A Review of the Shuffling Frog Leading Algorithm for Production Optimization Issues in Industries is integrated into Vertical Transportation Systems: Comprehensive Studies of Mathematical and Statistical Problems

Suresh Kumar Sahani ^{1a}, Arun Kumar Chaudhary ^{1b}, Gopal Thapa², Bidur Nepal³, Murari Karki⁴, Rajesh Kumar Poudel⁵, Vijay Vir Singh⁶, and Kameshwar Sahani⁷

- 1a. Faculty of Science, Technology, and Engineering, Rajarshi Janak University, Nepal, Email: sureshsahani@riu.edu.np
- 1b. Department of Statistics, Nepal Commerce Campus, Tribhuvan University, Nepal, Email: akchaudhary1@yahoo.com

https://orcid.org/0000-0003-4783-3256

- 2. Department of Management, Nepal Commerce Campus, Tribhuvan University, Nepal, Email: gopalthapa@ncc.edu.np.com
- 3. Department of Statistics, Patan Multiple Campus, Tribhuvan University, Nepal, Email: bnepalpatan027@gmail.com
- 4. Department of Statistics, Saraswati Multiple Campus, Email: murari.karki@smc.tu.edu.np
- 5. Department of Management, Nepal Commerce campus, Tribhuvan University, Nepal, Email: rajesh.poudel@ncc.tu.edu.np
- 6. Department of Mathematics, Noida International University, India, singh_vijayvir@yahoo.com
- 7. Department of Civil Engineering, K.U., Neapl, kameshwar.sahani@ku.edu.np

Corresponding Authors: Gopal Thapa Email: gopalthapa@ncc.edu.np.com

Bidur Nepal

Email: bnepalpatan027@gmail.com

Murari Karki

Email: murari.karki@smc.tu.edu.np

Rajesh Kumar Poudel

Email: rajesh.poudel@ncc.tu.edu.np

VijayVir Singh

Email: singh_vijayvir@yahoo.com

Abstract

In production procedures, responsive surfacing techniques using first- or the second-order modeling are crucial. Nevertheless, using a shuffling frog leaping-based technique, this study suggests many organized principles of the vertical transport networks, or VTS. Several VTS possibilities exist: a motion that reaches or fails to reach transitory movements, and a movement that reaches an appropriate operational frequency. In multi-pass spinning procedures, these variations were used to concurrently examine several reactions influenced by machine factors. Whenever assessed against alternative optimization techniques for a real shallow cut architecture, computational analyses of two manufacturing optimization issues showed the superior efficiency measurements of the suggested approaches.

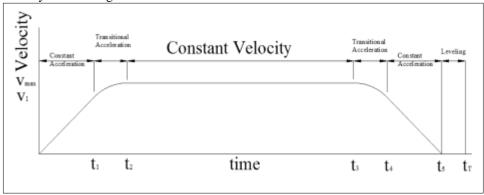
Keyword: Vertical transportation, framework for upward transit, algorithms for randomized frog taking flight, multiple passes.

Introduction

Industries associated with manufacturing must grow and change quickly due to a constantly shifting marketplace, demand unpredictability, and operational process uncertainty. As a result, the system for manufacturing in the future needs to be versatile and quick to react to changes in the factors. The process should meet every consumer demand, accommodate limited manufacturing numbers, and produce high-quality items. High-performance machinery and technology make up modern manufacturing infrastructure, which boost output. At the same time, though, the system's various functions become increasingly intricate and complicated. Leadership, manufacture, accounting, marketing, engineering, and additional divisions all contribute to the manufacturing procedures. Therefore, the

developed system for production ought to enable the appropriate divisions to easily and successfully impact the processes of manufacture. The three parts that follow ought to compose up the manufacturing system; inputs, which include employees, supplies, machinery, financial resources, and knowledge; operations, which include important homework, assembling parts into different shapes, and packaging that for communication; quiet and outcomes, which include merchandise or generates in the form of service or product technique for resolving optimization issues with multi-pass rotating. In order to solve optimization issues, Yıldız (Zarei et al. 2009) developed an innovative strategy that blends an immunologic method with neighborhood searching engine. The mixture of algorithms coupled the immunological engine's rapidity in investigation with the hill ascending algorithms' potent capacity to avoid becoming stuck in the local minima. The findings showed that, in terms of convergent frequencies and resolution excellence, the suggested hybrid approach behaved noticeably better than alternative approaches. Oubou and Kumalo, on (2001) and Zhang and Chen (2010) conducted two related studies that evaluated the efficiency of the GA in addressing machine operational challenges in comparison to a number of response techniques. They came to the conclusion that the GA was noticeably superior to a simul-lasted tempering by using Chen and Tsai's (1996) challenge. In order to optimize characteristics on multi-pass milling operations, Yildiz (Yildiz 2013d) compared three meta-heuristic techniques: simulated cooling (SA), optimization of particle swarms (PSO), and synthetic colonies of bees (ABC). Yildiz (2012) demonstrated how The hybrid approach is superior than many other approaches. A combined optimization for particle swarms process was one of them. a combination constructed immune-hill descending technique, theAn autonomous population of beekeepers process, an unordered research approach, an amalgamation of resilient neural network system, a hybrid Taguchi-harmony search approach, a substitute developmental methodology, and an approach that utilizes DNA enhanced simulated cooling algorithmic structure. Confluence speed or a sufficient amount of functions executions were used to gauge efficiency. When compared to alternative methods, the hybrid of the distinct evolution algorithms with an immunological system's receptor editing characteristic (DERE) was more successful in optimizing manufacturing variables. The state-of-theart in Darwinian optimization literary works for machine optimizations has been said to be reflected in this information. A GA was utilized by Yusup et al. (2012) to optimize procedure variables for the largest multi-pass turning machining jobs. Algorithms with meta-heuristics were mostly used to study roughness of surfaces in the context of manufacturing effectiveness. Obtaining the minimum global value at the same point in design could be accomplished quickly and robustly with hybrid evolution optimization methods. Dep and Datta (2011) optimized machining characteristics in spinning procedures by combining an approach called using a suitable local searching approach in conjunction with adaptive multi-purpose optimization (EMO). This covered chopping rate, feed rate, and the extent of the cut. According to the investigation, the EMO approaches outperformed the original EMO results in terms of computing speed. In order to resolve cutting situations, Bdellourid et al. (2012) suggested a novel hybrid method that combines evolutionary and sequence polynomial algorithms. Reducing production costs while adhering to a set of manufacturing requirements was the goal of a multi-pass machining optimization instance. The suggested combination approach outperformed alternative methods used by different investigators.

A teaching-learning-based optimization method was juxtaposed with several other previously tried computations, including computational annealing, genetic, ant colony, and optimizing particle swarm in a paper by Rao and Kalyankar (2013). In comparison to previous techniques, the technique of optimization based on instruction and learning proved to be effective. A novel method for optimizing trimming pass sequencing and parameter settings in machining procedures with genuine restrictions was introduced by Lu et al. (2013).


A combination solver was a cross between an incremental quadratic algebra method and an algorithm called genetics. Belloufi et al. (2014) used an evolutionary a firefly algorithm (FA) and an engine-sequential quadratic scheduling hybrid (GA-SQP) for the sharpening variables in a multi-pass transforming operational framework. Johnson and Mellal created the Roadrunner Allocation Technique (COA) (Mellal and Williams 2015), and contrasted with a variety of other optimization techniques. The COA demonstrated its capacity to handle various constraints forms, enhanced the degree of convergence rate, and required less functional evaluation. Chauhan et al. (2015) optimized machined circumstances during multi-pass transforming procedures with a variety of limitations by using Thoroughly Disturbing Particle Swarm Optimization (TDPSO). They came to the conclusion that the TDPSO was effective at handling Machining tuning parameters in multi-pass spinningprocedures. Nonetheless, the intricacy of optimizing equipment settings for cost-effective manufacturing issues persisted. Applications of the shuffling frog jumping technique (SFLA) to multipurpose production efficiency issues in businesses have been reported in a few recent studies. The primary SFLA works effectively on a variety of mathematical challenges and is simple to use. There is still room for modifications to further examine this prospective paradigm. Several hybrid meta-heuristic methods founded on the SFLA are presented in this new publication to determine the industrial optimizing difficulties. We use a variety of adaptive components, which are engaged in vertically modes of transportation (VTS), to enhance the SFLA effectiveness on challenging optimizing issues. Components from a

movement attaining a regular operational frequency and both obtaining and not attaining intermediate motion could possibly be utilized as the shining examples for guiding the frog with an improved jumping guidance, rather than using the most detrimental frog by its usual processes as shining examples.

By carrying out the planned trials, variations of the VTS's frog releasing step dimensions are altered in order to significantly enhance the SFLA's discovery capability. By examining the efficiency of a family of twisting procedures as documented in the available research, the success of all variations is demonstrated. The two production difficulties center on the creation of single-pass and multi-pass spinning methods. This is how the rest of the paperwork is organized: The following chapters discuss the "symmetrical transportation network". The singlepass and multi-pass processes' specifics and conceptual frameworks are demonstrated in the "Manufacturing difficulties" subsection. The "Wandered frog jumping technique" is explained in the "Mathematical results and evaluations" section. Conclusions and conversations, encompassing the associated investigations of harmonization and shuffling frog hopping algorithms on basic manufacturing issues, are provided in the "Mathematical conclusions and evaluations" section. The "Discussion and upcoming work" section then provides the overview, inferences, and recommendations for additional research."The system of vertical conveyance." The single-pass and multi-pass procedures' specifics and conceptual frameworks are demonstrated in the "Manufacturing difficulties" subsection. The "Marched frog hopping technique" is explained in the "Mathematical findings and evaluations" subsection. Conclusions and conversations, encompassing the associated investigations of harmonized and shuffling frog hopping techniques on basic manufacturing issues, are provided in the "Mathematical outcomes and evaluations" chapter. The "Discussion and future work" section then provides an overview, recommendations, and recommendations for additional research approaches (Aungkulanon and Luanpaiboon, 2016).

Equipment of horizontal transport

A vehicle with an elevator or lift is crucial for effectively moving people or products amongst floors of tall structures. Many factors are affected when the elevator is operating, including equalization, ongoing acceleration, transitioning acceleration, steady speed, transitioning a slowdown, and constant slowdown. Every structure is obliged by legislation to have more than one firefighter equipment that can stop at every floor. Additionally, a firefighter elevator's uninterrupted travel time between the ground and highest floors cannot be longer than one minute (Klote 1993). As seen in Fig. 1, an elevator's proper operation has structure and sequence following the use of its absolute acceleration. The distance travelled can be calculated using this arrangement. The motion begins with a steady accelerating.

The staircase thereafter moves with a steady speed and does not accelerate while the intermediate velocity is decreased approaching zero. The rate of acceleration continues to rise from 0 to the last steady step before the flight of stairs ceases to exist, signaling the conclusion of another transitioning phase. Finally, balancing is the process by which the staircase floor conforms to the structural floor. Some crucial features of design are derived from an elevator's arrangement and order. The rate of change at the beginning of the transitory accelerated state is denoted by v_1 . It typically equals 60% of the highest speed (vmax), which jeopardizes control of movement and consumes electricity for the elevator's anticipated operating time. This level, which depends on the elevator's group command system, also increases the effectiveness of traffic, lowers the likelihood of lengthy wait times and the median length of time that passes between arriving at the hall and boarding a designated car, and lessens passengers' annoyance, particularly during early morning peak hours. According to Astrakhan and Corporal (2010), it is accomplished concurrently by a number of achievements, earth-conscious, technological, intelligent, and flexible parameters. Keep in mind that Whenever the speed is equal to zero, the time it requires to attain a constant acceleration represents t_5 , t_2

represents the time it requires to get to the comparable acceleration, and t5 represents the moment it requires to reach the in between acceleration at the end of unaffected rate is represented by t_3 , the time it takes to start unchanged accelerating to begin to slow down is represented by t_4 , and the power source time it is taken to accomplish a constant surgedlevelling following three situations result from an analysis of time and distance based on elevators operation. A moving object achieving its typical operational frequency is the first situation. Motion reaches transitioning accelerating in the subsequent scenario and fails to do so in the third.

Whenever the elevator is motionless or its acceleration is zero, the calculations for the very first possibility begin. This causes an elevator to accelerate steadily (a) until it reaches v_1 at t_1 in Figure 1. The next formula (Eq. 1) can be used to calculate the timeframe (t_1) to this phase. According to Eq. 2, this horizontal movement traverses s_1 .

$$\mathsf{t}_1 = \mathsf{v}_{\mathsf{I}} \setminus \mathsf{a} \tag{1}$$

$$v_1 \cdot v_1 = 2a s_1$$
 (2)

Eq. 3 approximates the length of time consumed (t_2-t_1) for the a transition deceleration. During this intermediate phase, the speed rises and the velocity falls to zero. Given how little the momentary acceleration phase is in comparison to the elevator's entire journey, a more precise calculation to compute t_2 might not be required. The lift advances the distance (s_2-s_1) during this time, as shown in Equation 4.Eq. approximates how much time required for a single trip without acclimating to the final floor.5 and stis the amount of time for a single journey. Equation 6 displays the sum of the time invested (t_T) plus an equalization modification interval (t_h) .Usually, the modification time is 0.5 seconds.

$$t_2 = \frac{\left(V_{max}^2 - V_1^2\right)}{2\nu_1 a} + t_1 \tag{3}$$

$$S_2 = \left(\frac{1}{3a}\right) \left(\frac{V_{max}^3}{V_1} - V_1^2\right) + S_1 \tag{4}$$

$$t_5 = 2t_2 + \left(\frac{S_T - 2S_2}{V_{max}}\right) \tag{5}$$

$$t_T = t_5 + t_h \tag{6}$$

The staircase's motion does not reach an end point during transitions accelerating in the subsequent circumstance depicted in Figure 2a. There is no phase of steady speed because the speed increase is not decreased to zero. It will be identical to the first scenario to calculate t1 and S1 with an acceleration that remains steady. It fails to reach a consistent speed during the subsequent transitioning accelerated stage. The computation is based on Equation 7. The resultant value of v_2 at t_2 in the following instance needs to be comparable to what was measured in the original instance for a determination of algorithm precision. Eq. 8 displays the time until the phase shift momentum ends (t_2). Eq. 9 gives the total period (t_1) used to complete a single journey.

$$V_2 = \left[V_1^3 + 3aV_1 \left(\frac{S_T}{2} - S_1 \right) \right]^{1/3} \tag{7}$$

$$t_2 = \frac{\left(V_2^2 - V_1^2\right)}{2aV_1} + t_1 \tag{8}$$

$$t_T = 2t_2 + t_h \tag{9}$$

The staircase stays stationary at an even speed when its movement fails to reach an equilibrium accelerating, as seen in Fig. 2b. This causes banging as decelerate begins. This manner shouldn't be permitted in a high-speed transport in a tall structure. Eq. 10 calculates the duration of the trip for a single journey through nearby flights and stops.

$$t_T = 2\sqrt{\frac{S_T}{a} + t_h} \tag{10}$$

The procedure for randomized frog jumping (SFLA) incorporates these three variations. Yusuff and Lansey (2003) first proposed the basic SFLA for the optimization of pipe network growth. A group of people was divided into multiple multiplexes by the SFLA, and each multiplex was then enhanced through an evolutionary procedure. Different scholars have suggested a variety of changes to address the shortcomings of the original SFLA. By including the self-variation behavior into the frog and permitting all species of frogs to participate in a mimetic Darwin's theory of Zhu and Zhang (2014) enhanced the original SFLA.A horizontal multi-head element surface mounting instrument's component pick-and-place processes were to be discouraged. Previously, Beltane et al. (2007) created an updated version of the technique for two bench marking test issues, encompassing two intermittent optimization handling problems, by developing a fresh search through an expedited ingredient into the original SFLA concept. The basic principles regarding simulated fish (AF) programs for conceptual radio communications (CRS) were added by Huang et al. (2012) to the standard SFLA. Scientists discovered that the combination of approaches reduced the likelihood of becoming stuck in the local optimal state and improved overall convergence. Roy (2011) with the improved shuffled frog-leaping methodology (MSFLA). Its goal was to resolve a cost-effective load dispatch issue involving producing units with valve position influences. A customized randomized frog leaping algorithms (MSFLA) was created by Idolatress and Hebraism have (2015) to address the generational enlargement planning (GEP) problem with dependability constraints. A new method for frog dissemination into multiplexes was linked to the new MSFLA frog jumping rule. To boost the effectiveness of the suggested method, which sought to enhance the neighborhood discovery and efficiency of SFLA, the advantages of the integer encoded data, an identification process, and an additional factor technique were) presented a hybrid resolution approach that combines the magnetically technique (GA) adopted. To handle rucksack challenges, the defendant and Sarah (2014) adapted the sequential randomized frog hopping technique (MDSFL). Two crucial procedures from the viability combining of knowledge of the randomized sophisticated development approach and the local exploration of particles in the swarm's imitation approach were incorporated into the suggested approach, Mammalian (2011) concentrated on optimizing weighing parameters for balancing the loss and cost aspects. One goal was to support the development of desired goals with the greatest possible advantage from the SFLA.An effective multi-objective customized randomized frog hopping approach (MMSFLA) was put forward by Nickname. (2011) to solve the multi-objective distributing feeder rearrangement (MDFR) challenge. A shortened version of the shuffling frog hopping technique was presented by Chandra and associates (2015). To accelerate the rate of confluence rate, a mathematical modification was applied. On five benchmarks and carbide influence difficulties, the suggestion was put into practice. The effectiveness of the concept was demonstrated by the outcomes of the simulation in terms of mean value and the rate of convergence. For an automotive outing dilemma with time frames (VRPTW), In 2014, a new speciation roulette frog-leaping technique (HSFLA) was put forward by Luo and Zhang, that uses a pair of methods: an improved refinement technique and a new multiplex building.

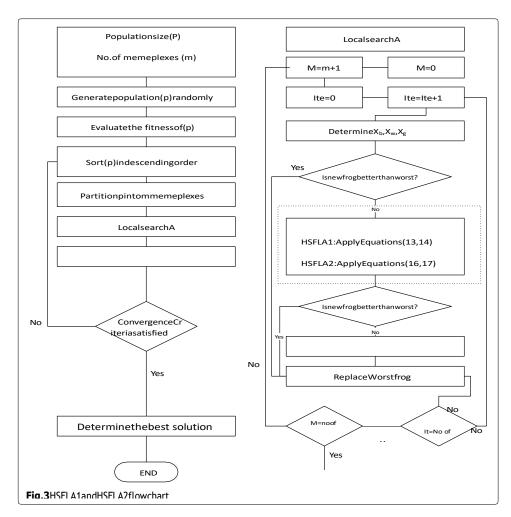
Solomon and Cordelier were used to calculate this method while contrasting it to other cutting-edge heuristics. VRPTW test sets and demonstrated how well the suggested algorithm handled VRPTW. A shuffling frog hopping algorithms for an optimum competitive bid-ding method question was suggested by Kumar and Kumar (2014). The weaknesses of choosing operations and the early completion of particle-warm optimization techniques and genetically algorithms (GA) were improved by the suggested approach. A hybrid shuffling frog hopping approach (HSFLA) with a cross-over generator was presented by Li et al. (2012) to resolve an adaptable job shop planning challenge with several objectives. An enhanced scrambled technique (SFLA) was presented by Guo et al. (2015) for the algorithmic optimization challenge of component sequencing optimization (ASP). The enhanced SFLA was evaluated in conjunction With regard to effectiveness and the SFLA, the mutation-based the genetic method for particles swarm optimization, and adaptive alterations particulate swarm effectiveness, capacity to find the optimal worldwide assembling sequencing under remotely management maintained in a hazardous atmosphere. According to the experiments, the suggested approach performed exceptionally well in resolving the ASP issue. The level of the Aspiration-active atmosphere was raised by the use of the suggested algorithms.

The creation of virtual frogs, which stand in for resolutions or chromosomal for the GA, are how the SFLA begins its progressive operations. In order to find the best virtual frog or an approach a procedure for optimization starts. The frog with the shortest value is then optimizing by each of the m multiplexes. Every multiplex has n frogs in it. Consequently, the multiplex's overall number of rags (P) is approximately m instances (P=m*n). The frog that is the most fit approach is sorted based upon decreasing efficiency for an allocating technique. The first multiplex is given this optimal response. The additional multiplex is simultaneously given the response with the second-best fitness (frog 2). HSFLA is a new hybridized randomized frog-leaping technique that Luo and Chen devised.final multiplex, this process is continued. The first multiplex is then given the m+1 frog, and so on, until all the frogs are distributed. The greatest and worst adaptation alternatives in each multiplex are identified and assigned the values Xband Xw, correspondingly. Xg is the remedy with the highest efficiency among the global groupings.

The overall number of rounds of a development is calculated in an effort to enhance the least suited frog. Following such iterations, the poorest frog is taken out and substituted with a new frog if the best frog (Xg) has not yet been achieved by optimizing the frog's worth. Between the bounds of –DMIN and DMAX, the springing The with frog's measurement of steps, or Di, is determined in Eqs. 11 and 12 considering the best (Xb) and weakest (Xw) amphibians along with the newly established spot of the most undesirable frog (Xw). Rand () is an erratic number between 0 and 1.

$$D_i = Rand() \times (X_b - X_w) \tag{11}$$

$$X_w = Current Position of X_w + D_i (12)$$


Ultimately, each of the eight SFLAoptimization methods. The requirements of the total amount of transliteration and number of frogs—are established for the first stage. Using randomization, the considerateness an initial number of rigs. Each frog's fitness value is determined in processes three and four, and the animals are arranged in ascending order of fitness rating. In accordance with the third phase, the frogs are divided into multiplexes or subcategories in the fifth step. The first multiplex is awarded to the frog with the highest performance. Simultaneously, the second multiplex is given the response with the next greatest fit. Until all of the frogs have been allocated, the entire procedure is resumed. The frog exhibiting the smallest endurance in each meme-plex is enhanced in the sixth stage, and subsequent state of health is once more tested. The frog will be deleted if its optimized value remains unchanged. In the seventh step, the frog with the highest performance in each multiplex is chosen. To ascertain which frog in the first iteration's community is the fit, an examination is also conducted. Ultimately, the procedure is carried out based on the given amount of repetitions. Superior creatures influence impoverished frogs to become stronger so they can acquire greater nourishment during the frog organization's developmental processes. An enhancement procedure helps the system find greater responses based on a frog hopping rule (Step 6). The SFLA processes can be helpful in fine-tuning optimized solution vectors by modifying an equilibrium rate to an optimal value. New fine-tuning techniques for enhancement have become interesting. By choosing an interval at randomness through the most advantageous to the worse answers, the SFLA employs a chosen point of the poorest response as an enhancement decision.

All improvements producers of the poorest answer in the SFLA will not be altered through subsequent generations. When the SFLA has a large number of revisions, it becomes weak. In certain situations, it is impossible to overcome becoming trapped at the local optimal point or to create a wider gap amongst the best and worst choices. Finding an

improved price for the present worst alternative becomes challenging as a result. Algorithm effectiveness may also be impacted by the range of the globally best and greatest options. Absent any change, this greatly raises the number of repetitions required. Three variations from a vertical transportation system are combined to create successive operations to increase the effectiveness of the method algorithms. PUnder the right circumstances, an upright transportation system uses electric power to transfer a person to the desired elevation with or without accelerating due to gravitational. A transportation system is now required for every multiple level building. Conveyor concepts in terms of acceleration, throughput needs, protection, and dependability are essential elements for an engineering firm to boost its productivity in an increasingly highly saturated market. The majority of escalator manufacturers have programming that can remember how often they are used. The escalator will be able to recognition the floors in the building that are used most frequently at each time of day thanks to this technology. In every time periods, the parking level offers the best performance when weighed against meta-heuristic approaches. Three scenarios of a time and duration evaluation based on an elevator's movements are selected form the above illustration and combined with a shuffled frog hopping technique.

The type 1 movement combination SFLA (HSFLA1)

Eq. 13's S1 represents the collective momentum undergoing a continuous velocity, which can be used to describe the frog particular group's methods of evolution.for either a type 1 mobility or something else without achieving an intermediary accelerate. The uniform pace of an elevator's operations represents the full range of the worldwide best (Xg) and finest options (Xb) (Fig. 3). Eq. 14 provides a new location according to this movement's type of the worst-case resolution or.

$$S_1 = \frac{V_1^2}{2a} \tag{13}$$

New position
$$X_w = Current \ position \ X_w + Rand() \times S_1$$
 (14)

Type 2 The movement The hybrid SFLA (HSFLA2)

When a staircase fails to meet its intermediate acceleration's stopping point, it is referred to be a type 2 moving or a motion without attaining the transitional accelerating. Eqs. 15 and 16 can be used to express the velocity V_2 and the associated geographical separation, correspondingly. With Xg being the worldwide optimal approach and Xbis being the best alternative at the present place, Eq. 17 provides a new location for the worst an approach or Xwis

$$V_2 = \left[V_1^3 + 3aV_1 \left(\frac{S_T}{2} - S_1 \right) \right]^{1/3} \tag{15}$$

$$S_2 = \left(\frac{1}{3a}\right) \left(\frac{V_{max}^3}{V_1} - V_1^2\right) + S_1 \tag{16}$$

New position
$$X_w = Current \ position \ X_w + Rand() \times (S_2 + (X_b - X_g))$$
 (17)

The type 3 progress combination SFLA (HSFLA3)

A type 3 movement happens when there are many commands to elevators in a certain situation. Real elevators will move in a variety of ways. The Prob-interchangeability (PCF), a short- or long-term selecting likelihood, will be generated by simulating the in question. is a simulated likelihood for choosing an elevated mobility type. Within the smallest likelihood The APCF statistic has a maximum possibility (PCFmax) of 0.60 and PCFmin (with a minimum likelihood) of 0.45 randomly chosen number between 0 and 1 is called probabilities P1. There will be a short-term circulation if PCF values are less than P1.Long-term movements will create an alternate position if PCFvalue exceeds P1.Leveling is a position-adjusting procedure used to safeguard the floor and elevators offset. The final stage of every elevator operation will undergo a leveling procedure. A PCFat for Eq. 18 can be used to calculate the present iterate (Cuprite). under the maxi-obliteration (MaxIte). Equations 19 and 20 will be used for calculating the short-term circulation and new location of Xw, accordingly Equations 21 and 22 will be used to figure out the longterm motion.

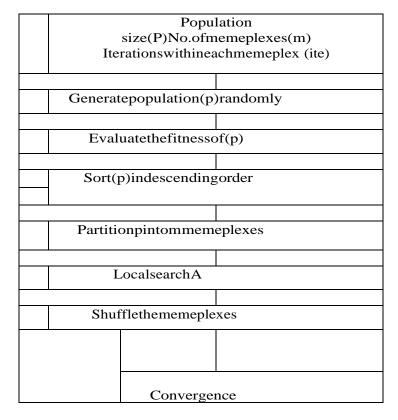
In Equation 23, whereby Over (-1,1), Rand appears to(-1,1) is a consistently uni-form unpredictable number. fresh location of Xw can be computed. Fig. 4 displays the HSFLA3 diagram. $PCF = PCF_{min} + \frac{(PCF_{max} - PCF_{min}) \times CurIte}{MaxIte}$

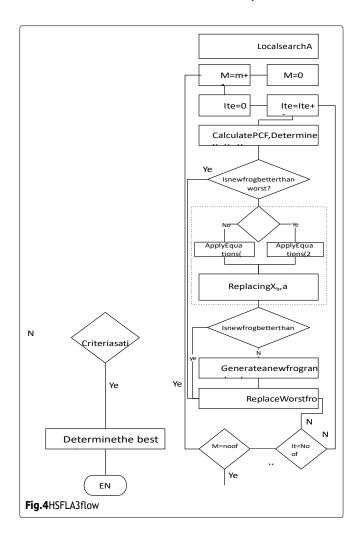
$$PCF = PCF_{min} + \frac{(PCF_{max} - PCF_{min}) \times Curlte}{MaxIte}$$
(18)

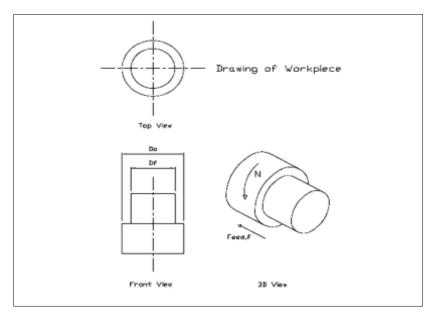
$$S_1 = \frac{V_1^2}{2a} \tag{19}$$

 $\textit{New position } X_w = \textit{Current position } X_w + \textit{Rand}(-1,1) \times (S_1) + \textit{Leveling}$

$$S_1 = \frac{V_1^2}{2a} \tag{21}$$


$$S_2 = \left(\frac{1}{3a}\right) \left(\frac{V_{max}^3}{V_1} - V_1^2\right) + S_1 \tag{22}$$


New position $X_w = Current \ position \ X_w + Rand(-1, 1) \times (S_2 + (X_b - X_g)) + Leveling$


Multi-pass rotating model for manufacturing issues such as A

Chen and Tsai created this initial framework. This multi-pass spinning strategy primary goal is to reduce the cost associated with manufacturing per unit (CU).CU stands for tool (CT), apparatus idle (CI), tool replenishing (CR), and the overall expense of chopped (CM). The complete time needed to produce something (Tp) is essentially used to calculate the manufacturing rate.

As demonstrated in Equation 24, it depends on the metallic elimination speed (MRR) and the length of use of the instrument's (T). The duration of the tool's established modification, and non-use removal, and eliminated metal quantity are defined by the values of Ts, Tc, Ti, and V, correspondingly. In specific calculations, Tp is an expression of MRR and T, and the other variables are set variables. The MRR can be represented analytically as an outcome of the chopping comprehensive manner, consuming food, and velocity (Eq. 25). The average time amongst tool replacements for sharpening is known as the tool life (T). Taylor's Formula defines the connection amongst the tool life and its parameters (Eq. 26). Every KT, α 1, α 2, and α 3 element is perpetually significant. The cost per production (Cp) is one way to represent the process cost. Two values related to the trimming parameters (T, TP) have a major impact in the operation's cost, as indicated by Equation 27. The tool cost, labor cost, and cost of overhead are the coefficients of CT, CI, and Co, in that order. Ct, CI, and Co aren't contingent on the machining conditions. in certain procedures. The most crucial parameter for evaluating the blade's accuracy is hardness, which is determined using Equation 28. The remaining variables, x1, x2, x3, and k are provided by a particular tool-piecework coupling (Fig. 5).

$$T_p = T_s + V \frac{(1 + T_c/T)}{MRR} + T_i \tag{24}$$

$$MRR = 1000vfa \tag{25}$$

$$T = K_T / \left(v^{\alpha_1} f^{\alpha_2} a^{\alpha_3} \right) \tag{26}$$

$$C_P = T_P \left(\frac{C_t}{T} + C_I + C_O \right) \tag{27}$$

$$R_a = k v^{x_1} f^{x_2} a^{x_3} (28)$$

A permitted One of the technical necessities and administrative aspects of relevance is the spectrum of lowest (min) and greatest (max) cutting parameters for the feed rate (f), the level of cut (a), and switching frequency (v). Eq. 29 shows the bottom and top acceptable ranges for chopped parameters. due to machine capabilities and cutting instrument restrictions and for the safety of manufacturing. Additionally, there are additionally suggested restrictions resulting from machine capacity and tool properties. The toolmaker determines the threshold of cutting circumstances' limit for the chosen tool. Chopping force and chopping horsepower are the equipment's limitations (Table 1). In a comparable manner, environmental variables dictate the work piece material's processing capabilities. With the equipment's operational effectiveness (η), its electrical expenditure (P) may be stated as a consequence of chopping velocity and force (Eq. 30), and Fi is provided by Eq. 31. Equation 32 is produced by introducing Equation 31 into Equation 30 and kn = kF. Equation 33 illustrates both the strength and force required to break restrictions.

The values vmin\u220evevmax, fmin\u222ef\u222ef\u222efmax, and amin\u222ea\u222eamax

$$v_{min} \le v \le v_{max}, \quad f_{min} \le f \le f_{max}, \quad a_{min} \le a \le a_{max}$$
 (29)

$$P = \frac{F\nu}{6122.45\eta} \tag{30}$$

Table 1: Descriptions and Conditions for Manufacturing the A Model Parameters

Description(Unit)

1 41 411 10 10 10	2 total province many
T_p	Unitmachiningtime (min)
π	Mathematicalconstant(3.1415)
C_p	Unitmachiningcostperproduct(\$)
R_a	Roughnessofthefinishedsurface(µm)
MRR	Materialremovalrate(mm ³ /min)
T_S	Toolsetuptime(min)
$T_{\mathcal{C}}$	Toolchangetime(min)
$T_{\dot{t}}$	Toolnon-cuttingtime(min)
C_t	Toolcost(\$)
C_I	Laborcost(\$/min)
C_O	Overheadcost(\$/min)
K_F , K_n , k , x_1 , x_2 , x_3	Constantsrelevanttoaspecifictool-workpiece
$K_{T},\alpha_{1},\alpha_{2},\alpha_{3},\beta_{1},\beta_{2},\beta_{3}$	Positiveconstantparameters
V	Volumeoftheremovedmetal(mm ³)
η	Mechanicalefficiencyofthemachine(%)
vmin,vmax	Boundaryofcuttingspeed (m/min)
fmin.fmax	Boundaryoffeedrate(mm/rev)
a_{min}, a_{max}	Boundaryofdepthofcut(mm)
F_{max} , P_{max}	Maximumcuttingforce(N)andcuttingpower(kw

$$F = k_F f^{\beta_2} a^{\beta_3} \tag{31}$$

$$P = k_n f^{\beta_2} a^{\beta_3} \tag{32}$$

$$P_{(v,f,a)} \le P_{max}, \quad F_{(v,f,a)} \le F_{max} \tag{33}$$

the Coefficient measurements for a particular model are provided later. The following is the computational framework that is obtained by inserting the following quantities:

$$Z(T_P, C_P, R_a) = 0.42e^{(-0.22T_P)} + 0.36e^{(-0.32C_P)} + 0.17e^{(-0.26R_a)} + 0.05/(1 + 1.22T_PC_PR_a)$$

$$MinT_P = 0.12 + 231376(1 + 0.26/T)MRR + 0.04$$

$$MinC_P = (13.55/T + 0.39)TP$$

$$MinR_a = 0.0088\nu + 0.3232f + 0.3144a$$

Subject to:

$$T = 1575134.21 \left(v^{-1.7} f^{-1.55} a^{-1.22} \right)$$

$$MRR = 1000vfa$$

$$70 < \nu < 90$$

$$0.1 \le f \le 2$$

The model of multi-pass transforming: B

The goal of Eq. 34 in Chen and Tsai's definition of multi-pass spinning procedures is to minimize the cost of unit production (CU). Cutting costs The measure of the cost of manufactured includes (CM), machine idle costs (CI), tool costs (CT), and tool substitution expenditures (CR). Along with the Chip—tool user interface reducing depth (Eq. 35), cutting velocity (Eq. 36), feed rate (Eq. 37), tool-life limitations (Eq. 38), force of impact limitations (Eq. 39), influencing limitations (Eq. 40), and consistent limitation geographical area repressing (Eq. 41). temperatures limitation (Eq. 42), the unit cost of manufacturing (CU) is also influenced by a number of other limitations.

$$C_U = C_M + C_I + C_R + C_T (34.a)$$

This can be expanded as Eq.

$$u = k_o \left[\frac{\pi DL}{1000 V_r f_r} \left(\frac{d_t - d_s}{d_r} \right) + \frac{\pi DL}{1000 V_s f_s} \right] + k_o \left[t_c + (h_1 L + h_2) \left(\frac{d_t - d_s}{d_r} + 1 \right) \right]$$

$$+ k_o \frac{t_e}{T_P} \left[\frac{\pi DL}{1000 V_r f_r} \left(\frac{d_r - d_s}{d_r} \right) + \frac{\pi DL}{1000 V_s f_s} \right] + \frac{k_t}{T_P} \left[\frac{\pi DL}{1000 V_r f_r} \left(\frac{d_r - d_s}{d_r} \right) + \frac{\pi DL}{1000 V_s f_s} \right]$$
(34.b)

$$d_{rL} \le d_r \le d_{rU} \tag{35}$$

$$f_{rL} \le f_r \le f_{rU} \tag{36}$$

$$V_{rL} \le V_r \le V_{rU} \tag{37}$$

$$T_L \le T_r \le T_U \tag{38}$$

$$k_{l}f_{r}^{\mu}d_{r}^{\nu} \leq F_{ll} \tag{39}$$

$$\frac{k_I f_r^{\mu} d_r^{\nu} V_r}{6120\eta} \le P_U \tag{40}$$

$$V_r^{\lambda} f_r d_r^{\nu} \ge S_c \tag{41}$$

$$Q_r = k_2 V_r^{\tau} f_r^{\phi} d_r^{\delta} \le Q_U \tag{42}$$

Certain surface finish machining processes limitations and parameters interactions exist. The following factors affect the surface finish of cutting: depth of cut, federate, acceleration, tool life, force, influence, stable chopping zone, temperatures of the chip-tool contact, and surfaces smoothness (Table 2). Eqs. (43–55), which additionally contain connections between the settings, establish solutions.

$$d_{sL} \le d_s \le d_{sU} \tag{43}$$

$$f_{sL} \le f_s \le f_{sU} \tag{44}$$

$$V_{sL} \le V_s \le V_{sU} \tag{45}$$

$$T_L \le T_s \le T_U \tag{46}$$

$$k_I f_s^{\mu} d_s^{\nu} \le F_U \tag{47}$$

$$P_r = \frac{k_I f_s^{\mu} d_s^{\nu} V_s}{6120n} \le P_U \tag{48}$$

$$V_s^{\lambda} f_s d_s^{\nu} \ge S_c \tag{49}$$

$$Q_s = k_2 V_s^r f_s^\phi d_s^\delta \le Q_U \tag{50}$$

$$\frac{f_s^2}{8R_n} < SR_u \tag{51}$$

$$V_s \ge k_3 V_r \tag{52}$$

$$f_{\nu} \ge k_4 f_s \tag{53}$$

$$d_r \ge k_5 d_s \tag{54}$$

$$d_r = \frac{d_t - d_s}{n} \tag{55}$$

Besides to these limitations, another major drawback for this particular design is the entire profundity of the cut. The total of the preliminary cut (ndr) and completed cut (ds) thicknesses is the entire cut's height (dt). While the optimal quantity of depth battering can be determined by theoretical manipulations as indicated, the optimization technique fails to figure out it. Thus, in the optimization process, the decision parameter (dr) and the prerequisite of equality requirement can be eliminated:

ds=dt-ndr

For turning model optimization, the five parameters for machining (Vr, fr, ds, Vs, and fs) are identified. Shin and Joo (1992) have further information regarding the turning model of mathematics and data related to manufacturing.

Examinations and computation outcomes

Preliminary study evaluated specific methods for the initial harmonic single-pass wheeled and multi-pass spinning optimizing design query in the search algorithm (HSA) and randomized frog jumping (SFLA) approaches. The first version (S) for the one- passes machining of moderate steel with charcoal work-piece was made with a sapphires (Khan et al. 1997) tool. The system's apparent objective was to lower the total cost of production per unit in kilograms. The challenge was to assess how well different novel approaches performed, and it was described in the following way:

$$\min Cost = 452V^{-1} + f^{-1} + 10^{-5}V^{2.33}f^{0.4}$$

According to the limitations:

limiting strength (Pc): flare, Pc=10.6×10−; Pc≤5.52Vf0.83.

- 2. Subsurface(Ra) constraint:SF≤2μm;waffler,SF=2.2×104V-1.52f
- 3. The blade speed and seed rate range were as follows:0.0≤f≤0.5 and 0≤V≤500

The subsequent generation (M) was developed for the medium-sized diamond tool's multi-pass spinning procedure. The goal was to reduce each piece's cost of manufacturing. The values set of di u n stand for the cut's amount and the

quantity of progresses, correspondingly. The sum of the lengths of the cuts equals a material's overall depth (A), hence $A=\Sigma$ ndi. The following is how the problem became known:

According to the limitations:

1. Reducing limitation on energy (Fc): Fc \leq 170 kg; w get heated, Fc=290.73V-0.1013f0.725d 2.Reducing interface stability restriction: fV2 \geq 2230.5 3. Roughness of the surfaces (Hmax) limitations: 0.356%f2 \leq Hmax 4. Reducing force conservation (Pc) restriction: Pc=7.5kw; fleece=FcV 5. The permitted limitations for the variables such as 0.001 \leq f \leq 5.6mm/rev, 14.13 \leq V \leq 1005.3m/min, and 0 \leq d \leq A

The HMS, HMCR, and PAR HSA variables were set to 30, 0.90, and 0.35, correspondingly. Figure 6 displays the variable SFLA readings on popular responder calculations used for obtained from multi factorial trials. [100, 25, and 80] were the desired values for The quantity of cockroaches (P), the quantity of multiplexes (M), and repetitions]. The specifications for the vertical mode of transport were set as follows: beveling = 0.005, highest speed (Vmax) = 0.8, and deceleration (a) = 1.

6000 repeated queries (MaxIte) were used to run these codes. For every issue, there were twenty replicas. The median and standard deviation (STDEV) of real processes yields, encompassing how long it took to attain the optimal preset maximum iterations, were used for assessing the effectiveness of the two methods. The HSA seems to perform better on the S model when speaking of both execution duration and final yield. The SFLA discovered the superior answer to the M issue. Furthermore, in both situations, the SFLA's rate of resolution was faster (Table 3).

The optimization of the parameters used in turning procedures has not yet been documented in the academic literature, despite the fact that the shuffle frog hopping technique has been applied to a number of optimization situations. The suggested variations of a vertical transfer method on the SFLA were used in this study to solve manufacturing optimization issues. Determining the ideal cutting parameters for the multi-pass twisting models was a crucial task. The rotation values of the parameters were scientifically calculated using empirically obtained data from chopping force, production time, imperfections, and tool life. Tables 4 and 5 provide the correlation numbers for models A and B.

Visual C# 2008 was used for programming the suggested techniques based on horizontal transit networks on an ASUS A45V laptop. The following part compares the traditional SFLA techniques with the outcomes of three hybridization. The key variables of each meta-heuristic had an impact on algorithms outcomes including processing time and satisfactory solutions. To determine the most desirable setting for parameters based on the starting values from earlier literature, tests were conducted and analyzed on the tested production challenges. Component numbers for the SFLA were taken from prior studies for all optimization issues discussed in this work, whereas those for the adaptive component's characteristics in the vertical transport network were derived from real elevators movements. After that, these characteristic levels were used consistently. The real operations produces' mean and average deviations, as well as the time required to achieve the optimum at the maximum predefined number of repetitions were utilized to assess the efficiency of the different techniques. Fig. 7 displays the statistical findings for the model A, as determined by every parameter using a box-whisker-plot and the SFLA.

Table 3: Examination of Performance Evaluations in an Initial Investigation

Model Measures		HSA			
		Cost(Pence)	Time(s)	Cost(Pence)	Time(s)
S	Mean	12.0981	181.4938	12.1284	220.6899
	Min	12.0980	222.0191	12.1037	280.7896
	Max	12.0985	150.6266	12.1692	182.0317
	SD	0.0002	16.74055	0.0226	29.53819
Model	Measures	HSA		SFLA	
		Cost(Yens)	Time(s)	Cost(Yens)	Time(s)
M	Mean	96.3576	211.7427	96.3525	224.368
	Min	96.0764	259.0222	96.0322	285.4694
	Max	96.4137	175.7311	96.4113	185.0655
	SD	0.0707	19.53064	0.0785	30.03049

Each and every meta-heuristic's influencing characteristic had an impact on algorithm outcomes like computing time and solution quality. To identify the most desirable setting for parameters based on the starting values from prior research, tests were conducted and analyzed on the subjected manufactured challenges. Component values for the SFLA were taken from prior studies for all optimization issues discussed in this work, whereas those for the adaptive component characteristics in the horizontal rail system were derived from real elevators movements. After that, these characteristic combinations were used consistently. The average and variance of real processes yields and the time it takes needed to attain the maximum at the maximum predetermined number of repetitions were utilized for comparing the effectiveness of the various algorithms. Fig. 7 displays the statistical findings for model A as determined by every parameter applying a box-whisker plot and the SFLA.

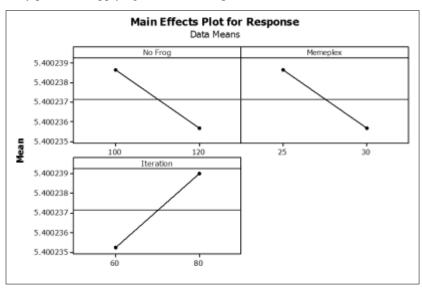


Table 4. The efficiency Principles for the first model

	Table 4: The efficiency Principles for the first model				
T_s =0.12min	T_c =0.26min	T_i =0.04min			
C_t =13.55\$	$C_{I}=0.31$ \$/min	C _o =0.08\$/min			
K=1.001	<i>KT</i> =1575134.21	K _F =1.38			
X ₁ =0.0088	$X_2=0.3232$	X ₃ =0.3144			
$\alpha_1 = 1.70$	$\alpha_2 = 1.55$	$\alpha_3 = 1.22$			
$\beta_1=0$	$\beta_2 = 1.18$	$\beta_3 = 1.26$			
V=231376mm ³	η=36%	v _{min} =70m/min			
v _{max} =90m/min	f_{min} =0.1mm/rev	f_{max} =2mm/rev			
a_{min} =0.1 mm	a_{max} =5mm	$F_{max}=230N$			
$P_{max}=5kw$					

Table 5: Coefficient Values for Model B

D=50mm	<i>L</i> =300 mm	D_t =6.0mm	
V_{rU} =500m/min	V_{rL} =50m/min	f_{rU} =0.9mm/rev	
f_{rL} =0.1mm/rev	d_{rU} =3.0mm	d_{rL} =1.0mm	
V_{sU} =500m/min	V_{sL} =50m/min	f_{sU} =0.9 mm/sev	
f_{sL} =0.1mm/sev	d_{sU} =3.0mm	d_{sL} =1.0mm	
k _o =0.5\$/min	k_t =2.5\$/edge	h ₁ =7×10 ⁻⁴	
h2=0.3	t _c =0.75min/piece	t_e =1.5min/edge	
p=5	q=1.75	r=0.75	

$c_0 = 6 \times 10^{-11}$	T_u =45min	T_L =25min
kf=108	μ =0.75	v=0.95
$\eta = 0.85$	$F_U=200\mathrm{kgf}$	<i>PU</i> =5kw
$\lambda=2$	v=-1	$S_{C}=140$
$k_q = 132$	τ=0.4	ф=0.2
$\delta = 0.105$	$Q_{\mathcal{U}}=1000^{\circ}\mathrm{C}$	$R_n=1.2$ mm
<i>k</i> 3=1	k4=1	k5=1
<i>TP</i> =25	n=1	k ₁ =1
	<i>SRU</i> =10	k ₂ =2.5

With a low-estimated TP value of 0.3938 and a maximum of one rough cut (n = 1), the HSFLA3 was significantly different at the 95 percent confidence level. Two-step responses were obtained by fine tuning. The converged rate was brought close to the perfect outcome by the initial downward motion of S2, and the ideal location was fine-tuned by the subsequent horizontal movements of S1. After 500 repetitions, the HSFLA3 showed superiority in population mean, minimum, and average. Table 6 shows The best variation's (HSFLA3) computational findings from earlier responses that have been published in the scientific community.

Despite taking inequality limitations on the overall depth of cut into account, the machined data needed for the best assessment of Model B were first examined for a range of depth of cut values (Ermer 1971). Fig. 8 displays the best outcomes from applying the SFLA and its variations to remove 6 mm of depth. HSFLA3 produced significant findings at a confidence interval of 95% based on the outcomes of the assessment, with no limitations being broken. According to the four cases' quantitative accomplishments, restricting the spectrum of finished cut thickness resulted in fewer passes and a higher ideal cost.

Consequently, in order to eliminate the overall cut thoroughness in multi-pass machining operations, a comparable gamut for finished and preliminary cuts was adopted. In order to provide a limit on the number of progresses, an evaluation of the An uneven constraint on the overall cut thoroughness was applied when the Model B technique was implemented. A proportionality constraint on the overall chopped height was also included in the model.

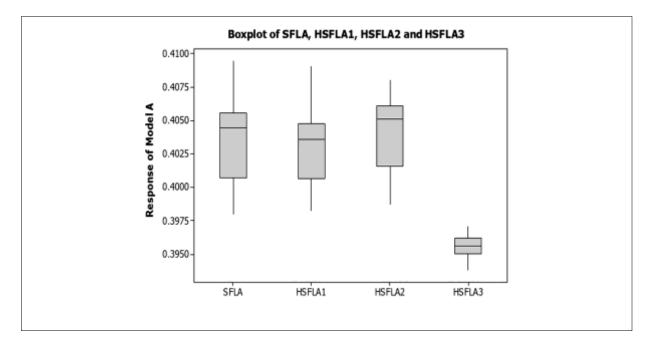


Table 6: GA, TLBO, and HSFLA3 variable capacities

Parameter	Mathematical	GA	TLBO	HSFLA3
v(mm/min)	86.837	86.8549	98.688	99.9494
f(mm/rev)	1.8601	1.8622	1.978	1.9973
a(mm)	4.3	4.3068	4.9449	4.9971
Tp(min)	0.459051	0.4938	0.4017	0.3938
<i>CP</i> (\$)	0.3114	0.3233	0.3283	0.3306
R _a (µm)	2.7172	2.7202	3.0624	3.0962
MRR(mm³/min)	777,820.7423	777,820.7424	965,243	997,592.7
T(min)	42	42.81	31.7	30.1683
F(N)	177.507	177.512	23.124	23.7029
P(kw)	0.007	0.0071	0.0868	0.0882
Z	0.8909	0.8861	0.8187	0.8185

Reducing frequency and feeding rates for each coarse and completion pass, the ideal total number of rounds needed in each scenario, the ideal subdivisions of the initial cut, and a perfect manufacturing cost were all among the most appropriate parameter levels. Although it took longer rounds for removing the entire dimension, the findings of the examination indicated that it was not advisable to take into account different values for finished and rough cuts. The overall cost associated with manufacturing went up as a result. Furthermore, there were fewer passes needed and lower manufacturing costs when the extents Provisional and final cuts have been discovered in the same range. Thus, it turned out to be better to use the identical amount for preliminary and finish cuts to eliminate the total cut thickness in multi-pass twisting processes.

When comparing to all other approaches in the scientific literature, HSFLA3 fared better. Figure 7 displays the preferred velocity of convergence of the HSFLA3 with 10,000 functions executions. The findings indicate that the HSFLA3 is extremely economical when compared to other documented optimization approaches that are accessible in the scientific literature. The HSFLA3 can accommodate various constraints forms, requires less functional assessment, and enhances the average convergence rate.

The outcomes of the following speciation were contrasted with the outcomes of the SFLA and all combination: The optimizing of scattering swarms (PSO), Ant Colonies (ACO), Hybrid Particle Swarming Optimizing (HPSO), Cuckoo Optimization Algorithms (COA), Genetic Algorithms (GA), Modeling of Annealing-pattern Search (SA-PS), and Teaching-Learning-Based Optimization Artificial Immunization System (AIA), Hybrid Robust Diverse Evolution (HRDE), The Difference Evolution Algorithmic procedures The Augmented Colony of Bees (ABC), receptor-mediated modifying (DERE), The differences The creation of hybrid computational intelligence (DE). Colony of Bees (HABC), The Education Understanding centered Improvements (HRTLBO) combination approach Fire-Fly (FA), Totally Intermittent Particulates, and quaternary problematic computer (GA-SQP) are examples of too critical methodologies. The TDPSO was used to compare the outcomes associated with these integrated trials.

The HSFLA3 achieved an almost ideal resolution; it can be applied to the determination of machine settings for intricately produced items that need to adhere to numerous manufacturing limitations. Furthermore, it can also tackle other metal chopping optimization challenges like piercing and machining. Furthermore, a CAD/CAM system can incorporate the machined model suggested here to determine the ideal machining parameters and decrease production expenses in metallic processing.

Discussion and Upcoming Projects

This study used a hybrid shuffling frog jumping program to incorporate a number of adaptive components from the unique vertically transport networks. For complex restricted models, one goal is to concurrently improve the global search capability and the local research instability. When manufacturing process imitation is successful, such variables significantly reduce manufacturing time and cost while improving the overall quality of the finished item. Single-pass and multi-pass models of operation were both extremely limited and unpredictable. Multi-pass

procedures tend to prevail over single-pass procedures when financial viability under a restrictive manufacturing context is the major focus. In order to identify the ideal parameters under customer demand Regarding a better standard at reduced prices, this research centered on theoretical representations of multi-pass spinning procedures. Compared the computational results with the existing incorporated techniques and prior research, HSFLA3 fared better on these machines might be said that HSFLA3 was an excellent option for resolving intricate machine optimization issues that come up in manufacture or other processes companies. Replication of the suggested techniques to different turning movement concepts and practical treatments are examples of future study.

Table 7: Evaluation of Various Optimization Techniques

CO A (M. 11. 1		160 0076						
COA(Mellal	123.146	169.9876	0.5655	0.2262	3	3	1.959	_
and	2							
Williams2015)								
GA(Onwubolu	114.22	164.369	0.7	0.2978	2.974	2.986	1.845	(38),(39),(40),
					5	3	0	
AndKumalo								(46),(47),(48)
2001)								
PSO(Srinivas	106.69	155.89	0.897	0.28	2	2	2.272	0
etal.2009)						_		
ACO(Vijaya-	103.05	162.02	0.9	0.24	_	_	1.626	(55):notconsid
kumaretal.200	103.03	102.02	0.7	0.24			1.020	- ered
3)								- crcu
HPSO(Costa	123.342	169.9783	0.5655	0.2262	3	3	1.959	
		109.9783	0.5055	0.2262	3	3	1.959	_
etal.2011)	4							
SA-PS(Chen -		_	_	_	_	_	2.313	_
andTsai1996								
)								
TLBO(Raoand110	O	170	0.565	0.225	3	3	1.973	_
Kalyankar								
2013)								
HRDE(Yildiz -		_	_	_	_	_	2.046	_
2013a)								
AIA(Yildiz –		_	_	_	_	_	2.12	_
2013a)								
DERE(Yildiz –		_	_	_	_	_	2.046	_
2012)							2.040	
ABC(Yildiz –		_	_	_	_	_	2.118	_
2012)		_	_	_	_	_	2.110	_
							2.126	
DE(Yildiz2012) –		_	_	_		_	2.136	_
HABC(Yildiz -		_	_	_	_	_	2.046	_
2013b)								
HRTLBO(Yildiz	_	_	_	_	_	_	2.046	_
2013c)								
GA-SQP(Bel- 94	.464	162.289	0.866	0.258	3	3	1.814	(38),(39)
loufietal.2012)								
TH (T) 11	44.00	1.50.5005	0.050	0.2505			4.05.	(20)
	.4102	162.2882	0.820	0.2582	3	3	1.824	(39)
etal.2014)								
TDPSO(Samuel12	23.34317	123.3431	0.56552	0.56552	3	3	1.736	_
andRajan		7	8	8			1	
2015)							<u> </u>	
HSFLA3 131	.7577	138.4592	0.55407	0.5056	3	3	1.715	_
							7	

References

- 1. Belloufi,A.,Assas,M.,RezguiI.,(2012),Optimizationofcuttingconditionsinmultipassturningusinghybridgenetic algorithm-sequential quadratic programming. J Appl ResTechnol 1(1):3–7
- 2. Belloufi, A., Assas, M., Rezgui, I.,S (2014), Intelligent selection of machining parameters in multi-pass turnings using fireflyalgorithm.ModelSimulEng2014:1–6
- 3. Bhattacharjee, K.K., Sarmah, S.P., (2014), Shuffled frog leaping algorithm and its application to 0/1 knapsack problem. ApplSoft Comput 19:252–263
- 4. Chauhan, P., Pant, M., Deep, K., (2015) Parameter optimization of multi-pass turning using chaotic PSO. Int J Mach LearnCybernet6:319–337
- 5. Chen, M.-C., Chen, K.-Y., (2010), Optimization of multipass turning operations with genetic algorithms: a note. Int J Prod Res41(14,2003):3385–3388
- 6. Chen,M.C.,Tsai,D.M.,(1996,)Asimulatedannealingapproachforoptimizationofmulti-passturningoperations.IntJProd Res34(10):2803–2825
- 7. Costa, A., Celano, G., Fichera, S., (2011), Optimization of multi-pass turning economies through a hybrid particle swarmoptimizationtechnique.IntJAdvManufTechnol53(5–8):421–433
- 8. Dep,K.,Datta,R.,(2011),Hybridevolutionarymulti-objectiveoptimizationandanalysisofmachiningoperations.EngOptim44(6):685–706
- 9. Elbeltag, i E., Hegazy, T., Grierson, D., (2007), A modified shuffled frog-leaping optimisation algorithm: applications to projectmanagement. Struct Infrastruct Eng Maint Manag Life Cycl 3:53–60
- 10. Ermer, E.D., (1971), Optimization of the constrained machining economics problem by geometric programming. A SMEJ EngInd 93(4):1067–1072
- 11. Ermer, D.S., Patel, D.C., (1974), Maximization of production rate with constraints by linear programming and sensitivity analy-sis. In:The 2nd North American Metalworking Research Conference (WI'74)
- 12. Eusuff, M.M., Lansey, K.E. (2003), Optimisation of water distribution network designusing the shuffled frog leapin galgo-rithm. JWater Resour Plan Manag 129:210–225
- 13. Guo, J., Tang, H., Sun, Z., Wang, S., Jia, X., Chen, H., Zhang, Z., (2015), Animproved shuffled frog leaping algorithm for assembly sequence planning of remote handling maintenance in radioactive environment. Sci Technol Nucl Install 2015:1–14
- 14. Jadidoleslam, M., Ebrahimi, A., (2015), Reliability constrained generation expansion planning by a modified shuffled for gleaping algorithm. Int J Electr Power Energy Syst 64:743–751
- $15. \ Khan Z, Prasad LB, Singhl T (1997), Machine condition optimisation by genetical gorithms and simulated annealing and the property of t$
- 16. ComputOperRes24(7):647–657
- 17. Klote, J.H., (1993) Methodforcalculation of elevator evacuation time. J Fire Prot Eng 5:83-96
- $18. \ Kumar, J. V., Kumar, D. M. V., (2014), Generation bidding strategy in a pool based electricity market using Shuffled Frog Leaping Algorithm. Appl Soft Comput 21:407-414$
- 19. Li, J., Pan, Q., Xie, S., (2012) ,An effective shuffled frog-leaping algorithm for multi-objective flexible job shop schedulingproblems. Appl Math Comput 218:9353–9371
- 20. Lu,K.,Jing,M.,Zhang,X.,Liu,H.,(2013),Optimizationofsequentialsubdivisionofdepthofcutinturningoperation susing dynamicprogramming.IntJAdvManufTechnol68:1733–1744
- 21. Luo, J., Chen, M.-R., (2014), Improved shuffled frog leaping algorithm and its multi-phase model formulti-depot vehicle routing problem. Expert Syst Appl 41:2535–2545
- 22. Mella,l.M.A.,Williams,E.J.,(2015),Cuckoooptimizationalgorithmforunitproductioncostinmultipassturningoperations.
- 23. IntJAdvManufTechnol76:647-656
- 24. Niknam, T., Mr. Narimani, Jabbari, M., Malekpour, A.R., (2011), A modified shuffle frog leaping algorithm for multi-objective optimal powerflow. Energy 36:6420–6432
- 25. Onwubolu, G.C., Kumalo, T., (2001), Optimization of multipass turning operations with genetical gorithms. Int JProdRes 39:3727–3745
- Rao,,R..V.,Kalyanka,V.,(2013),Multi-passturningprocessparameteroptimizationusingteaching-learningbasedoptimiza-tion algorithm. Scientia Iranica 20(3):967–974
- 27. Roy,P.,(2011),Anewtechniquetosolveminimumspanningtree(MST)problemusingmodifiedshuffledfrogleaping algorithm(MSFLA)withGAcrossover.In:Paperpresentedatthe3rdInternationalConferenceonAdvancesin RecentTechnologies in Communication and Computing (ARTCom 2011), Bangalore

- 28. Samuel, G.G., Rajan, C.C.A., (2015), Hybrid: particle swarm optimisation-genetic algorithm and particle swarm optimisation-shuffled frog leaping algorithm for long-term generator maintenance scheduling. Electr Power Energy Syst 65:432–442
- 29. ShangYL,BouffanaisR(2014),Influenceofthenumberoftopologicallyinteractingneighborsonswarmdynamics. Sci Rep4:4184
- 30. Sharma, S., Sharma, T.K., Pant, M., Rajpurohit, J., Naruka, B., (2015) Accelerated shuffled frog-leaping algorithm. In: Fourth inter-national conference on soft computing for problem solving. Spri,nger, India
- 31. Shin, Y.C., Joo Y.S., (1992), Optimization of machining conditions with practical constraints. Int J Prod Res 30(12):2907–2919SrinivasJ,GiriR,YangS(2009),Optimizationofmultipassturningusingparticleswarmintelligence.IntJAdvManuf
- 32. Technol40(1-2):56-66
- 33. Strakosch, G.R., Caporale, R.S., (2010), The vertical transportation handbook, 4thedn. Wiley, New Jersey
- 34. Vijayakumar, K., Kumudinidevi, D.R.P., (2007), Anewmethod for optimal location of facts controllers using genetical gorithm.
- 35. JTheorApplInfTechnol3(4):1-6
- 36. Vijayakumar, K., Prabhaharan, G., Asokan, P., Saravanan, R. (2003), Optimization of multi-pass turning operation using antcolonysystem.IntJMachToolsManuf43:1633–1639
- 37. Wang, Y.-C.(2007), Anoteonoptimization of multi-passturning operations using ant colony system. Int J Mach Tools Manuf 47(12):2057–2059
- 38. Yammani, C. (2011), Optimal placement and sizing of the DER in distribution systems using shuffled frog leaping algories.
 - rithm. In: Paper presented at the recent advances in intelligent computational systems (RAICS) IEEE, Trivandrum and the recent advances in intelligent computational systems (RAICS) IEEE, Trivandrum and the recent advances in intelligent computational systems (RAICS) IEEE, Trivandrum and the recent advances in intelligent computational systems (RAICS) IEEE, Trivandrum and the recent advances in intelligent computational systems (RAICS) IEEE, Trivandrum and the recent advances in intelligent computational systems (RAICS) IEEE, Trivandrum and the recent advances in intelligent computational systems (RAICS) IEEE, Trivandrum and the recent advances in intelligent computational systems (RAICS) IEEE, Trivandrum and the recent advances in intelligent computational systems (RAICS) IEEE, Trivandrum and the recent advances in intelligent computation and the recent advan
- 39. Yildiz, A. (2012), A comparative study of population-based optimisation algorithms for turning operations. Inf Sci210:81–88
- 40. Yildiz, A. (2013a), Hybrid Taguchi differential evolution algorithm for optimization of multi-pass turning operations. ApplSoftComput13(3):1433–1439
- 41. Yildiz, A. (2013b) Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach. InfSci220:399–407
- 42. Yildiz,A.(2013c),Optimizationofmulti-passturningoperationsusinghybridteachinglearningbasedapproach.IntJAdv ManufTechnol66(9–12):1319–1326
- 43. Yildiz, A.R. (2013d), A new hybrid differential evolution algorithm for the selection of optimal machining parameters in mill-ingoperations. ApplSoftComput13:1561–1566
- 44. Yildiz, A., Ozturk, F. (2006), Hybridenhanced genetical gorithm to select optimal machining parameters in turning operation. ProcInstMechEngDJ Automob Eng 220(12):2041–2053
- 45. Yusup,N.,Zain,A.M.,Hashim,S.Z.M,(2012),Evolutionarytechniquesinoptimizingmachiningparameters.ExpertSystApplInt J39(10):9909–9927
- 46. Zarei, O., Fesanghary, M., Farshi, B., Saffar, R.J., Razfar, M.R. (2009), Optimization of multi-pass face-milling via harmony searchalgorithm. J Mater Process Technol 209(5):2386–2392
- 47. Zhang, X., Zhang, Y., Shi Y., Zhao, L., Zoua, C. (2012), Power control algorithm in cognitive radio system based on modified shuffled frog leaping algorithm. Int J Electron Commun 66:448–454
- 48. Zhu,G.Y.,Zhang,W.B.(2014),Animprovedshuffledfrog-leapingalgorithmtooptimisecomponentpick-and-placesequenc- ingoptimisation problem. Expert Syst Appl Int J 41:6818–6829
- 49. Aungkulanon, P. and Luangpaiboon, P.,(2016), Vertical Transportation Systems Embedded on Shuffled Frog Leaping Algorithm for Manufacturing Optimisation Problems in Industries, Aungkulanon and Luangpaiboon Springer, (2016)5;831.