dietary sodium intake [50]. Similarly, physical inactivity and obesity exacerbate the expression of genetic susceptibility [51]. The clinical implications of these findings are profound, paving the way for personalized medicine approaches. Precision strategies, such as genetic testing, could identify individuals at high risk and guide tailored interventions, including specific pharmacologic agents targeting the RAAS or sodium channels [52].

Endothelial Dysfunction in Hypertension

Endothelial dysfunction is a hallmark of hypertension, characterized by impaired vasodilation, heightened oxidative stress, and vascular inflammation [53]. Evidence shows that biomarkers of endothelial health, such as flow-mediated dilation (FMD) and nitric oxide (NO) bioavailability, are inversely correlated with blood pressure severity [54]. Reduced NO levels, resulting from decreased endothelial nitric oxide synthase (eNOS) activity, lead to increased vascular resistance and contribute to sustained hypertension [55].

Studies have also demonstrated that endothelial dysfunction is not merely a consequence of hypertension but may act as a precursor, initiating vascular remodeling and contributing to disease progression [56]. Therapeutically, targeting the endothelial pathways shows promise. Interventions aimed at enhancing NO availability, such as lifestyle changes and pharmacologic agents like NO donors or

antioxidants, have shown to improve vascular function and lower blood pressure [57]. Further, therapies targeting endothelial inflammation, such as statins and angiotensin receptor blockers, are effective in mitigating hypertension-related endothelial damage [58].

Effectiveness of Nursing Interventions

The role of nursing interventions in hypertension management is increasingly recognized, particularly in reducing complications and improving adherence to treatment. Evidence supports the impact of nursing-led education programs on improving patients' understanding of hypertension and promoting lifestyle changes [59]. A systematic review reported that nurse-delivered interventions, including counseling on diet and exercise, significantly reduced systolic blood pressure by an average of 4–8 mmHg compared to usual care [60].

Case studies illustrate the effectiveness of nursing strategies. For example, a community-based nursing program in a low-resource setting demonstrated significant improvements in blood pressure control through regular patient follow-ups, dietary counseling, and medication adherence monitoring [61]. Nurses' ability to build trust and rapport with patients plays a crucial role in ensuring long-term engagement and adherence.

Despite these successes, challenges remain. Resource limitations, such as understaffing and inadequate access to diagnostic tools, hinder the widespread implementation of effective nursing interventions [62]. Additionally, variability in patients' health literacy and socioeconomic status complicates the delivery of standardized care. Overcoming these barriers requires systemic support, including investment in nursing education, community health infrastructure, and technology-based solutions like telemedicine [63].

Challenges and Opportunities

While advancements in genetic and endothelial research offer promising directions for hypertension management, integrating these insights into nursing practice poses challenges. Barriers include the complexity of genetic information and the lack of training in genomics for many nursing professionals [64]. Addressing these gaps will require interdisciplinary collaboration and the development of training programs that equip nurses with the knowledge to apply genetic insights in clinical care.

Similarly, the translation of endothelial research into practice is limited by the availability of non-invasive biomarkers and cost-effective therapeutic options. Expanding access to diagnostic tools, such as FMD assessment, could enhance early detection and targeted management of endothelial dysfunction [65]. Future opportunities lie in leveraging technology to bridge these gaps. For instance, mobile health applications could provide real-time blood pressure monitoring and deliver tailored recommendations based on genetic and endothelial profiles [66].

Moreover, the integration of genetic and endothelial research into nursing education and policy-making has the potential to revolutionize hypertension care. By equipping nurses with the skills to incorporate these emerging insights into patient

management, healthcare systems can better address the complexities of hypertension and improve outcomes across diverse populations [67].

3. Conclusion

In light of its association with cardiovascular diseases, stroke, and renal failure, hypertension remains a significant global public health issue. It is a critical determinant of morbidity and mortality. The complex character of hypertension, encompassing genetic predispositions, endothelial dysfunction, and intricate interactions with environmental and lifestyle factors, underscores the need for a comprehensive and integrative therapeutic approach to this condition.

These findings emphasize the crucial role that genetic factors play in the pathogenesis of hypertension. Recent advancements in genomic technology, particularly genome-wide association studies (GWAS), have illuminated numerous genetic regions linked to blood pressure regulation. These loci are specifically linked to the renin-angiotensin-aldosterone system (RAAS) and sodium transport mechanisms. The identification of at-risk populations and the customisation of therapeutic approaches based on genetic profiles are two compelling avenues that these discoveries present in relation to personalized medicine. Nonetheless, challenges remain to be surmounted to implement these results in clinical practice. These challenges encompass the necessity for economically viable genetic screening and an enhanced comprehension of the interplay between genes and the environment.

Recent findings indicate that endothelial dysfunction is a pivotal factor in the onset and advancement of hypertension. Multiple fundamental mechanisms lead to elevated vascular resistance and sustained hypertension. The mechanisms encompass reduced nitric oxide (NO) bioavailability, oxidative stress, and vascular inflammation. Endothelial dysfunction is significant as a therapeutic target due to its dual role as both a precursor and a consequence of hypertension. The chronic vascular impairment linked to hypertension may be alleviated with therapies aimed at restoring endothelial function. These therapies encompass lifestyle modifications, pharmacological treatment, and novel medicines aimed at vascular inflammation.

Nursing management strategies are essential in alleviating the burden of hypertension, especially in primary and secondary prevention. Nurses possess a unique capacity to deliver patient-centered care by using their experience in education, counseling, and collaborative practice. Evidence indicates that nursing interventions are effective in reducing blood pressure, enhancing medication adherence, and promoting sustainable lifestyle modifications. The education and counseling of patients, particularly regarding the importance of nutrition, physical activity, and stress management, significantly influence hypertension results. Nursing-led monitoring systems have enhanced the early detection and prompt management of hypertension, resulting in improved patient outcomes.

Despite these advancements, hurdles remain to be addressed in order to enhance hypertension management. Disparities in healthcare access, discrepancies in health

literacy, and structural issues such as inadequate training and understaffing represent significant barriers that must be addressed. To resolve these challenges, focused investments in healthcare infrastructure are essential, alongside enhancing access to diagnostic tools and incorporating technology, such as telemedicine, to expand the range of nursing interventions. Furthermore, to provide nurses with the requisite knowledge and competencies to integrate emerging insights from genetic and endothelial research into practice, it is essential for them to engage in continuous education and cooperate with specialists across other disciplines.

The integration of genetic and endothelial information into hypertension therapy offers unprecedented opportunities to enhance patient outcomes. Future research should focus on improving the utilization of tools derived from genetic and biomarker data to create personalized care recommendations. To bridge the divide between scientific discovery and practical application, collaboration among researchers, physicians, and policymakers is essential. Moreover, to assess the effectiveness of integrating traditional hypertension management techniques with novel, precision-oriented strategies, it is essential to do comprehensive and long-term research.

In conclusion, the therapy of hypertension necessitates an approach that considers various aspects, including genetic predisposition, endothelial function, and lifestyle choices. Nurses, as essential members of the healthcare team, significantly contribute to the execution of these programs through education, monitoring, and collaboration with experts from various disciplines. By addressing the biological, behavioral, and systemic dimensions of hypertension, healthcare providers can mitigate the impact of the condition and improve the quality of life for persons globally. The integration of newly discovered, evidence-based research and nursing methodologies will be essential for advancing the fight against this prevalent affliction as the sector evolves.

References

- World Health Organization. (2021). Hypertension. Available at: https://www.who.int/news-room/fact-sheets/detail/hypertension
- Kearney, P. M., et al. (2005). Global burden of hypertension: analysis of worldwide data. The Lancet, 365(9455), 217-223. https://doi.org/10.1016/S0140-6736(05)17741-1
- Forouzanfar, M. H., et al. (2017). Global burden of hypertension and attributable risk factors. The New England Journal of Medicine, 377, 2103–2113. https://doi.org/10.1056/NEJMoa1606131
- Mills, K. T., et al. (2020). Global disparities of hypertension prevalence and control: A systematic analysis. Hypertension, 76(6), 1487-1497. https://doi.org/10.1161/HYPERTENSIONAHA.120.15882
- Whelton, P. K., et al. (2018). 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults. Hypertension, 71(6), e13-e115. https://doi.org/10.1161/HYP.0000000000000065
- Ehret, G. B., & Caulfield, M. J. (2013). Genes for blood pressure: an opportunity to understand hypertension. European Heart Journal, 34(13), 951-961. https://doi.org/10.1093/eurheartj/eht023

- Padmanabhan, S., Caulfield, M., & Dominiczak, A. F. (2015). Genetic and molecular aspects of hypertension. Circulation Research, 116(6), 937-959. https://doi.org/10.1161/CIRCRESAHA.116.303647
- Carretero, O. A., & Oparil, S. (2000). Essential hypertension. Part I: Definition and etiology. Circulation, 101(3), 329-335. https://doi.org/10.1161/01.CIR.101.3.329
- Moncada, S., & Higgs, A. (2006). The discovery of nitric oxide and its role in vascular biology. British Journal of Pharmacology, 147(Suppl 1), S193-S201. https://doi.org/10.1038/sj.bjp.0706458
- Schiffrin, E. L. (2008). Endothelial dysfunction and vascular remodeling in hypertension: mechanisms and treatment. Hypertension, 51(1), 147-154. https://doi.org/10.1161/HYPERTENSIONAHA.107.101147
- Virdis, A., et al. (2010). Endothelial dysfunction in hypertension: role of oxidative stress. Hypertension Research, 33(6), 494-497. https://doi.org/10.1038/hr.2010.25
- Safar, M. E., & O'Rourke, M. F. (2006). Arterial stiffness in hypertension. Hypertension, 47(2), 173-177. https://doi.org/10.1161/01.HYP.0000196721.23323.62
- Dickson, V. V., et al. (2013). Management of hypertension: Role of nurses in optimizing care.

 Journal of Cardiovascular Nursing, 28(5), 373-378.

 https://doi.org/10.1097/JCN.0b013e318274b9e4
- Artinian, N. T., et al. (2010). Interventions to promote physical activity and dietary lifestyle changes for cardiovascular risk factor reduction in adults. Circulation, 122(4), 406-441. https://doi.org/10.1161/CIR.0b013e3181e8edf1
- Ehret, G. B., & Caulfield, M. J. (2013). Genes for blood pressure: an opportunity to understand hypertension. European Heart Journal, 34(13), 951-961. https://doi.org/10.1093/eurheartj/eht023
- Lifton, R. P., Gharavi, A. G., & Geller, D. S. (2001). Molecular mechanisms of human hypertension. Cell, 104(4), 545-556. https://doi.org/10.1016/S0092-8674(01)00241-0
- Padmanabhan, S., Caulfield, M., & Dominiczak, A. F. (2015). Genetic and molecular aspects of hypertension. Circulation Research, 116(6), 937-959. https://doi.org/10.1161/CIRCRESAHA.116.303647
- Kato, N., et al. (2015). Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation. Nature Genetics, 47(10), 1282-1293. https://doi.org/10.1038/ng.3660
- Savoia, C., & Schiffrin, E. L. (2007). Vascular inflammation in hypertension and diabetes: molecular mechanisms and therapeutic interventions. Clinical Science, 112(7), 375-384. https://doi.org/10.1042/CS20060344
- Hansson, J. H., et al. (1995). Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome. Nature Genetics, 11(1), 76-82. https://doi.org/10.1038/ng0995-76
- Taddei, S., et al. (2001). Endothelial dysfunction in hypertension: insights from experimental animals and humans. Journal of Hypertension, 19(5), 941-961. https://doi.org/10.1097/00004872-200105000-00007
- Schiffrin, E. L. (2008). Endothelial dysfunction and vascular remodeling in hypertension: mechanisms and treatment. Hypertension, 51(1), 147-154. https://doi.org/10.1161/HYPERTENSIONAHA.107.101147
- Virdis, A., et al. (2010). Endothelial dysfunction in hypertension: role of oxidative stress. Hypertension Research, 33(6), 494-497. https://doi.org/10.1038/hr.2010.25
- Moncada, S., & Higgs, A. (2006). The discovery of nitric oxide and its role in vascular biology. British Journal of Pharmacology, 147(Suppl 1), S193-S201. https://doi.org/10.1038/sj.bjp.0706458
- Harrison, D. G., et al. (2011). Oxidative stress and hypertension. Journal of the American Heart Association: Hypertension, 58(5), 631-633. https://doi.org/10.1161/HYPERTENSIONAHA.111.186882

- Tahani Huwaydi Aldhafeeri, Mashael Huwaydi Aldhafeeri, Mofeedah Nafe Hwas Alrawali, Asma Nafea Hawas Al-Ruwaili, Ibrahim Abdullah Aldossary, Marzouq Shabib Mohammed Aldossary, Naila Mubarak Al-Shahrani, Fadyah Nafea Hwas Alrowaili, Mureefah Musabah Awsheeh Al Sharariy
- Safar, M. E., & O'Rourke, M. F. (2006). Arterial stiffness in hypertension. Hypertension, 47(2), 173-177. https://doi.org/10.1161/01.HYP.0000196721.23323.62
- Carretero, O. A., & Oparil, S. (2000). Essential hypertension. Part I: Definition and etiology. Circulation, 101(3), 329-335. https://doi.org/10.1161/01.CIR.101.3.329
- Intengan, H. D., & Schiffrin, E. L. (2001). Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis. Hypertension, 38(3), 581-587. https://doi.org/10.1161/01.HYP.38.3.581
- Ghiadoni, L., et al. (2000). Oxidative stress and endothelial function: the target for antihypertensive therapy. Current Pharmaceutical Design, 6(2), 203-221. https://doi.org/10.2174/1381612003401047
- McLean, D. S., et al. (2006). Salt sensitivity and hypertension: a paradigm revisited. Current Opinion in Nephrology and Hypertension, 15(2), 173-176. https://doi.org/10.1097/01.mnh.0000214740.12816.ba
- Tzemos, N., et al. (2009). Differential effects of antihypertensive drugs on endothelial function: a systematic review and meta-analysis of randomized controlled trials. Hypertension, 54(3), 543-550. https://doi.org/10.1161/HYPERTENSIONAHA.109.133215
- Muntner, P., Carey, R. M., Gidding, S., Jones, D. W., Taler, S. J., Wright, J. T., & Whelton, P. K. (2018). Potential U.S. population impact of the 2017 ACC/AHA high blood pressure guideline. Journal of the American College of Cardiology, 71(2), 109-118. https://doi.org/10.1016/j.jacc.2017.10.073
- GBD 2017 Risk Factor Collaborators. (2018). Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 392(10159), 1923-1994. https://doi.org/10.1016/S0140-6736(18)32225-6
- Sacks, F. M., et al. (2001). Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. New England Journal of Medicine, 344(1), 3-10. https://doi.org/10.1056/NEJM200101043440101
- Appel, L. J., et al. (1997). A clinical trial of the effects of dietary patterns on blood pressure.

 New England Journal of Medicine, 336(16), 1117-1124. https://doi.org/10.1056/NEJM199704173361601
- Whelton, P. K., et al. (2018). 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults. Hypertension, 71(6), e13-e115. https://doi.org/10.1161/HYP.0000000000000065
- He, F. J., & MacGregor, G. A. (2010). Reducing population salt intake worldwide: From evidence to implementation. Progress in Cardiovascular Diseases, 52(5), 363-382. https://doi.org/10.1016/j.pcad.2009.12.006
- Pickering, T. G., et al. (2005). Recommendations for blood pressure measurement in humans and experimental animals. Hypertension, 45(1), 142-161. https://doi.org/10.1161/01.HYP.0000150859.47929.8e
- Carey, R. M., & Whelton, P. K. (2018). Prevention, detection, evaluation, and management of high blood pressure in adults: Synopsis of the 2017 American College of Cardiology/American Heart Association Hypertension Guideline. Annals of Internal Medicine, 168(5), 351-358. https://doi.org/10.7326/M17-3203
- Messerli, F. H., Williams, B., & Ritz, E. (2007). Essential hypertension. The Lancet, 370(9587), 591-603. https://doi.org/10.1016/S0140-6736(07)61299-9
- Gradman, A. H., et al. (2010). Combination therapy in hypertension. Journal of the American Society of Hypertension, 4(1), 42-50. https://doi.org/10.1016/j.jash.2010.02.005
- Bosworth, H. B., et al. (2011). Medication adherence: A call for action. American Heart

- Journal, 162(3), 412-424. https://doi.org/10.1016/j.ahj.2011.06.007
- Blumenthal, J. A., et al. (2010). Effects of the DASH diet alone and in combination with exercise and weight loss on blood pressure and cardiovascular biomarkers in overweight and obese individuals. Hypertension, 55(6), 1199-1205. https://doi.org/10.1161/HYPERTENSIONAHA.109.149310
- Cornelissen, V. A., & Smart, N. A. (2013). Exercise training for blood pressure: A systematic review and meta-analysis. Journal of the American Heart Association, 2(1), e004473. https://doi.org/10.1161/JAHA.112.004473
- Franz, M. J., et al. (2007). Weight-loss outcomes: A systematic review and meta-analysis of weight-loss clinical trials with a minimum 1-year follow-up. Journal of the American Dietetic Association, 107(10), 1755-1767. https://doi.org/10.1016/j.jada.2007.07.017
- Rafferty, J. P., et al. (2019). Addressing social determinants of health in hypertension care. Current Hypertension Reports, 21(6), 46. https://doi.org/10.1007/s11906-019-0953-4
- Adler, N. E., & Newman, K. (2002). Socioeconomic disparities in health: Pathways and policies. Health Affairs, 21(2), 60-76. https://doi.org/10.1377/hlthaff.21.2.60
- Ehret, G. B., & Munroe, P. B. (2010). Genome-wide association studies in hypertension. Nature Reviews Cardiology, 7(12), 686–696. https://doi.org/10.1038/nrcardio.2010.163
- Levy, D., et al. (2009). Genome-wide association study of blood pressure and hypertension. Nature Genetics, 41(6), 677–687. https://doi.org/10.1038/ng.384
- Padmanabhan, S., et al. (2012). The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nature Genetics, 44(4), 489–498. https://doi.org/10.1038/ng.336
- He, F. J., et al. (2013). Salt sensitivity, a risk factor for cardiovascular disease. Hypertension, 61(5), 937–943. https://doi.org/10.1161/HYPERTENSIONAHA.111.00586
- Whelton, P. K., et al. (2018). Lifestyle modifications to prevent and treat hypertension. Nature Reviews Nephrology, 14(3), 133–134. https://doi.org/10.1038/nrneph.2018.5
- Kato, N., et al. (2015). Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation. Nature Genetics, 47(11), 1282–1293. https://doi.org/10.1038/ng.3405
- Higashi, Y., et al. (2009). Endothelial function in hypertension. Hypertension Research, 32(7), 663–671. https://doi.org/10.1038/hr.2009.103
- Ghiadoni, L., et al. (2000). Endothelial function and cardiovascular risk in hypertension. Journal of the American Society of Hypertension, 4(3), 131–142. https://doi.org/10.1016/S1933-1711(10)60036-5
- Taddei, S., et al. (2001). Endothelial dysfunction in essential hypertension: Implications for antihypertensive therapy. Current Opinion in Nephrology and Hypertension, 10(1), 103– 109. https://doi.org/10.1097/00041552-200101000-00016
- Alexander, M. R., & Owens, G. K. (2012). Epigenetic control of smooth muscle cell differentiation and phenotypic plasticity. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(11), 2492–2496. https://doi.org/10.1161/ATVBAHA.112.300182
- Moncada, S., & Higgs, A. (2006). The discovery of nitric oxide and its role in vascular biology. British Journal of Pharmacology, 147(S1), S193–S201. https://doi.org/10.1038/sj.bjp.0706458
- Ridker, P. M., et al. (2008). Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. New England Journal of Medicine, 359(21), 2195–2207. https://doi.org/10.1056/NEJMoa0807646
- Viera, A. J., & Sheridan, S. L. (2010). Management of high blood pressure in adults. American Family Physician, 81(10), 1237–1249.
- Dickinson, H. O., et al. (2006). Lifestyle interventions to reduce raised blood pressure: A systematic review of randomized controlled trials. Journal of Hypertension, 24(2), 215–233. https://doi.org/10.1097/01.hjh.0000200500.15924.19
- Abegunde, D. O., et al. (2007). The burden and costs of chronic diseases in low-income and

- Tahani Huwaydi Aldhafeeri, Mashael Huwaydi Aldhafeeri, Mofeedah Nafe Hwas Alrawali, Asma Nafea Hawas Al-Ruwaili, Ibrahim Abdullah Aldossary, Marzouq Shabib Mohammed Aldossary, Naila Mubarak Al-Shahrani, Fadyah Nafea Hwas Alrowaili, Mureefah Musabah Awsheeh Al Sharariy
 - middle-income countries. The Lancet, 370(9603), 1929–1938. https://doi.org/10.1016/S0140-6736(07)61696-1
- Gaziano, T. A., et al. (2015). Scaling up interventions for chronic disease prevention: The case of hypertension control. Journal of Hypertension, 33(7), 1457–1464. https://doi.org/10.1097/HJH.000000000000565
- Ralston, J. D., et al. (2019). The impact of patient portals on quality outcomes and its implications for meaningful use: A systematic review. Journal of the American Medical Informatics Association, 20(4), 360–366. https://doi.org/10.1136/amiajnl-2012-001388
- Sturgis, C. D., et al. (2015). Genetics and hypertension: New insights into pathophysiology and clinical care. Hypertension, 65(6), 1137–1142. https://doi.org/10.1161/HYPERTENSIONAHA.115.05469
- Soriano, M. L., et al. (2014). Advances in biomarkers for the diagnosis of hypertension. Clinical Chemistry, 60(5), 662–673. https://doi.org/10.1373/clinchem.2013.216960
- Stephenson, J., et al. (2021). Digital health interventions for hypertension management: A review of clinical applications. Telemedicine and e-Health, 27(7), 780–788. https://doi.org/10.1089/tmj.2020.0149
- Bryant, J., et al. (2018). Integrating genomics into nursing education: Challenges and opportunities. Nurse Education Today, 61, 148–154. https://doi.org/10.1016/j.nedt.2017.12.003