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Abstract 
We present an architectural framework for AI clusters and highlight diverse computational demands from four 
target industry areas. We argue for elastic capacity management due to the dynamic nature of clusters to 
accommodate these diverse demands. We discuss key challenges and opportunities related to the design of elastic 
systems for managing diverse workloads based on AI clusters. The choice of system architecture and low-level 
orchestration mechanisms is guided by capacity planning requirements. We survey and contrast two distinct 
industry-driven architectural patterns for building AI clusters. We: (1) describe a logical architecture for managing 
dynamic AI clusters that is flexible and agnostic about the execution daemon; (2) propose two workload models 
based on the harvesting of real usage data from state-of-the-art AI clusters; (3) provide a proof-of-concept 
implementation of the proposed latency-QoS optimum placement methodology and analyze its performance. 
AI dominates computation today and presents unique system design and management challenges. This paper’s 
contribution is to espouse the idea that one-size-fits-all AI systems cannot work, precisely because AI computations 
are diverse. They can be computationally expensive, requiring a specialized GPU, or use modern software tricks to 
perform deep learning on a traditional CPU with reasonable latency. They may be high-performance, real-time, or 
high-batch throughput. They may demonstrate multi-modal steady-state behavior or varying degrees of start-up 
and steady-state variance. There are two design challenges: (1) what is the best AI cluster design with a blend of 
CPU and GPU platforms that satisfies the diverse AI computation needs of the above four scenarios? (2) How best 
to manage capacity in an AI cluster? We propose answers that critically also utilize data analytics and AI training to 
understand usage patterns and customer requirements. The system architectures we espouse are elastic; they can 
increase or decrease capacity in a serverless fashion. A diverse elastic system nicely pairs with elastic capacity 
management to manage clouds with AI workloads. 
Keywords: AI Cluster Architecture, Elastic Capacity Management, Diverse Computational Demands, Dynamic 
Clusters, Workload Management, System Design Challenges, Industry-specific AI Patterns, Logical Architecture, 
Execution Daemon Agnosticism, Workload Models, Latency-QoS Optimization, Proof-of-concept Implementation, 
GPU and CPU Platforms, Real-time AI, High-batch Throughput, Multi-modal Behavior, Data Analytics, Serverless 
Elastic Systems, Capacity Planning, Cloud AI Workloads. 
 

1Introduction

Enterprises and online organizations increasingly use modern data center clusters to perform large-scale machine 

learning and AI workloads, which have different demands for computation, I/O, and memory. This extreme 
heterogeneity is a significant challenge for organizations running these diverse workloads, as it is essential to 

multiplex the hardware efficiently. Event-driven functions are similarly composed of diverse traffic, with some 

requests requiring relatively longer to serve than others. In both these scenarios, operators can increasingly leverage 

elastic capacity management—varying the resources used based on the request being served—to ensure high 

utilization while keeping queue times below the desired target. 

At scale, the efficiency of elastic capacity management has been found to depend heavily on effectively and 

accurately "right-sizing" requests for resources. This is essentially a hardware resource allocation problem, also 

known as Tetris. We highlight the importance of fundamental Tetris design principles when choosing an architecture 

for an AI cluster. The fundamental mathematical principles that dictate Tetris are just as important to get right as the 

choice of clustering technology. Modern deep learning and other AI technologies are transforming computation. AI 

technology has been developed further, integrating real-time video input, making it a requirement for training jobs to 

access and retrieve video data for training. The increasing ubiquity of AI technology in the industry makes AI 
systems and the problems AI models are trained on ripe for study. We argue that elastic capacity management is a 

key consideration when architecting such systems. The most state-of-the-art AI research has the potential to have a 

direct impact on several fields—including medicine, locational science, and computation. Critical research like this 

should receive the support needed to make a meaningful difference. We will examine AI systems—from both an 
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industry and research perspective—holistically. We argue that, within this context, elastic capacity management is 

crucial. 

We argue that the fundamental design choices made around this problem in the context of AI clusters will be made 

around managing their extreme heterogeneity. In a demonstration of this, we will share the results of experiments to 

simulate different load profiles realistically to demonstrate nuance between Tetri's clusters designed with different 
systems. In designing and building a system, understanding and addressing the subtleties of traffic diversity and 

Tetris principles is of particular importance. In the rest of this paper, we will touch on these key approaches to 

understanding the system and its design. We will cover basic background on the different ways that AI workloads 

can be separated and the challenges with such workloads. We will also discuss the future of AI systems and the 

potential impact that they may have. 

 
Fig 1 : Elastic Computing 

 

1.1. Background and Significance 

Recent years have seen the rapid popularization of artificial intelligence techniques, such as deep learning. These 

powerful tools can solve tasks that would have taken immense multidisciplinary effort from the computer sciences, 

such as image and video recognition, language generation, and many more. As a result of the growing number of 

machine learning and deep learning models being developed, model size has increased from a handful of neurons in 

the nineties to billions of neurons for models such as GPT-3. Therefore, to keep up with this computational demand, 

computational power usage is doubling every 3.5 months, and the trend is growing. The high computational demand 

of AI has also increased energy expenditure, with a single training run consuming just under 190 MWh, enough to 
power an American household for 6 years. With the advent of friendly, accessible artificial intelligence tools from 

cloud vendors, systems at small and large scales are witnessing its integration. 

Multi-tenant edge clouds, which can dynamically change the infrastructure depending on the workloads and external 

conditions, require better and more dynamic scheduling algorithms to run these AI clusters efficiently. Traditionally, 

systems have been built to over-provision to accommodate the resource requirements, a technique that is not cost-

effective and scales poorly for AI systems that require near real-time responses. Additionally, the amount of 

computational power made available to a model also determines the model’s performance. Hence, having a system 

that can automatically vary resources to optimize inference time based on the model’s performance in real time is 

quintessential. More applications are built on machine learning or deep learning models, and the increasing variety 

warrants the need for the system to be flexible with hardware and software configurations. Running multiple 

workloads on the same data center, including training, inference, and lightweight workloads that perform on-the-fly 

annotation, requires the system to distribute server resources depending on the complexity of the workload at that 
time, not just the nature of the workload itself. 

 

Equation 1 : Elastic Resource Allocation (ERA)
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1.2. Research Objectives 

The nature of the AI clusters is changing, and the machinery that builds the brains of AI is not being replaced 

frequently. We have seen clusters using hardware from 2012 to the most modern ones. Such heterogeneous use of 

the compute cluster necessitates an approach where jobs need to manage diverse computational resource 

requirements. Managing the varied computational needs in the AI clusters, from training large deep learning 
experiments to handling small inferences, is our primary objective. The idea is to design a scheduling policy along 

with a complementary feature called elastic capacity that can handle such explorative loads gracefully. For instance, 

should we allow oversubscription and utilize the slack capacity in the cluster for batch workloads, which experience 

temporal load variations, or manage the batch workloads via time-sharing policies? Another approach is to design 

systems that may have higher slack. For example, can we reduce the stragglers among small inferences and hence 

shrink the tail for the serving workloads to increase the slack in the cluster? We explore these design questions in the 

following case studies. 

Design compute clusters for the new crowd of AI researchers. We will study the dynamic load management 

mechanisms behind the AI clusters and examine some of the characteristics of the explorative workloads that they 

handle. Elastic capacity management – Diagnose explorative workloads in AI clusters to understand temporal load 

variations. The vision is to implement an elastic batch queue mechanism, a new scheme apart from strictly static and 

elastic batch queues. This new scheme, wherein the explorative workloads are part of the set size-constrained best 
effort queue, and a separate dynamic queue is used for throughput-sensitive user jobs. It is now possible to 

oversubscribe the cluster to handle throughput-sensitive synchronous tasks. A scheduling policy around spot 

instances and slack handling, where spot instances are acquired in surplus and the jobs that have constraints are 

dynamically matched to the available capacity. 

 

2. AI Clusters: Overview and Architecture 

Large-scale deep learning requires a phenomenal amount of computation. An AI cluster is the industrial process 

center of AI training, composed of a large number of servers for efficient and resilient computation. In AI clusters, 

servers are interconnected by a high-bandwidth, low-latency network fabric to exchange a large quantity of training 

data. The interconnected servers further operate as a homogeneous pool of compute resources or as a set of 

specialized subsystems for tasks such as deep learning. Servers in AI clusters are further orchestrated by distributed 
and centralized software systems, which allocate and manage jobs based on incoming demand. This operational 

framework allows AI clusters to perform data-dependent, small-scale tasks such as model evaluation processes as 

gracefully as large-scale deep learning tasks requiring weeks of computation and days of human labor. In summary, 

AI clusters are composed of three fundamental elements: hardware, software, and networking. Large independent 

servers and clusters of smaller form factor servers are often used to create and maintain professional AI clusters. 

High-end servers or blades contain multiple GPUs and a significant amount of local main memory. Each of these 

servers shares a networked file system with other servers in the AI cluster over a high-bandwidth network. The 

software systems that orchestrate AI clusters are built on either a pool of resources or GPU islands. There are 

multiple designs based on these architectures. Large training clusters are increasingly complex and consist of 

numerous hardware islands of one of the designs detailed already. There are a myriad of hardware and software 

variants, but all islands use a similar base technology and thus the same constraints for capacity management. 

Solving capacity management for one is likely to work for all. 
 

 
Fig 2 : Core AI Cluster Architecture 
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2.1. Definition and Components 

Definition of an AI Cluster An AI cluster is an optimized computational cluster engineered to function as a cohesive 

system that is aligned toward a common application or suite of related applications. In the three-layer application-

technology-hardware stack, we include applications in the top layer, comprising the services provisioned to the end 

users; technology makes up the middle layer, defining the orchestration and management functionality enabling the 
broader ecosystem; finally, hardware appears at the bottom, determining the system's constrained resources. The 

lower hardware layer consists of interconnected solution components. Each node unit contains an assortment of 

processors, memory, storage, and drives as it must be self-standing; however, the greater system is engineered to 

function when an assemblage of nodes is linked. System storage sustains an off-chassis network linkage beyond the 

set of nodes upon which the CPU nodes can temporarily park their swap and pause storage data state. Over the 

system link, only certain types of communication are allowed. 

Major System Components AI clusters are diverse machine learning as well as training and inferencing clusters. 

However, those consisting mostly, or exclusively, of DRAM-based AI accelerator servers are the most common 

instances. The first critical ingredient is, of course, the AI datatype processors employing specific support for 

gathering information over wildly divergent workloads. Equally imperative, the memory systems contain sizable 

capacities and memory data speeds such as transfer rates. Similarly, storage solutions, composed of drives and often 

in an all-flash or tiered topology, make up another essential resource on the server. Thus, each sub-component 
(processor, memory, storage, and drive) feeds into an amalgamated constellation that achieves and sustains 

maximum AI cluster functionality and performance. These hardware resources are hardware-component based and 

are host to subsequent software layer interfaces, technologies, orchestrations, and management. In the case of AI 

clusters, the interconnection linking hardware to software components is not unidirectional. A feedback pathway 

follows the principle assumption that efficient and effective engineered functionality, down to the component level, 

allows optimal and enhanced performance. Therefore, systemic feedback observes cluster-specific variables. These 

may include overall CPU utilization; next job completion times; node utilization; uplink saturation; inputs such as 

scaling commands at the chassis, rack, scale unit, or storage node and control plane level; feedback from the lower 

management or firmware control planes; and the performance feedback accumulations of the linkages between 

hardware and software components. Meanwhile, the control plane itself decides on potential hardware configuration 

efficiencies. For example, the configuration management plan records an observation to re architect the hierarchical 
AI interconnection or two-layer architecture. Such control actions are only possible by the use of systemic AI 

infrastructure feedback outputs, including such new fields as sensor data. 

 

2.2. Key Technologies 

Artificial intelligence has seen remarkable progress over the past few years with advancements in frameworks, 

algorithms, and networking technologies attaining popularity in parallel. Novel deep learning frameworks leverage 

billions of parameters for optimal performance, necessitating data processing algorithms capable of handling a 

diverse mixture of demands concerning computing, communication, and input/output operations. In conjunction 

with AI innovations, advances in the technology stack – including intelligent tools for data center management, such 

as network traffic prediction, adaptive routing, and automated failover systems – have pushed the performance of 

data center clusters even further. Critical for the AI sector is also the recent development of high-bandwidth, low-

latency cluster networking technologies that leverage capabilities such as packet pacing, credit-based flow control, 
and priority flow queueing to ensure that critical workloads, such as the ones needed for machine learning models, 

experience reduced latency with low jitter. 

Furthermore, cloud computing has enabled managed virtualization, which provides a flexible and scalable way to 

allocate resources to virtual groups without the need for modifications at the physical infrastructure layer. Emerging 

hardware platforms such as Graphics Processing Units and Tensor Processing Units have also evolved rapidly in 

recent years to process the rapidly growing AI workload in an energy-efficient manner. Among these, the 

microsecond memory access time and high memory bandwidth provided by the GPU’s highly parallel memory 

hierarchy are particularly appealing for accelerating machine learning inference and training operations. Currently, 

many cloud providers offer infrastructure with GPUs and TPUs, which can be crucial for machine learning 

researchers and data scientists who wish to leverage significant computing capabilities in their data centers or test 

novel solutions at scale. This exclusive combination of software and hardware technologies drives the development 
of these AI clusters, allowing them to effectively address a diverse set of demands. It is highly relevant for cluster 

stakeholders to understand the rapidly evolving technological landscape and how it currently contours and will 

shape the functioning of these AI cluster systems. In the following subsection, we discuss the important role these 

technologies play in AI clusters. We also provide an overview of potential future trends for these technologies. 
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3. Elastic Capacity Management 

Elastic capacity management is a core concept that optimizes resource utilization for AI clusters. It refers to the 

properties of the system that allow for effectively matching the given computational demands and workload 

requirements, which may fluctuate over time, by dynamically allocating different system resources. It can also adapt 

to changing system requirements and priorities. All existing technologies to support elastic capacity management 
consist of some combination of the following approaches: spatial and temporal. While the detailed implementation 

of both strategies is a function of numerous factors such as target systems, resource allocation techniques, and 

system scaling strategies, the focus is on the temporal aspects of the elastic strategies where the system decides how 

long to retain allocated resources. 

Several application workloads that run in large-scale AI clusters, such as video transcoding and large matrix 

computation, exhibit significant fluctuation in their demand for system resources such as memory and computation. 

Existing static and over-committed data center environments are challenged by these diverse and fluctuating 

resource requirements. In particular, a lack of elasticity in an over-committed environment may still lead to 

allocation inconsistencies via resource scaling. Static and over-committed data centers cannot cater to the diverse 

needs of the AI workload. Elastic capacity management is a requirement in such a workload due to the dynamic 

change in demand according to the amount of computational need. It could also involve various methodologies or 

techniques that enable or automate the elastic capacity strategy implementation in the context of large-scale training. 
Elastic capacity management is also a broad capability and requirement in any shared data center environment 

where operational efficiency depends on using as few resources as possible to meet a service's objective. Elastic 

capacity strategies refer to the design of a system with the ability to cater to the diverse computational demands of a 

user's workload. In this context, the architectural resource usage diversities are related to the demand diversities in 

the individual iterative AI applications launched in the cluster. Crystallized in terms of clusters, the diversity of the 

individual iterative workloads naturally leads to vast differences in the premium paid across users who choose to use 

the resources unconstrained. Thus, any framework that gives the ability to elastically manage capacity has the 

additional potential to also enable policy-based, dynamic cost-recovery strategies that a system operator may wish to 

utilize given the pricing for the resources at their command. 

 
Fig 3 : Classification of Elasticity Solutions 

 

3.1. Concepts and Principles 

A good way to handle bursty traffic patterns due to a variable number of EVs is by making AI cluster services 

elastic—that is, seamlessly and automatically tuning the processing capacity up and down. There are various ways 

to achieve elasticity, and elasticity is particularly achieved by optimizing the load generators. However, in our case, 

splitting the target of a user across two different services or statically assigning some target parameters to users is 

not appropriate. In this respect, we can use two approaches: load balancing and resource provisioning. The former 
tries to distribute load equally among replica servers by dynamically mapping the arriving requests, while the latter 

proactively adjusts the processing capacity to match the load. Such an approach is called autoscaling when it is 

supported by management features such as automated cloud provisioning, workload orchestration, and real-time 

monitoring and decision-making. 

Conceptually, request balancing and auto scaling operate based on a similar view of system resources and elastic 

QoS (Quality of Service) policy: it is necessary to keep the system load slightly below the system capacity to 

recover from fluctuations. The difference between them is that auto scaling works for computational systems in 

general—that is, it increases or decreases the number of computational resources, and it is well suited for serverless 

computing, microservices, and cloud deployment in general since cloud resources are usually charged by the 

allocation time. In contrast, request balancing works for server clusters, but it focuses on distributing incoming 
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requests. For DMaaS, either autoscaling or request balancing is similarly applicable. Elastic scale-up and scale-down 

can be done by autoscaling, terminating, and creating new VM instances supporting the DMaaS in the cloud. This 

may result in downtime issues for API users consuming the DMaaS. It looks like there is no notion of capacity, so 

startups are likely to use request balancing or static performance tuning as alternatives. Automatic performance 

tuning could avoid user-side downtime issues, but the startup itself has less economic incentive for doing that. In 
general, resource cleanup duration can vary in a server-side VM termination process due to substitutable instances, 

content synchronization, etc. 

 

3.2. Importance in AI Clusters 

We shall focus on the specific demands of elastic capacity management in AI clusters and cloud-based AI platforms. 

Running multiple applications and tasks, AI clusters exhibit diverse demands on capacity at any given time. Elastic 

capacity management is thus of critical importance in an AI cluster as it dynamically allocates resources to 

applications to minimize the makespan. Stricter SLAs also come into play to ensure business objectives, such as 

system-wide performance guarantees under competition, penalties, or reputation. The effective management of 

computing resources in such environments can have a profound impact on performance and operating costs. In 

particular, periodic over-provisioning may improve plans due to a lower probability of missing SLAs and equally 

maintain a higher utilization level, but their cost may be untenable on competing systems – no company can 
sacrifice 50 percent of its profits to meet SLAs. 

Where elastic systems come in different instances, the optimal amount of each such resource is important to manage. 

While this is a more typical concern for capacity management considering different services, it is relevant to AI. 

Elastic architecture design is closely tied to capacity management and is a focus of both industrial research and 

practice due to its benefit to the business. We note that AI applications may also be designed to dynamically trade 

quality and speed to adapt to varying operational environments, a trend that has grown since. Ultimately, the 

business is interested only in the outcome – namely delivering the best available application as fast as possible for 

the lowest cost. Where there is a free or very low-cost trial, the enterprise does not want to charge the customer 

prematurely, nor does it want to lose custom because the AI was too slow or if the service failed. There are, 

however, very few public statements on the performance of any training process, and even fewer in heterogeneous 

environments. 
 

Equation 2 : Utilization Efficiency (UE)  

 
4. Design Considerations for Systems with Diverse Computational Demands 

AI systems today carry out a broad diversity of tasks with different computational demands. These may be short or 

long tasks, metadata indexing or image recognition, running great varieties of DNNs or graph algorithms, working 

on large or small inputs at once, and so on. Therefore, designers of such systems need to prepare them for changing 

workload characteristics, balancing efficiency and cost. Achieving this poses distinct design considerations. This 

outlines the important ones, with the ultimate goal of becoming a starting point for designers and explaining state-

of-the-art work and reasonable trade-offs involved in all of them. 

When large clusters or entire data centers are designed for AI work, there is a presumption that computational 

capabilities are either scarce or that tailored designs can achieve the required performance at a lower cost. Different 
scale clusters requiring the same pool of resources at once 
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Fig 4 : Advanced Computational Methods for Modeling 

 

4.1. Scalability and Flexibility 

Scalability and flexibility are both important properties of the system. When designing a system, scalability is the 

ability to handle increasing loads (i.e., it is the system’s capability that doesn’t require major design changes to cope 

with more significant loads). Elasticity is the ability to provide additional resources to the system and reduce 

resources from the system as the workloads decrease. Typically, the goal of system design is to be scalable so that 

the system can absorb increasing loads without major changes. To achieve scalability, a system is frequently 

designed to consist of multiple components that can distribute the loads and costs. The techniques used can be either 

through purposive division, such as modular component design, or non-purposive division, such as using cloud-

based components or functions. Both divisions provide better resiliency against failures as they typically focus on 

single components and proficient failover mechanisms. 

While under optimal operation, a scalable system surpasses the performance of systems that are not scalable. A 
scalable system is even more beneficial in cloud-based and distributed systems as it has operational efficiency. As 

the loads and costs are distributed, we can expect predictable performance behavior. Elasticity will then provide 

flexibility in terms of per operation or real-time. Operations can still function properly even though there is a delay 

in retrieving data from the databases; this is due to the versatile design of the scaling middleware, which implements 

task queues between services. Capable automatic scaling will allow for even better efficiencies as resources are 

available when needed yet have the elasticity to release resources when they are not needed. Successful elastic 

capacity utilization gives you operational performance that is beneficial to cost and operational management. 

Products often need to be measured for scalability and deployed so that the scaling mechanism is given full 

consideration, such as avoiding write fragmentation or replication lag from read dependency. The fastest way to 

deploy and split your identical schematic data is in parallel. Systems that are not designed for massive parallelism 

cannot be scaled in a cost-effective manner. In terms of a simplistic, single-capacity AI apparatus, there are 
challenges and also an optimal application design of the big databases and document databases that remediate big 

data retrievals. 

 

4.2. Performance Optimization Strategies 

Utilizing one or a combination of the following strategies, the system’s performance can be optimized as per the 

specific demand. The details of each strategy are as follows: 

Workload Prioritization Caching Parallel Processing Workload prediction and placement Machine learning 

techniques to predict resource demand Recommend quasi-optimizations Predictive modeling Ways in which 

configurations could be modified for classes of jobs Challenges Scheduling frameworks are generally rigid. 

Performance is highly dependent on fine-tuned system parameters, ranging from radix to buffer threshold on each 

chip. Significant monitoring is required. Sensitivity of demand predictability. Forecasting does not equal optimum 

performance. These are techniques to improve the use of such time series analysis techniques. 
Timely development has significantly increased the service’s performance, as demonstrated by benchmarks. 

However, there are many future research opportunities including developing service-based techniques of such 

models, scheduling system parameters, and validating the models on more complex workloads, such as diverse user 

time series data. Optimizing the performance and resource utilization of a large-scale analytics system that handles 

diverse, data-driven computational demands is challenging. In this chapter, we leverage a case study of a state-of-

the-art operational AI cluster to elucidate principles and techniques. Given the small value of the benefits, it would 

have been tempting to not continue with the full-depth optimization. One of our optimizations led to the upgrade of 

the task name cache to double at a cost of in the deduced monthly hardware cost division. We argue, with evidence, 

that our model further benefited our customers. 
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5. Case Studies and Applications 

Case Studies and Applications 

Dell’s ‘liquid-cooled’ AI cluster vividly illustrates the value of elastic capacity management in practice. There are 

many such efforts in diverse sectors of the economy. The Tevatron and LHC Large Hadron Collider clusters are 

examples of very large computer system infrastructures that use grid computing for elastic capacity reconfiguration. 
Such initiatives are not limited to physics. An inertial odometric guidance system based on an array of AI-based 

steering mechanisms enables economies of more than 10% of costs. An effort to deploy similar systems in a 

networked sensor-electronic environment aims to save fuel and enable long-duration military missions. An initiative 

is funding an effort to design next-generation smart buildings, and a center is developing ‘the intelligent office’, a 

sensor- and AI-enriched environment that has the capacity for elastic computational adjustments. 

For example, a system is being used to combine a variety of information, e.g., weather, transportation, and light, 

with the cursor/eye movements of a user to adapt a human-machine interface. A variety of case studies in AI-based 

home automation systems can be found in the literature. We are experimenting with these two possible applications. 

Their end-user value has not been determined, but their application will provide us with practical issues of how to 

use the AI cluster. There are many other initiatives in clusters, grids, and clouds, including hundreds of projects 

supported by national funding initiatives and a few global activities: • A project involving 30 neuroscientists is 

building a research infrastructure to enable MEG scanning. They have produced a library of videos. 
 

5.1. Real-world Implementations 

Below we summarize five case studies: the operational context, the technical choices, some outcomes, and a few 

lessons learned. 

- AI cluster in a shared radio environment: 

Context: Scarce computational resources in CU. Challenges: Dynamically scaling among diverse services and 

communication technologies. Return: Performance up to par with specialized software across the scenarios. 

- AI agents for resource management: 

Context: High volume of workloads in a multi-user video transcoding system using the FaaS paradigm. Challenges: 

Diverse models and unpredictable service operability. Return: Energy savings compared to a conservative scheduler. 

Lessons learned: Difficulty assessing the actual utility of elastic resources and throttling policies from AIs, despite 
using off-the-shelf agent libraries. Relatively high costs of calling back the model functions could limit the 

integration of such algorithms at a large scale today. 

- Deep-learning-based diagnosing model for an electric submersible pump: 

Context: Training of predictive models out of the cloud. Challenges: Modeling of the engineering domain. Return: 

Approximately $3M/year if 5% of total pumps were subjected to the discrepancy check. As the model is validated, it 

is yet to be deployed for real-time monitoring. 

- AI cluster in an Italian data center for video transcoding: 

Context: High level of heterogeneity regarding encoding requirements. Challenges: Qualitatively assessing the 

overhead introduced by job dispatching recommendations. Return: The transcoded length of the video in question is 

up to 4.9% higher. 

- Elastic AEM search index in the cloud: 

Lessons learned: The results suggest that AI-driven recommendations lead to longer job completion times. The 
operational practicality and benefits connected to the ease of maintenance and reduced clutter of the Elastic service 

recommendations should also be weighed before a fully concrete operational plan can be established. The course of 

action is to reassess in a growth phase whenever architectural changes can drastically change the operational 

balance. 

It is interesting to notice that the set of domains on which AI clusters were tried seems to be quite diverse and not 

necessarily directed toward the typical AI high-performance computing application scenarios. This is an illustrative 

list of the domains investigated so far: 

- Cloud request management 

- Computer vision 

- Deep learning 

- Radio signal processing 
- IoT 

- Video encoding/transcoding 

5.2. Benefits and Challenges 

These AI clusters offer vast benefits. By having a dedicated group of machines that can handle these specialized 

operations, organizations may be able to get better results from their AI infrastructure. They offer improved 
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performance, can be more easily and efficiently scaled, and may in some cases be less expensive to operate than 

traditional infrastructure. They may additionally simplify other parts of your infrastructure, such as backup and 

disaster recovery. AI clusters are elastic. This means jobs requiring a vast amount of computing and memory 

resources can be scheduled to run on such clusters. This is handled by the scheduler and the runtime. 

However, despite the many benefits, there are several challenges. For example, the numerous types of AI clusters 
that may be available could lead to complexity in integrating your AI infrastructure. Some clusters could fail. If 

there is insufficient capacity on other clusters for the workloads running on failed clusters, workloads that were on 

the failed cluster(s) will need to be stopped or can be rescheduled to other clusters. Lastly, AI technologies are still 

evolving rapidly. This means best practices and hardware for operating AI workloads will continue to evolve as 

well, which poses some challenges with capacity planning and assessing the long-term potential cost savings from 

investing in AI clusters. So organizations need a well-thought-out roadmap of tools and features to add and when to 

add them. A well-thought-out implementation of AI clusters will take these concerns into account and will also put 

some careful thought into how to manage workloads that have elastic AI cluster requirements. 

 
Fig 5 : Elasticity Measurement in Cloud Computing 

 

6. Conclusion 

This paper presents features of AI workloads, such as real-time, highly variable needs for computation that are new 
to centers that run large clusters of AI computation. New designs that can meet these needs will be required to make 

future large-scale machine-learning systems feasible. The paper also discusses a specific strategy called "elastic 

capacity management," which a center can use to organize its cluster but has never been feasible to implement for 

AI because of its high overhead. However, new algorithmic advances are making such an approach possible; 

specifically, adding extra capacity adapts to the highly variable computational needs of AI. This can save a center 

25% or more of the cost and increase the jobs that a cluster can complete by this amount. We hope that managers of 

large AI systems will find the recommendations and the examples brought from previous explorations of technology 

interesting. Large clustering of computers generally employs a strategy called "batch scheduling," an approach based 

on making computation and resources available before computing jobs arrive, using prediction to make those 

decisions. AI clusters should instead be deployed in an "elastic capacity management" style. That is one such 

approach, with the added feature that, unlike batch, more servers can be incremented or removed to adjust to the 
needs of the workloads. We have seen many proposals over the last few years that can improve batch scheduling 

through smarter ways of placing and running jobs that are known in advance, to improve performance. Yet each of 

these can do no better than reserving this added amount because jobs are permanently launched and cannot 

elastically be increased or reduced according to the recent prediction or activities in the AI cluster. For these 

reasons, in contrast to manual adjustments, many changes are required to the cluster operating systems that are in 

vogue. 
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Equation 3 : Elastic Scaling Cost (ESC)

 
6.1. Future Trends 

AI computing capacity will continue to grow with the development of technology. This will impact system design 

choices. The AI research community has been looking into non-traditional models of computation for AI workloads, 

including quantum computing and reversible computing. New computation models may lead to a redesign of AI 

clusters. New machine learning frameworks and new AI research directions might affect the design of AI clusters. 

For instance, hardware-friendly machine-learning frameworks and machine-learning hardware accelerators may 

replace today's software stack. User demands and interactions with AI systems may change over time; AI clusters 

may need to be able to adapt quickly to these changing needs. AI clusters also have a non-negligible negative 

environmental impact. Countries and companies are investing in green data centers that operate in an 

environmentally friendly way. Elastic resource management will become increasingly important. State-of-the-art 
managing AI cluster techniques will have to be continuously evolved to handle new computational paradigms, 

research directions, and user demands in an environmentally sustainable way. 

The era of big data has led to exponential growth in data centers. As data center needs and AI computing resources 

increase with the growth of large-scale data, we will be able to process and utilize big data in a short time. The 

algorithms, architectures, and computation of massive data computing clusters will change. Multi-tenant data centers 

are not currently the basis for efficiently managing multiple parallel tasks. In addition, the concept of computational 

storage will be reused in this AI cluster. The newly deployed AI cluster may be close to the user center. Currently, 

computing resources are concentrated in a few data centers to serve most users, while AI clusters serving users are 

deployed in user centers to reduce network delays between users. Future trends in data centers, such as thermal 

design, are trying to reduce the temperature of data center facilities to room temperature to eliminate the need for 

refrigeration, but AI clusters are highly server-oriented, so heat generation will be a problem. AI clusters with a 

liquid cooling mode may appear. At the same time, the waste heat generated by the AI cluster is passed to the 
surrounding room of the user center and used to heat the user center. 
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