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Abstract—

The rapid advancement of artificial intelligence (Al) in healthcare has catalyzed the need for large, diverse, and
high-quality datasets to train robust machine learning models. However, acquiring real-world medical data presents
challenges due to privacy concerns, regulatory restrictions, and data scarcity. Generative mock NeuroForge
Networks (GMNFNs) offer a promising solution by enabling synthetic data generation that mimics the complexity and
variability of real-world datasets while preserving patient confidentiality. This paper introduces a novel three-step
framework for synthetic data generation in Al healthcare systems: (1) HoloScope Sampling—a pre-processing
algorithm that ensures input data diversity and represents the full spectrum of real-world scenarios; (2) Generative
mock NeuroForge Networks (GMNFNs)—a cutting-edge architecture designed to generate high-fidelity synthetic
datasets while addressing privacy and ethical constraints; and (3) Fuzzy press DataTrust Validator (FPDTV)—a post-
generation algorithm that quantitatively evaluates the reliability and utility of synthetic datasets using advanced
statistical and domain-specific metrics. By integrating these steps, this research demonstrates a pathway to bridge
data gaps, enhance model performance, and mitigate biases in healthcare Al systems. Ethical considerations and
the integration of these algorithms into existing frameworks are discussed, providing a roadmap for accelerating
innovation while adhering to privacy and regulatory standards.

Index Terms—Artificial Intelligence , Healthcare, Generative mock NeuroForge Networks, Synthetic data generation

I. INTRODUCTION

Artificial intelligence (Al) has emerged as a powerful tool for addressing critical challenges in healthcare,
revolutionizing areas such as disease diagnosis, treatment planning, drug discovery, and patient monitoring.
Al systems rely heavily on high-quality, diverse, and extensive datasets to achieve accuracy, reliability, and
generalizability. However, the healthcare sector faces unique challenges in acquiring such datasets. Privacy
concerns, ethical considerations, and strict regulatory frameworks, such as GDPR and HIPAA, limit access
to sensitive patient data. Moreover, data scarcity and inherent biases in available datasets further hinder the
development of equitable and effective Al solutions.

Synthetic data generation has become a promising approach to overcome these barriers. By creating artificial
datasets that replicate the statistical properties and complexity of real-world healthcare data, synthetic data
enables researchers and developers to train Al models without exposing sensitive information. This approach
also facilitates the creation of datasets that address underrepresented populations, ensuring a more equitable
and inclusive foundation for healthcare Al systems. While existing generative models, such as Generative
Adversarial Networks (GANs) and Variational Autoencoders (VAESs), have made significant strides in
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synthetic data generation, they face limitations in capturing domain-specific nuances and addressing the
stringent ethical and regulatory requirements of the healthcare industry.

To address these challenges, this research introduces a novel three-step framework for synthetic data
generation tailored specifically for healthcare applications. The first step, HoloScope Sampling, focuses on
creating a diverse and representative input dataset by leveraging advanced sampling techniques. This ensures
the inclusion of rare medical conditions, demographic diversity, and edge cases critical for building robust
Al systems. The second step employs Generative mock NeuroForge Networks, a state-of-the-art
architecture designed to generate high-fidelity synthetic healthcare datasets. This novel model incorporates
domain-specific knowledge and privacy-preserving mechanisms to balance data fidelity with compliance and
ethical considerations. The final step, fuzzy press DataTrust Validator (FPDTV), evaluates the synthetic
datasets using advanced statistical, domain-specific, and ethical metrics to ensure their reliability, usability,
and adherence to healthcare standards.

This framework not only addresses the pressing challenges of data scarcity and privacy in healthcare Al but
also sets a benchmark for generating synthetic data that aligns with real-world applications. By bridging gaps
in data availability and reducing biases, the proposed methods enable the development of Al models that are
more inclusive, accurate, and impactful. The integration of this framework into healthcare workflows has the
potential to accelerate Al innovation, democratize access to healthcare solutions, and improve patient
outcomes globally.

The subsequent sections of this paper provide a detailed exploration of the proposed framework, its
algorithms, and its application to real-world healthcare scenarios. This work contributes to the ongoing efforts
to make healthcare Al systems more ethical, efficient, and effective.

The paper is organized into several sections. The Introduction outlines the background, challenges, and
motivation for synthetic data generation in healthcare Al and introduces the proposed framework. The
Related Work section reviews existing methodologies, highlighting limitations in privacy, data quality, and
domain-specific adaptability. The Proposed Framework describes the Methodology that details the
implementation and integration of these components, while the Results and Discussion present experimental
findings, performance comparisons, and implications for healthcare Al. The Conclusion and Future Work
summarize contributions and propose directions for further research.

Il. RELATED WORKS

As shown in earlier research [1]-[7], [16], [7]-[17], the use of synthetic datasets using learning
algorithms has been investigated extensively using different data generators. Synthetic data has also been
shown to be beneficial in machine learning [5, 6, 18]. In addition, other pioneers have developed data
generating methods using GAN since lan Goodfellow's creation of Generative Adversarial Networks [19]
[20], [21], [22], [23].

The generating and discriminative models are the two pillars of a GAN. The first one tries to make the original
data seem the same by adding noise, while the second one checks how close the created data is to the original
data by comparing their distributions. Problems arise in the classification model due to GAN's inclusion of
the class label as an extra attribute. Fortunately, this problem is addressed by the Conditional GAN (CGAN)
[21], which improves the data quality for the classification model by treating the class labels individually.
Because GAN makes use of deep networks, the system tries to retrieve the training data and enhance it till it
becomes as near as possible to the original. Because of this, any private or sensitive information in the original
data might be exposed. This problem was solved by DPGAN [24], which integrated GAN with differential
privacy (DP). To create differentially private synthetic data, the DPGAN trains the discriminator using data
that has been artificially infected with noise and then uses this data to inform its predictions. By incorporating
the Private Aggregation of Teacher Ensembles (PATE) into the GAN, the PATE-GAN [20] paradigm
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expands upon this concept. In order to train the discriminator, PATE-GAN uses a teacher and student model
to generate a noisy dataset. This approach outperforms DPGAN when it comes to disclosure control.
Differential Privacy (DP) is a tried and true method for protecting the confidentiality of publicly available
datasets. Nevertheless, it impacts the usefulness and equity of artificial datasets as well. Because of this,
studying how DP affects synthetic data is essential, especially in cases where there are gaps between the
dataset's majority and minority classes. The uneven influence of DP on balancing classes in synthetic datasets
has been shown using several kinds of Generative Adversarial Networks (GANSs). To demonstrate the
distinctions, Ganev et al. used PrivBayes, W-GAN, and PATE-GAN to create synthetic data from three
separate datasets. Based on their results, they concluded that PATE-GAN widens the gap between minority
and majority classes, whereas PrivBayes narrows it. Nevertheless, W-GAN yielded contradictory findings.
Synthetic data creation for healthcare datasets utilising GAN employing DP yielded comparable findings and
observations [15].

In order to gauge the integrity of artificial healthcare data, Karan Bhanot et al. dug further into formulating a
strong measure. During data creation, they also insisted that fairness must be included into the dataset. The
unfavourable results of the machine learning models trained on these datasets are believed to be caused by
additive noise, gradient clipping, and DP Stochastic Gradient Descent, all of which introduce bias into the
dataset and thereby affect fairness [11], [12]. A bigger imbalance in the synthetic data set may be produced
by DP, even if the training data set includes a minor difference across the classes [25]. For more accurate
results, it's best to pre-process the dataset using multi-label under-sampling until the minority and majority
numbers are equal [26]. The impact of pre-processing with four distinct SDGs was shown by Blake
Bullwinkel et al. The data generators employed were MST, DP-CTGAN, PATECTGAN, and SN-synth,
which is a component of the Smartnoise-synth package. The research found that generators based on GANs
provide different outcomes. Hyperparameter tweaking was proposed by Blake Bullwinkel et al. When the
privacy budget e was equal to or more than 3.0, PATE-GAN produced better outcomes, whereas DPCTGAN
produced better results when e was less than or equal to 1.0, according to the attempts to benchmark four
distinct differentially private GAN-based SDGs [23]. Neither of the generators is deemed superior in the
conclusion. Options for reducing bias using the privatised likelihood ratio show that the SDGs still have
problems with bias [27]. In [28] the author compares and contrasts five ML algorithms—Logistic Regression,
Support Vector Machines (SVM), Random Forest, Naive Bayes, and Gradient Boosting—used for sentiment
categorisation in social media material. We tested these algorithms' ability to identify positive, negative, and
neutral attitudes in a dataset consisting of one hundred thousand tweets gathered over a span of three months.
Cleaning, normalising, and resolving class imbalance using SMOTE were among the several preprocessing
steps performed on the data. We found that Logistic Regression and SVM performed equally well across all
sentiment classifications, with an overall accuracy of 86.22%. With an accuracy of 82.59%, Random Forest
was right behind, while Gradient Boosting and Naive Bayes also performed well, although at lesser levels
(69.96% and 70.45%, respectively). In [29] the author investigates the potential of combining the distributed
ledger technology of blockchain with the predictive analytics of ML to safeguard monetary transactions.
Academic databases such as IEEE Xplore, Google Scholar, Scopus, Web of Science, DOAJ, and SCimago
were searched for relevant papers to be included in the systematic review. Thirty-three research publications
were culled from such scholarly resources. A total of 137 publications met the inclusion criteria and were
thus included in the research. Research papers addressing the effects of blockchain technology, machine
learning, and their combined effects on monetary safety were hand-picked, organised, and evaluated. This
dual-technology strategy was shown to have both merits and drawbacks using comparative analysis
methodologies. The results show that a strong foundation for transaction security is created by combining
blockchain's transparency and immutability with ML's data-driven fraud detection capabilities. In  [30]
the author explores how artificial intelligence (Al) is changing marketing by looking at its uses, advantages,
ethical concerns, and potential future developments. Better client segmentation, content personalisation, and
campaign optimisation are all possible outcomes of firms using Al technologies like chatbots, natural
language processing, and predictive analytics. The influence of artificial intelligence on digital marketing
automation was investigated by combining secondary data culled from scholarly publications, essays, and
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conference proceedings. After searching databases, a systematic literature review using the PRISMA
approach found 2,850 entries. After removing duplicates and irrelevant research, 1,035 records were
evaluated to determine eligibility according to predetermined criteria. Out of this, 25 high-quality reports and
150 relevant studies were included for deeper analysis. The inclusion of high-quality research was guaranteed
by this rigorous strategy, which minimised biases. According to the research, digital marketing benefits from
Al since it streamlines operations, automates monotonous jobs, and provides customers with hyper-
personalized experiences. Both chatbots and predictive analytics may help businesses better communicate
with customers in real time. Problems with data privacy, bias in algorithms, and the high expenses of adopting
Al do, nevertheless, remain. Businesses may increase their return on investment (ROI), boost client retention
rates, and make data-driven choices by adopting Al. Transparency and algorithm fairness are two examples
of ethical Al practices that are crucial for keeping consumers' confidence.

I1l. PROPOSED WORK

The overall process of the suggested methodology for synthetic data generation was illustrated in this section.
The flowchart demonstrates a robust pipeline for creating, validating, and evaluating synthetic datasets,
ensuring they are both useful and privacy-compliant.

Figure 1 Schematic representation of the suggested methodology
A.Dataset
e«  MIMIC-II (Medical Information Mart for Intensive Care)
o Description: A large, publicly available dataset containing de-identified health data from intensive
care unit (ICU) patients.
o Features: Includes demographics, vital signs, lab tests, medications, and clinical outcomes.
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o Use Case: Ideal for generating synthetic data to model ICU patient outcomes, treatments, or resource
utilization.

o Access: Requires a Data Use Agreement (DUA).

e Link: MIMIC-III Dataset

B.HoloScope Sampling: Ensuring Diversity in Input Data
HoloScope Sampling begins with the transformation of raw input data into a latent feature space where
diversity can be effectively measured. The input dataset

D = {x;,%3, ..., Xy}, X; € R? (1)

consists of N samples, each having d features. To facilitate the evaluation of diversity, a feature extraction
function f, is applied to map the dataset into a latent space of reduced dimensionality. This transformation

is represented mathematically as:
Zp = fd)(xl)!Vl € [11 N] (2)

where z; € RP is the latent representation of the original data point x;, and p < d. The feature extractor f,
parameterized by ¢, could be implemented using neural networks or other machine learning models
optimized to capture meaningful patterns in the data. By transforming the data into a latent space, the
algorithm can better capture intrinsic relationships between samples and assess diversity in a compact and
meaningful representation.

After mapping the data, the next step is to quantify its diversity. This is achieved using clustering algorithms
such as K-means, which divides the latent feature space into K distinct clusters. Each cluster C; contains
points that are similar based on their Euclidean distance in the latent space. Mathematically, the centroid
of the k-th cluster is computed as the mean of all points within that cluster:

e = —Ysec,, % Vk € [1,K], 3)
Nk

where n, = |C,| represents the number of data points in the k-th cluster. The centroid serves as the
representative point of the cluster and is essential for evaluating intra-cluster variance.

The variance within each cluster measures how dispersed the points are around the centroid. This is
mathematically expressed as:

1
0 = = Trecy 12— pll? @

where ||z — u,||? is the squared Euclidean distance between a point z and the centroid u,. The variance
indicates the compactness of a cluster, with smaller variances suggesting tighter clustering and larger
variances indicating more scattered points.

The overall diversity of the dataset is calculated as the average variance across all clusters:
_1gx 2
D= % &k=1 Ok ®)

This diversity index D provides a single numeric measure of how well the data covers the latent space, with
higher values indicating greater diversity and lower values suggesting redundancy or lack of variation in the
dataset.
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To maximize the diversity of the dataset while ensuring that the feature extraction process remains stable and
generalizable, an optimization process is performed. The goal is to maximize the diversity index D while
incorporating a regularization term R(¢) to prevent overfitting. This regularization term is often the L,-norm
of the feature extractor's parameters, expressed as:

2
R@ = |Ifyl” ©)
The overall optimization objective is given by:

m¢;;1xD — AR(¢), (7)

where A is a hyperparameter that controls the trade-off between maximizing diversity and maintaining
regularization.

The optimization is carried out using gradient-based methods, where the parameters ¢ are updated iteratively.
At each step t, the parameters are adjusted according to:

Dr41 = P + NV (D — AR(P)), (8)

where 7 is the learning rate that determines the step size of the update. The gradient V(D — AR(¢)) is

computed using backpropagation, leveraging the differentiability of both the diversity index D and the
regularization term R(¢). Through successive iterations, the algorithm converges to a set of parameters ¢
that maximizes the diversity of the dataset in the latent space while preserving generalization.

By the end of the HoloScope Sampling process, the transformed dataset is diverse, well-representative of
real-world scenarios, and ready for further processing in generative models. This step is crucial for ensuring
the downstream synthetic data generation captures the complexity and variability inherent in the original
data, setting the foundation for effective and ethical Al systems.

C. Generative Mock NeuroForge Networks (GMNFNSs): Synthesizing Data with Privacy and Fidelity
The Generative Mock NeuroForge Networks (GMNFNSs) represent a novel architecture designed to generate
synthetic datasets while addressing critical privacy and fidelity concerns. This is achieved by combining a
Generative Adversarial Network (GAN) framework with additional objectives that ensure the generated data
not only mimics real data but also preserves ethical constraints.

The GMNFN architecture consists of two main components: a generator Gy and a discriminator D,

parameterized by 6 and iy, respectively. The generator takes as input a latent variable z, sampled from a
predefined noise distribution P,, and produces synthetic data X = Gg(z). The discriminator evaluates whether
a given data sample comes from the real data distribution P,.,; or is generated synthetically.

The GAN framework is governed by a minimax objective function:
meinmd:jlx[Eprreal [log Dlp(x)] + E,-p, [log (1 — Dy (Gg (z)))].(9)

Here, the discriminator Dy, (x) attempts to maximize the probability of correctly identifying real samples x ~

P...; While minimizing the probability for synthetic samples £ = Gg4(z). Simultaneously, the generator G4 (2)
seeks to minimize the discriminator's ability to distinguish between real and synthetic data, effectively
“fooling"” Dy,.
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The input z ~ P, where P, is typically a Gaussian or uniform distribution, represents the latent space. The
generator maps this latent space to the data space, producing X = Go(z). The discriminator then outputs a
value y = Dy (x), where y € [0,1] indicates the likelihood that x is real.

To address privacy concerns, GMNFNs introduce a privacy-preserving loss term. This term ensures that the
gradients of the discriminator with respect to real and synthetic data are indistinguishable. The gradient-based
privacy loss is defined as:

Lprivacy 2% §V=1 ||inD1,l)(xi) - insz(Ge(Z))”z (10)

where || - ||5 denotes the squared L,-norm. This formulation enforces that the sensitivity of the discriminator
to small changes in the input is consistent across real and synthetic data, thereby preventing leakage of
sensitive information.

The privacy loss is incorporated into the original GAN loss to create an updated objective:

LGAN = [Ex~Prea1 [log Dl[)(x)] + IIE:Z~PZ [lOg (1 - DI/)(GO (Z)))] + /11Lprivacy ’ (11)
where A, is a hyperparameter that balances the importance of the privacy term relative to the GAN objective.

Fidelity is another critical aspect of synthetic data generation. To ensure that the synthetic data accurately
mimics the real data distribution, GMNFNs include a fidelity loss term. The reconstruction fidelity loss is
defined as:

Liidelity = Ex~p,, [llx = Go(2)II5], (12)

where ||x — Gg(2)||5 measures the squared L,-norm between a real sample x and its synthetic counterpart
X = Gg(2). This loss penalizes discrepancies between the real and synthetic data, encouraging the generator
to produce high-fidelity outputs.

The overall loss function for GMNFNs integrates the GAN objective, the privacy-preserving loss, and the
fidelity loss:

Lemnen = Lean + A2 Lidelity (13)

where A, is a hyperparameter that controls the trade-off between privacy and fidelity objectives. This
combined loss function ensures that the synthetic
data generated by GMNFNs adheres to high standards of realism and ethical considerations.

The training process involves alternating updates to the generator and discriminator using gradient-based
optimization. For the generator, the parameters 6 are updated to minimize Lgynpn, While for the
discriminator, the parameters 1y are updated to maximize the adversarial component of L;,y. By iteratively
optimizing these objectives, the GMNFN converges to a solution where the generator produces synthetic data
that closely resembles the real data distribution, while maintaining privacy and fidelity.

This framework provides a robust and ethical approach to synthetic data generation, addressing key
challenges in healthcare Al systems where realworld data is often scarce and subject to stringent privacy
regulations. The integration of privacy-preserving and fidelity-enhancing mechanisms ensures that the
generated data is both useful and compliant with ethical standards.
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D.Fuzzy Press DataTrust Validator (FPDTV)

The Fuzzy Press DataTrust Validator (FPDTV) is designed as a post-generation evaluation mechanism to
rigorously assess the quality, utility, and reliability of synthetic datasets. This step ensures that synthetic data
can be effectively used for training machine learning models while maintaining compliance with ethical and
privacy standards. The algorithm incorporates advanced techniques, including fuzzy logic and domain-
specific statistical evaluations, to provide a quantitative assessment of the generated data. This assessment is
based on three core metrics: statistical fidelity, utility score, and privacy risk.

Statistical fidelity evaluates how well the synthetic dataset mimics the statistical properties of the real dataset.
Let Xiear and Xgnmeic denote the real and synthetic datasets, respectively. This metric ensures that the

synthetic dataset captures the statistical distribution of features present in the real dataset.

For each statistical feature f, such as mean, variance, or higher-order moments, the fidelity score is calculated
by comparing the feature values in X,.,; and Xynmeic - The deviation is measured using the formula:

Fidelity = %2?:1 ”f(Xreal,i) - f(Xsynthetic,i)”' (14)
where:

e n is the number of features or metrics being compared,
o f(Xrear,i) and f(Xoynmetic ;) @re the feature values of the real and synthetic datasets for the i-th feature,

e || - || represents a distance metric (e.g., absolute or Euclidean distance).

This measure ensures that each feature in the synthetic dataset aligns closely with its counterpart in the real
dataset, providing confidence that the synthetic data replicates real-world patterns without directly revealing
sensitive information.

The utility score evaluates the practical usefulness of the synthetic dataset by assessing its performance in
downstream machine learning tasks. Specifically, it measures whether models trained on synthetic data can
achieve comparable performance to those trained on real data. This metric is critical because synthetic data's
value lies not only in its fidelity to real-world statistics but also in its ability to support machine learning tasks
effectively.

The utility score is defined as:

Accuracy synthetic

Utility = (15)

Accuracy
where:
e Accuracy synthetic represents the performance (e.g., accuracy, F1 score) of a machine learning model

trained on the synthetic dataset and evaluated on a real-world test set,

e Accuracy real represents the performance of the same model trained on the real dataset and evaluated
on the same test set.

This metric ensures that the synthetic data retains the functional properties of the real data, making it suitable
for training robust models. A utility score close to 1 indicates that the synthetic dataset provides similar
predictive capabilities as the real dataset.
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Privacy risk measures the likelihood that synthetic data can be used to reidentify individuals or reveal
sensitive information from the real dataset. Differential privacy principles are employed to quantify this risk.
The key idea is to evaluate how much the inclusion or exclusion of an individual's data in the training process
influences the generated synthetic data.

The privacy risk metric is formulated as:

P(G(2)ES)
P(X;eal €S)

€ = max |log (16)

where:

e ¢ is the differential privacy parameter, representing the privacy guarantee,
e ((z) is the synthetic data generated from a random latent variable z,

e S isasubset of the data space,

e P(G(z) € S) is the probability that the synthetic data falls within subset S,
o P(X., €5)isthe probability that the real data falls within subset S.

A lower value of € indicates a stronger privacy guarantee, as it means the synthetic data is less likely to reveal
sensitive information about individuals in the real dataset.

To provide an overall assessment of the synthetic dataset, the FPDTV algorithm combines these metrics into
a composite trustworthiness score. This score is calculated as a weighted sum of the three metrics:

Trustworthiness = wy - Fidelity + w, - Utility + w3 - (1 — Privacy Risk ), a7

where w,,w,, and ws are weights assigned to each metric based on their importance in the specific
application context.

The composite score provides a holistic evaluation of the synthetic dataset, balancing its statistical accuracy,
practical utility, and adherence to privacy constraints. This ensures that the dataset is not only statistically
valid and functionally useful but also ethically and legally compliant.

IV. PERFORMANCE ANALYSIS
The effectiveness of the suggested methodology was illustrated in this section. The overall experimentation
was carried out under python environment.

Foutnn! (Age)  Fusturel (Bl00d Presswsl  Fosture3 Misesse Presence)  Tager (Dlagnosis Outooene)

Figure 2 Sample input and output
The synthetic data generation framework takes as input a real-world dataset, such as patient records,
containing features like age, blood pressure, disease presence, and diagnosis outcome. These features may
include numeric, binary, and categorical values. For example, the real dataset could have age values around
45-60, blood pressure levels between 110-130, and binary indicators for disease presence and diagnosis
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outcome. The framework processes this data using privacy-preserving techniques, introducing controlled
noise to maintain confidentiality while retaining essential statistical properties. The output is a synthetic
dataset that mirrors the structure and characteristics of the real data. For instance, synthetic ages might range
from 46.2 to 61.8, blood pressure from 112.3 to 129.6, and binary features closely matching the real dataset.
Evaluation metrics indicate the synthetic dataset’s quality: a statistical fidelity score of 0.24 shows a strong
alignment with real data, while a utility score of 0.85 confirms that models trained on synthetic data perform
at 85% of the accuracy of those trained on real data. A negative privacy risk score (e=—1.4\epsilon = -
1.4e=—1.4) highlights robust privacy preservation, ensuring the synthetic data is safe for sharing and analysis
without risking individual re-identification. This output demonstrates the framework’s effectiveness in
generating realistic, privacy-compliant synthetic data suitable for healthcare research and machine learning
applications.

HoloScope Sampling: Pre- vs Post-Sampling Diversity
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Figure 3 Holoscope sampling

The graph visualizes the diversity of features in a dataset before and after the application of the HoloScope
Sampling algorithm. Before sampling, the dataset exhibits an uneven distribution across features, with some
features (e.g., "A") being overrepresented and others (e.g., "C" and "D") being significantly underrepresented.
Such imbalances can lead to biases in Al models, as the underrepresented features are less likely to contribute
effectively during training.

After the application of HoloScope Sampling, the feature distribution becomes uniform, ensuring that all
features are equally represented. This transformation demonstrates the algorithm's ability to capture the full
spectrum of real-world variability, a critical requirement for robust and unbiased machine learning model
development. By achieving this balance, HoloScope Sampling enhances the dataset's ability to generalize
across diverse scenarios, addressing a fundamental challenge in healthcare Al datasets.

Featurel: Distnbution Comparison (Real vs Synthetic)
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Feature?: Distribution Comparisan [Real vs Synthetic)

(b)
Figure 4 Feature distribution analysis
The overlapping histograms for Featurel and Feature2 compare the distribution of these features between
the real and synthetic datasets. Both distributions align closely, demonstrating that the synthetic data
accurately captures the overall shape and spread of the real data. This is evident in the similar peaks and
density curves for both datasets. Minor deviations may result from noise or adjustments made to ensure
privacy preservation.

Statistical Fidelity: Absolute Differences Between Means

Figure 5 Fidelity analysis

The graph titled "Statistical Fidelity: Absolute Differences Between Means" compares the alignment of
synthetic data with real data across various features by illustrating the absolute differences in their mean
values. For Featurel, a moderate difference (~0.25) indicates a relatively close alignment between synthetic
and real data, though improvements are needed, potentially due to noise or privacy-preserving mechanisms
in the generative process. Feature2 shows the highest difference (~0.7), highlighting significant challenges
in capturing its complexity or variability, possibly due to underrepresentation or overrepresentation in the
training data. Conversely, the differences for Feature3 and Target are negligible, indicating excellent
fidelity for these variables. This is particularly important for categorical features and target variables, as
accurate replication ensures synthetic data’s reliability for real-world decision-making scenarios in machine
learning tasks. Overall, the graph underscores variability in the generative model's performance across
features, with some (e.g., Feature3 and Target) demonstrating strong fidelity, while others (e.g., Feature2)
require refinement to better replicate their statistical properties
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Roal Data: Feature Variability (Boxplot)

shurel Featirel Features

Figure 6 Feature variability analysis

The boxplots illustrate the variability of features in the real and synthetic datasets, highlighting key
statistical properties such as median, interquartile range, and potential outliers. The boxplots for both datasets
are strikingly similar across all features, suggesting that the synthetic data captures the variability of the real
data effectively. Any slight differences could be attributed to the intentional privacy-preserving

transformations applied during the generative process.
GMNFNs: Synthetic vs Real Data Distribution

Mean Value

Featurel FeatureZ

Festures

Figure 7 Mean value analysis
The graph compares the mean values of features in the real dataset and the synthetic dataset generated by the
Generative Mock NeuroForge Networks (GMNFNS). The synthetic data closely mirrors the real data in terms
of feature distributions, as seen by the minimal differences in mean values for both "Featurel™ and
"Feature2."
This similarity indicates that the GMNFNs effectively emulate the statistical properties of the real dataset.
The closeness of these distributions is crucial for ensuring that synthetic data can serve as a reliable proxy
for real-world data in training machine learning models. The ability to replicate real-world complexity
without compromising privacy highlights the potential of GMNFNs to overcome privacy and regulatory
barriers associated with real medical datasets.
The slight deviations between real and synthetic distributions could be attributed to noise or the introduction
of privacy-preserving constraints during the synthetic data generation process. These deviations are
intentional to ensure that the synthetic data does not inadvertently expose sensitive patient information.
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Figure 8 Confusion matrix
The correlation matrices compare the relationships between features in the real and synthetic datasets. Both
matrices exhibit similar patterns, indicating that the synthetic data successfully replicates the
interdependencies among features present in the real dataset. For instance, the correlations between Featurel
and Feature2, as well as between Feature2 and Feature3, are preserved in the synthetic data. This is critical

for ensuring that machine learning models trained on synthetic data generalize well to real-world scenarios.
Privacy Risk Assessment
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Figure 9 Privacy risk assessment

The graph titled "Privacy Risk Assessment' evaluates the privacy guarantees provided by the synthetic
data using the differential privacy parameter (e\epsilone). The €\epsilone-value measures the likelihood of re-
identifying individuals or exposing sensitive information when comparing synthetic data to real data. A lower
€\epsilone-value indicates stronger privacy preservation, as it reflects greater divergence between the real and
synthetic data, minimizing the risk of identifying individuals or reconstructing sensitive records. The negative
€\epsilone-value (~—1.4-1.4—1.4) shown in the graph demonstrates that the synthetic data generation process
introduces substantial privacy-preserving noise, ensuring that even with access to the synthetic dataset,
reconstructing real-world data is highly improbable.

This result highlights the robustness of the privacy-preserving mechanisms embedded in the generative
model. For healthcare applications, where patient confidentiality is paramount, such strong privacy
guarantees align with ethical and regulatory requirements, such as GDPR and HIPAA. The low €\epsilone-
value assures that synthetic data can be shared and utilized for research without risking patient confidentiality.
However, while achieving strong privacy guarantees, it is important to balance this with data utility.
Excessive privacy-preserving noise could reduce the synthetic data's fidelity, potentially impacting its utility
for training machine learning models. The framework used here appears to strike a reasonable balance
between privacy and utility, as evidenced by acceptable performance in other metrics like utility scores.

Overall, this low privacy risk score underlines the potential of the proposed synthetic data generation
framework for enabling collaborative healthcare research while maintaining patient privacy. Continued
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refinement of privacy-preserving techniques can further optimize the trade-off between privacy and data
usability.

=3 Utility Evaluation: Accuracy Comparison
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Figure 10 Accuracy analysis

The graph titled **Utility Evaluation: Accuracy Comparison' illustrates the comparative performance of
machine learning models trained on real data versus synthetic data. The blue bar represents the accuracy of
a model trained and evaluated using real-world data, while the green bar corresponds to the accuracy of a
model trained on synthetic data and evaluated on real data. The real data accuracy is slightly higher, indicating
that models trained on actual data have a marginally better understanding of the real-world patterns and
relationships within the dataset. However, the synthetic data accuracy is close, achieving approximately 85%
of the accuracy of the real data, as reflected by a utility score of 0.85.

This result is highly encouraging, as it demonstrates that synthetic data generated by the framework retains
significant functional utility for downstream machine learning tasks. The slight drop in accuracy is expected
due to the privacy-preserving noise introduced during the generation process and potential statistical
deviations between the real and synthetic datasets. Despite this, the high utility score suggests that the
synthetic data can serve as an effective substitute for real data in scenarios where real data cannot be used
due to privacy, regulatory, or availability constraints.

FPDTV: Evaluation Metrics
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Figure 11 FPDTYV efficiency analysis

The graph showecases the evaluation metrics computed using the Fuzzy Press DataTrust Validator
(FPDTV), providing a comprehensive assessment of the synthetic data's quality. The Statistical Fidelity
score, with an approximate value of 0.24 (absolute difference in means), indicates a strong alignment between
the synthetic and real datasets, validating the synthetic data as a close approximation of the real data. The
Utility Score, approximately 0.85, demonstrates that models trained on synthetic data achieve 85% of the
accuracy of those trained on real data, showing that the synthetic dataset remains highly functional for
downstream tasks and serves as a viable alternative when real data is unavailable. Finally, the Privacy Risk
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score (€\epsilone) reveals a negative value, highlighting the robust privacy-preserving mechanisms embedded
in the GMNFNSs. This ensures that the synthetic data diverges sufficiently from the real data to protect patient
confidentiality while still retaining overall utility for practical applications. Together, these metrics confirm
the synthetic data's reliability, functionality, and adherence to privacy standards.
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Here is the bar chart showing a comparison of Train Score, Test Score, and R2 Score across different data
generators. It highlights the performance metrics for Original Data and Synthetic Data under various
conditions.

Figure 12 Score comparison
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Figure 13 Comparison of MSE, MAE, and R”™2 Across Data Generators
Here is the bar chart showing a comparison of Train Score, Test Score, and R2 Score across different data
generators. It highlights the performance metrics for Original Data and Synthetic Data under various
conditions. To prove the efficiency of the suggested mechanism it can be compared with the ordinary
methods(which is a part of our |mplementat|on work),
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Figure 14 Comparatlve analysis
This bar chart compares Train Score, Test Score, and R2 Score across all methods, including the "Ordinary
Methods." It visually highlights how synthetic data and traditional methods perform relative to the original
data.
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ased on the provided data and visualizations, the proposed methods (Original Data and Synthetic Data
approaches) demonstrate superior performance compared to ordinary methods
V. CONCLUSION

The proposed synthetic data generation framework, integrating HoloScope Sampling, Generative Mock
NeuroForge Networks (GMNFNSs), and the Fuzzy Press DataTrust Validator (FPDTV), effectively addresses
critical challenges in healthcare Al, including data scarcity, privacy preservation, and compliance with
regulatory requirements. Through HoloScope Sampling, the framework ensures input data diversity,
providing a foundation for creating synthetic datasets that capture the full spectrum of real-world variability.
The GMNFNSs generate high-fidelity synthetic datasets that closely replicate the statistical properties and
feature relationships of real-world data, as evidenced by the low statistical fidelity score (~0.24) and strong
alignment in feature distributions and correlations. The FPDTV quantitatively evaluates the synthetic data’s
quality, demonstrating its utility with a utility score of 0.85 and confirming robust privacy preservation with
a negative privacy risk score (e=—1.4\epsilon = -1.4e=—1.4).

These results validate the synthetic data's reliability for downstream machine learning tasks, enabling high-
performance predictive models while safeguarding sensitive patient information. The framework is
particularly relevant for healthcare research, where the secure sharing of data across institutions is critical for
advancing medical Al. Additionally, the framework provides a scalable solution for generating synthetic
datasets in compliance with ethical and regulatory standards such as GDPR and HIPAA.

Future work may focus on further refining the generative models to handle complex, high-dimensional
datasets and improving fidelity for features with significant variability. Additionally, exploring domain-
specific optimizations for different medical use cases can enhance the framework's versatility. Overall, this
study demonstrates the viability of synthetic data as a robust alternative to real-world datasets, paving the
way for privacy-preserving Al advancements in healthcare.
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