
JOURNAL OF INTERNATIONAL CRISIS AND RISK COMMUNICATION RESEARCH
ISSN: 2576-0017
2024, VOL 7, NO S12

1167

Scalable Distributed Computing for Large-Scale
SVM: A Symmetric ADMM Approach

Vijayakumar H. Bhajantri1, Shashikumar G. Totad2,3, Geeta R. Bharamagoudar4

1. School of Computer Science & Engineering, KLE Technological University, Hubballi, India.
2. School of Computer Science & Engineering, KLE Technological University, Hubballi, India.
3. Department of Computer Science & Engineering, TKIET, Warananagar, India.
4. Department of Computer Science & Engineering, KLE Institute of Technology, Hubballi, India.

Abstract
Recently, AI and machine learning are getting popular for solving various domain problems in real-time with
more accuracy. The Support Vector Machine (SVM) is a popular classification algorithm and is known for its
generalization properties in machine learning. In this paper, we propose Symmetric ADMM-based SVM
algorithms for big data and demonstrate the efficiency enhancement of the algorithm for large-scale problems
including scalability, training time, accuracy, convergence etc. The major contribution in this paper is
distributed optimization of the SVM algorithm through the Alternate Direction Method of Multipliers (ADMM).
The original problem is decomposed into sub-problems and each sub-problem handled by computational nodes
in the cluster. Each computational node solves its sub-problem independently and solution of the sub-problem
coordinated using global variable update. The local solution and global variable are iteratively updated until
convergence. The implementation result of Symmetric ADMM based SVM model shows reduced training time
and better scalability without compromising the accuracy for various real-world big data classification
problems. Hence,Symmetric ADMM based SVM model 3x faster than the conventional parallel distributed
algorithm.
Keywords: Machine Learning, Big Data, ADMM, Symmetric ADMM, Support Vector Machine, Classification,
Parallel and distributed computing.

1. Introduction

Machine learning indeed offers powerful tools to address various challenges and solve complex problems in

today's world. Here are some ways in which machine learning is being applied to solve real-world problems:

Healthcare, Finance, Transportation, E-Commerce and Retail, Environmental Conservation, Cyber security, and

Education, etc. These are just a few examples of how machine learning is being applied across various industries

to tackle some of the most pressing challenges faced by society today. As machine learning continues to

advance, its potential to drive innovation and positive change in the world is only expected to

grow.Classification algorithms are a fundamental component of machine learning, used to categorize data into

distinct classes or categories based on input features.Classification algorithms are categorized into two types:
Binary Classification and Multiclass Classification. The common classification algorithms are: Logistic

Regression, Decision Tree, Random Forest, Support Vector Machine, K-Nearest Neighbors, and Naïve Bayes.In

the contemporary landscape of the global economy and the pervasive influence of the World Wide Web [11],

the efficient management of large-scale, evolving, and distributed datasets is facilitated by advanced incremental

data mining techniques, which play a pivotal role in uncovering frequent patterns essential for knowledge

discovery processes, including the extraction of association rules and correlations [17].

The support vector machine (SVM) (Vapnik, 2013)[30] is a popular supervised machine learning algorithm that

has been applied to a wide range of research fields, including medical imaging (Codella et al., 2015),

bioinformatics (Bao, Hua, Yuan, & Huang, 2017; Huang & Du, 2008; Liu, Qian, Dai, & Zhang, 2013a; Zheng

& Lu, 2011), speech processing (Han, Park, & Lee, 2016; Trabelsi&Ellouze, 2016), facial recognition (Li &

Huang, 2008), handwriting recognition (Mustafa & Prof, 2015), and radar image recognition (Huang, 1999).The
volume of data that needs to be processed in the actual world has skyrocketed. Since data are usually obtained in

a variety of dispersed formats, the traditional SVM technique that runs on a single machine fails. As a result,

combining the conventional SVM with more efficient distributed methods is essential (Chang, C. et al., 2011)

[12].

The Alternating Direction Method of Multipliers (ADMM) [1][2][3] is a powerful optimization technique

particularly well-suited for distributed environments. When applied to Support Vector Machines (SVM),

ADMM enables the efficient training of models on large-scale datasets by decomposing the optimization

problem into smaller sub-problems that can be solved independently and in parallel [8][9]. This approach not

only addresses the scalability challenges of SVM but also leverages the computational power of distributed

systems (Mota, J. F. C et al., 2013) [10].

The alternate direction method of multipliers (ADMM) has gained popularity as a solution for a variety of

distributed optimization issues in recent years (Boyd, Parikh, Chu, Peleato, & Eckstein, 2011; Ouyang, He,

Vijayakumar H. Bhajantri, Shashikumar G. Totad, Geeta R. Bharamagoudar

1168

Tran, & Gray, 2013) [32]. The decomposability of dual ascent and the high convergence qualities of the

multipliers approach are combined in the ADMM algorithm.

When local objective functions are assumed to be strongly convex and to have Lipschitz continuous gradients,

recent work (Shi, Ling, Yuan, Wu, & Yin, 2014) [7][32] has demonstrated that the distributed ADMM has a

linear convergence rate. Iutzeler, Bianchi, Ciblat, and Hachem (2016) and Deng and Yin (2016) both reported
the same rates of convergence under various assumptions and offered some equivalency circumstances.When

local objective functions are assumed to be strongly convex and to have Lipschitz continuous gradients, recent

work (Shi, Ling, Yuan, Wu, & Yin, 2014) [13] [16] has demonstrated that the distributed ADMM has a linear

convergence rate. Iutzeler, Bianchi, Ciblat, and Hachem (2016) and Deng and Yin (2016) both reported the

same rates of convergence under various assumptions and offered some equivalency circumstances.The dual

objective value of a modified ADMM is shown to converge at 𝑂(
1

𝑘2) in Goldstein, Donoghue, Setzer, and

Baraniuk (2014), provided that two subproblems are solved exactly and both objective functions are

substantially convex.

The remaining sections of this paper is organized as follows: The section 2 covers the significance of

parallelization of Support Vector Machine, distributed Support Vector Machine and standard ADMM. Section 3

covers the details of the proposed work Symmetric ADMM and distributed SVM and its mathematical model.

Section 4 is the experimental evaluation that includes result discussion and Section 5 is the conclusion of the

proposed work.

2. Literature Review

2.1 Support Vector Machine (SVM)

Support Vector Machine (SVM) is a powerful supervised learning algorithm used for both classification and

regression tasks. It is particularly well-suited for classification problems in which the data is linearly separable

or can be transformed into a higher-dimensional space where it is separable [1] [21]. SVM aims to find the

optimal hyperplane that best separates data points belonging to different classes.

The key concepts of SVM includes: a) Hyperplane: In SVM, a hyperplane is a decision boundary that separates

data points into different classes. For a binary classification problem, the hyperplane is defined as the line that

maximizes the margin between the classes. b) Margin: The margin is the distance between the hyperplane and

the nearest data points from each class. SVM aims to maximize this margin, as it leads to better generalization

and robustness of the model. c) Support Vectors: Support vectors are the data points closest to the hyperplane

and have a non-zero weight in determining the position of the hyperplane. These points are crucial in defining
the decision boundary. d) Kernel Trick: SVM can handle non-linearly separable data by mapping the input

features into a higher-dimensional space using a kernel function. This allows SVM to find a linear decision

boundary in the transformed feature space (Meyer, et al., 2014) [25].

The working principle of SVM as follows: Given a training dataset with input features 𝑋 and corresponding

class labels 𝑦 SVM aims to find the optimal hyperplane w⋅x+b=0 that separates the classes with the maximum

margin. Mathematically, this can be formulated as the following optimization problem:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
1

2
‖𝑾‖2

Subject to𝑦𝑖(𝑊. 𝑋𝑖 + 𝑏) ≥ 1 for all i=1, 2,..., n

Where w is the weight vector, b is the bias term, and (𝑥𝑖 , 𝑦𝑖)are the training samples.

The advantages of SVM is, the algorithm is Effective in high-dimensional spaces, Memory efficient because it

uses only a subset of training points (support vectors) and Versatile due to the various kernel functions available

for handling non-linear data. In the same way the disadvantages of the SVM are, Can be sensitive to the choice

of kernel and its parameters, computationally expensive for large datasets and difficult to interpret the learned

decision function in high-dimensional spaces.

2.2 Parallelization of Support Vector Machine

Parallelization of Support Vector Machine (SVM) algorithms is essential for handling large-scale datasets
efficiently and reducing training time (Bengioet al., 2022 and Zhou, Y.-H., et al.,2019) [26][27]. Here are some

parallelization strategies for SVM: 1) Parallelization of Sub-Problem Solvers: SVM optimization involves

solving a quadratic programming (QP) problem, which can be parallelized by distributing the computation of

sub-problems across multiple processors or nodes [28]. Techniques such as parallel coordinate descent or

parallel decomposition methods can be employed to solve the QP problem in parallel. 2) Data Parallelism: Data

parallelism involves distributing the training data across multiple processing units and performing computations

independently on each subset of data (Zhang, Y et al., 2019) [29]. This approach is suitable for large-scale

datasets that can be partitioned into smaller chunks. Each processor trains a local SVM model on its subset of

data, and the results are combined to update the global model. 3) Model parallelism involves partitioning the

SVM model itself across multiple processing units and performing computations in a distributed manner

(Gadepally, V et al., 2015)[21]. This approach is suitable for large-scale SVM models with a high number of

support vectors. Each processing unit handles a subset of support vectors and performs computations
independently. 4) Batch processing involves processing multiple training examples simultaneously to exploit

Scalable Distributed Computing for Large-Scale SVM: A Symmetric ADMM Approach

1169

parallelism. Techniques such as mini-batch gradient descent or stochastic gradient descent with mini-batches

can be used to parallelize the training process by updating the model parameters using batches of data. 5) GPU

Acceleration: Graphics processing units (GPUs) can be utilized to accelerate SVM training by exploiting their

parallel computing capabilities. GPU-accelerated libraries such as cuSVM and cuML provide optimized

implementations of SVM algorithms that leverage the massive parallelism offered by GPUs (Smith, V., et al.,)
[20]. 6) Distributed computing frameworks such as Apache Spark and Dask can be used to parallelize SVM

training across clusters of machines. These frameworks provide APIs for distributed data processing and

machine learning, allowing SVM models to be trained efficiently on large-scale datasets distributed across

multiple nodes (Zeng, R. et al.,) [33].By employing these parallelization strategies, SVM algorithms can be

scaled to handle large-scale datasets and trained more efficiently on modern computing architectures.

2.3 Parallel Decomposition Method for SVM

Parallel decomposition methods for Support Vector Machine (SVM) training aim to distribute the optimization

problem across multiple processors or nodes, allowing for faster convergence and scalability to large datasets.

Here are some common parallel decomposition methods for SVM: 1) Block Coordinate Descent: Block

coordinate descent decomposes the SVM optimization problem into smaller sub-problems, each corresponding

to a subset of the variables (e.g., features or support vectors). Each processor or node optimizes its subset of

variables while fixing the other variables, and the results are aggregated to update the global solution. 2) Dual
Decomposition: Dual decomposition decomposes the dual form of the SVM optimization problem into smaller

sub-problems, each corresponding to a subset of the training examples or support vectors. Each processor or

node optimizes its subset of the dual variables independently, and the results are combined to update the global

dual solution. 3) Distributed Stochastic Gradient Descent (SGD): Distributed SGD parallelizes the optimization

of the SVM objective function by partitioning the training data across multiple processors or nodes. Each

processor computes the gradient of its subset of data and updates the model parameters independently (Wang, C

et al.,) [16] [34]. The updates are then aggregated to update the global mode. 4) Parallel Sequential Minimal

Optimization (SMO): SMO is an algorithm for training SVMs that decomposes the optimization problem into

smaller sub-problems corresponding to pairs of Lagrange multipliers. Parallel SMO distributes these sub-

problems across multiple processors or nodes, allowing for faster convergence by solving them concurrently. 5)

Distributed Kernel Matrix Computation: For SVMs with non-linear kernels, the computation of the kernel
matrix can be a bottleneck, especially for large datasets. Distributed computing frameworks such as Apache

Spark or Hadoop can be used to parallelize the computation of the kernel matrix across multiple nodes, allowing

for efficient training of non-linear SVM models [14][15]. The distributed architecture of database works as a

Client-Server model and it critically evaluate the inherent challenges of the client-server paradigm in efficiently

mining large-scale distributed databases and elucidate how mobile agent technology mitigates these

complexities within the framework of a globalized business ecosystem [23][31].

These parallel decomposition methods enable the efficient training of SVM models on large-scale datasets by

leveraging the computational resources available in modern parallel and distributed computing environments.

The choice of method depends on factors such as the problem size, dataset characteristics, and available

hardware resources.

2.3ADMM

The Alternating Direction Method of Multipliers (ADMM) is a powerful optimization algorithm commonly
used in machine learning for solving various convex optimization problems [4]. It is particularly well-suited for

problems with separable objective functions or constraints and can efficiently handle large-scale datasets. Here's

an overview of how ADMM works in the context of machine learning: a) Objective Function: The optimization

problem in machine learning typically involves minimizing a convex objective function f(x), where x is the

optimization variable. The objective function may include a data fidelity term and regularization terms to

enforce desired properties of the solution. b) Constraint Formulation: The optimization problem may also

include constraints Ax=b, where A is a matrix of coefficients, and b is a vector of constants. These constraints

may represent equality constraints, inequality constraints, or other structural properties of the problem. c)

ADMM Formulation: ADMM decomposes the optimization problem into smaller sub-problems, each of which

can be solved more efficiently. It introduces auxiliary variables z and dual variables u to reformulate the original

problem into an equivalent form that can be solved using iterative updates. d) Iterative Updates: ADMM
alternates between updating the primal variable x, the auxiliary variable z, and the dual variable u. At each

iteration, the primal variable is updated by minimizing a combination of the objective function and a penalty

term, the auxiliary variable is updated to enforce consistency with the primal variable, and the dual variable is

updated to enforce consistency with the constraints. e) Convergence Criteria: ADMM iterates until convergence

criteria are met, such as reaching a specified tolerance level or achieving a certain level of objective function

improvement[5][6]. Convergence can be monitored by tracking the changes in the primal and dual variables

between iterations [22]. f) Parallelization and Distributed Computing: ADMM can be parallelized and

distributed across multiple computing nodes or processors, making it suitable for large-scale optimization

Vijayakumar H. Bhajantri, Shashikumar G. Totad, Geeta R. Bharamagoudar

1170

problems(Xu, J et al., 2020) [18][19]. Each node or processor can independently solve its subset of the

optimization problem and exchange information with other nodes to achieve consensus on the global solution.

1 𝑓𝑜𝑟 𝑘 = 0, 1, 𝑑𝑜

2 𝑥𝑘+1 = 𝑚𝑖𝑛𝑥∈𝑅𝑑 𝜁𝛽(𝑥, 𝑧𝑘 , 𝜇𝑘) ; // x minimization

3 𝑧𝑘+1 = 𝑚𝑖𝑛𝑥∈𝑅𝑑𝜁𝛽(𝑥𝑘+1, 𝑧, 𝜇𝑘) ; //z minimization

4 𝜇𝑘+1 = 𝜇𝑘 − 𝛽(𝑥𝑘+1 − 𝑧𝑘+1) ; // Multiplier update

5𝑒𝑛𝑑

ADMM Algorithm

All things taken into account, ADMM is a flexible optimization technique that provides effective convergence

and scalability for a variety of convex optimization issues that arise in machine learning applications. Large-

scale optimization tasks with intricate data structures and constraints tend to be particularly well-suited for it

because of its capacity to manage distinct objective functions and constraints.

3. Details of Proposed Work

This study involves the implementation of a Distributed Support Vector Machine (SVM) model to classify data

from the IJCNN dataset. The dataset comprises incremental instances, which makes it computationally
challenging for single-node systems. To address this, we utilized a 2-node cluster architecture that distributed

the workload effectively, leveraging parallel computing to speed up training and testing processes. The chosen

polynomial kernel enabled the model to capture complex, non-linear relationships in the data, while the

hyperparameters were configured with Cand gamma both critical for controlling the model's generalization

capacity and feature mapping.

The polynomial kernel was chosen for this experiment. The polynomial kernel is defined as:

 𝐾(𝑥, 𝑦) = (𝛾 . 𝑥𝑇𝑦 + 𝑟)𝑑

where γ=10, r=0 (default), and d is the degree of the polynomial.

The regularization parameter C was set to 0.1, 1, and 10, controlling the trade-off between maximizing the

margin and minimizing the classification error.

Alternating Direction Method of Multipliers (ADMM) was utilized to solve the optimization problem in a

distributed fashion. ADMM is well-suited for distributed machine learning because it decomposes a complex
optimization problem into smaller sub-problems that can be solved independently on each node. Using ADMM

for Distributed SVM with parallel coordinate descent is a powerful approach for training Support Vector

Machine (SVM) models on large-scale datasets distributed across multiple computing nodes [24][27]. ADMM

is particularly useful for enforcing consensus among the SVM model parameters across computing nodes while

allowing for parallel updates within each node. Here's how the combination of ADMM and parallel coordinate

descent works:

i. Data Partitioning: The training dataset is partitioned across multiple computing nodes or processors.

Each node is responsible for a subset of the training examples.

ii. Initialization: The SVM model parameters, including the Lagrange multipliers and bias term, are

initialized on each node. This can be done randomly or using an initial solution obtained from a warm

start.
iii. Parallel Coordinate Descent: Each computing node independently performs parallel coordinate descent

to optimize its subset of the SVM model parameters. In each iteration, a single parameter is updated

while keeping the others fixed. This update is done using a formula derived from the dual optimization

problem of SVM.

iv. Communication:Periodically, the updated parameters are communicated between computing nodes to

ensure consistency and convergence. Synchronization points may be introduced to exchange

information and update the global solution.

v. Alternating Direction Method of Multipliers:ADMM is used to enforce consensus among the SVM

model parameters across computing nodes. It decomposes the SVM optimization problem into smaller

sub-problems, each corresponding to a subset of the model parameters. ADMM iteratively updates the

Lagrange multipliers and performs consensus updates to achieve a global solution.

vi. Convergence:The optimization process continues until convergence criteria are met, such as reaching a
specified number of iterations or achieving a certain level of accuracy. Convergence is typically

checked by monitoring the changes in the SVM model parameters or the objective function value.

vii. Model Aggregation: Once training is complete, the SVM model parameters from all computing nodes

are aggregated to form the final global SVM model. This may involve averaging the parameters or

using other aggregation techniques.

Using ADMM for Distributed SVM with parallel coordinate descent offers several advantages, including

scalability, convergence guarantees, and robustness to failures or stragglers in the computing nodes. However,

careful tuning of parameters and coordination between the ADMM and parallel coordinate descent steps is

Scalable Distributed Computing for Large-Scale SVM: A Symmetric ADMM Approach

1171

necessary to ensure efficient and effective training on distributed computing environments. Following diagram

depicts the proposed model.

Figure 1.Parallel Distributed SVMs Using Distributed Big Data Architectures

The distributed SVM problem using Symmetric ADMM can be formalized mathematically as follows:

1. Centralized SVM Optimization Problem:

The standard SVM optimization problem (with a kernel function) is: min
𝑤,𝑏

1

2
‖𝑤‖2 +

𝐶 ∑ max (0,1 − 𝑦𝑖(𝑤𝑇𝜙 (𝑥𝑖) + 𝑏)𝑛
𝑖=1)

Where

 𝑤: 𝑊𝑒𝑖𝑔ℎ𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 (𝑚𝑜𝑑𝑒𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)

 𝑏: 𝐵𝑖𝑎𝑠 𝑡𝑒𝑟𝑚

 𝐶: 𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

 𝑥𝑖 ∈ 𝑅𝑑 : 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑉𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑡𝑟𝑎𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒

 𝑦𝑖 ∈ {−1, 1}: 𝐿𝑎𝑏𝑒𝑙 𝑜𝑓 𝑖𝑡ℎ 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒

 𝜙(𝑥𝑖): 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝 𝑖𝑛 𝑡ℎ𝑒 𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑝𝑎𝑐𝑒
The dual formulation for a kernel-based SVM is:

 min
𝛼

1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗) − ∑ 𝛼𝑖

𝑛
𝑖=1

𝑛
𝑗=1

𝑛
𝑖=1

 Where

 𝛼𝑖: 𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑒 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟𝑠

 𝐾(𝑥𝑖 , 𝑥𝑗): 𝐾𝑒𝑟𝑛𝑒𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑒. 𝑔. , 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑘𝑒𝑟𝑛𝑒𝑙)

2. Distributed SVM

To distribute the optimization task across N nodes, the global dataset is partitioned into subsets{𝑋1, 𝑋2, … , 𝑋𝑁 },

one of each node. Each subset is locally processed, and updates are shared symmetrically.

The distribution SVM optimization problem is:

min
{𝑤𝑖,𝑏𝑖}

1

𝑁
∑(

1

2
‖𝑤𝑖‖

2

𝑁

𝑖=1

+ 𝐶 ∑ max (0,1 − 𝑦𝑗(𝑤𝑖
𝑇𝜙(𝑥𝑗) + 𝑏𝑖

𝑛𝑖

𝑗=1

)))

Where

 𝑤𝑖 , 𝑏𝑖: 𝐿𝑜𝑐𝑎𝑙 𝑆𝑉𝑀 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑓𝑜𝑟 𝑛𝑜𝑑𝑒 𝑖,
 𝑛𝑖: 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑎𝑡 𝑛𝑜𝑑𝑒 𝑖.

A consensus constraint is added to ensure that the global solution is consistent across nodes:

 𝑤𝑖 = 𝑧, 𝑏𝑖 = 𝑧𝑏∀𝑖∈ {1,2, … . 𝑁}

𝐻𝑒𝑟𝑒, 𝑧𝑎𝑛𝑑𝑧𝑏are the global consensus variables for the weight vector and bias term.
3. Symmetric ADMM

Using Symmetric ADMM, the optimization problem is augmented with Lagrange multipliers and a

penalty term. The augmented Lagrangian is:

𝐿(𝑤𝑖 , 𝑏𝑖 , 𝑧, 𝑧𝑏 , 𝑢𝑖 , 𝑢𝑏𝑖
)

=
1

𝑁
∑(

1

2
‖𝑤𝑖‖

2 + 𝐶 ∑ max (0,1 − 𝑦𝑖(𝑤𝑖
𝑇

𝑛𝑖

𝑗=1

𝜙(𝑥𝑗) + 𝑏𝑖)))

𝑁

𝑖=1

+
𝜌

2
∑(‖𝑤𝑖 − 𝑧 + 𝑢𝑖‖

2 + (𝑏𝑖 − 𝑧𝑏 + 𝑢𝑏𝑖
)2

𝑁

𝑖=1

)

Where

 𝑢𝑖 , 𝑢𝑏𝑖
: 𝐷𝑢𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 (𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟𝑠)𝑓𝑜𝑟 𝑛𝑜𝑑𝑒 𝑖.

 𝜌: 𝐴𝐷𝑀𝑀 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟.

Vijayakumar H. Bhajantri, Shashikumar G. Totad, Geeta R. Bharamagoudar

1172

4. Symmetric ADMM Iterative Updates

The optimization proceeds iteratively with the following steps:

Step 1  Local variable update (Primal Update)

Each node 𝑖 solves its local optimization problem:

𝑤𝑖
𝑘+1 = arg min

𝑤𝑖

1

2
‖𝑤𝑖‖

2 + 𝐶 ∑ max (0,1 − 𝑦𝑗(𝑤𝑖
𝑇𝜙(𝑥𝑗) + 𝑏𝑖))

𝑛𝑖

𝑗=1

+
𝜌

2
‖𝑤𝑖 − 𝑧𝑘 + 𝑢𝑖

𝑘‖
2

𝑏𝑖
𝑘+1 = arg min

𝑏𝑖

𝜌

2
(𝑏𝑖 − 𝑧𝑏

𝑘 + 𝑢𝑏𝑖

𝑘)2

These updates are performed locally using each node's data.

Step 2 Global Consensus Update

The global variables 𝑧and 𝑧𝑏 are updated symmetrically as the average of the local variables:

𝑧𝑘+1 =
1

𝑁
∑(𝑤𝑖

𝑘+1 + 𝑢𝑖
𝑘)

𝑁

𝑖=1

𝑧𝑏
𝑘+1 =

1

𝑁
∑(𝑏𝑖

𝑘+1 + 𝑢𝑏𝑖

𝑘)

𝑁

𝑖=1

Step 3Dual Variable Update

Each node updates its dual variables to reflect the discrepancy between local and global variables:

𝑢𝑖
𝑘+1 = 𝑢𝑖

𝑘 + 𝑤𝑖
𝑘+1 − 𝑧𝑘+1

𝑢𝑏𝑖

𝑘+1 = 𝑢𝑏𝑖

𝑘 + 𝑏𝑖
𝑘+1 − 𝑧𝑏

𝑘+1

5. Convergence Criteria

The algorithm iterates until the primal and dual residuals are below a predefined threshold:

 Primal Residual: ‖𝑤𝑖
𝑘+1 − 𝑧𝑘+1‖ + |𝑏𝑖

𝑘+1 − 𝑧𝑏
𝑘+1|

 Dual Residual: 𝜌‖𝑧𝑘+1 − 𝑧𝑘‖ + 𝜌|𝑧𝑏
𝑘+1 − 𝑧𝑏

𝑘|

4. Results

In this experiment, we employed a 2-node cluster architecture to train and test a distributed Support Vector

Machine (SVM) model using the IJCNN dataset. The dataset contains 69,986,139972 and 279944

incremental instances, and is well-suited for binary classification tasks. We adopted the polynomial kernel

for the SVM model to capture non-linear patterns in the data, with hyperparameters C set to 0.1, 1 and 10

(regularization parameter) and gamma set to 0.1, 1 and 10 (kernel coefficient). Each instance in the dataset

is represented as a feature vector, making it suitable for kernel-based methods like SVMs to capture

complex relationships in the data.

To distribute the computational load efficiently across the cluster, we used the Alternating Direction

Method of Multipliers (ADMM) as the optimization strategy. The ADMM algorithm facilitated the

decomposition of the global optimization problem into smaller sub-problems, which were solved locally on

each node. We set the ADMM parameter ρto 1, ensuring a balanced penalty term during the optimization

process.

Dataset Distribution:

The IJCNN dataset was split evenly between the two nodes to achieve computational parity. Each node

processed its subset of data locally while maintaining communication with the other node for global

consensus.The IJCNN dataset is a standard benchmark in machine learning and data mining competitions. It

is characterized by its large-scale nature, making it an ideal candidate for distributed SVM training. The
dataset's properties and kernel configuration used in this experiment are:

IJCNN Dataset Information

 Name: IJCNN Dataset (International Joint Conference on Neural Networks)

 Dataset Size: 2239552 instances.

 Features: Typically includes 22 features per instance.

 Task: Binary classification.

 Kernel Used: Polynomial Kernel (γ=10).

Scalable Distributed Computing for Large-Scale SVM: A Symmetric ADMM Approach

1173

 Penalty Parameter (ρ): 1.

 Convergence Tolerance: 10−3

 Distributed Setup: Two-node cluster (each node handles 1,119,776 instances).

Training and Testing:

Each node trained a local SVM model with the polynomial kernel. ADMM was used to coordinate the

parameter updates between the nodes, ensuring convergence to a globally optimal solution.After training,
the combined model was evaluated on a separate test set from the IJCNN dataset. Performance metrics such

as accuracy and runtime were recorded to assess the efficiency of the distributed system.

Results:

The distributed setup significantly reduced the overall training time. By dividing the dataset and using

parallel computation, the 2-node cluster achieved faster convergence compared to a centralized single-node

approach.

Figure 2. Training Time of ADMM-SVM for Incremental Dataset

While this experiment used two nodes, the ADMM framework is inherently scalable and can extend to

clusters with more nodes, allowing the model to handle even larger datasets efficiently.The distributed

SVM model achieved competitive accuracy, demonstrating the effectiveness of the polynomial kernel in

capturing complex patterns within the dataset. The hyperparameter values (C=0.1, 1 and 10, gamma=0.1, 1,

and 10) and the ADMM configuration (ρ=1) proved optimal for this task.With different combination of

SVM hyperparameter values the optimal hyperparameters are[𝐶 = 0.1, 𝛾 = 10], [𝐶 = 1, 𝛾 = 10]𝑎𝑛𝑑 [𝑐 =
10, 𝛾 = 10] considering the training time as shown in Fig 2. In the 2 node cluster, the dataset size i.e.

number of instances increased in the power of 2, the observation depicts there is not much change in time

for the above listed optimal hyperparameters.

The distributed SVM achieved a classification accuracy of approximately 95% on the test set as shown in
Fig 3. This high accuracy indicates that the polynomial kernel effectively captured the underlying patterns

in the IJCNN dataset.The choice of hyperparameters[𝐶 = 0.1, 𝛾 = 10], [𝐶 = 1, 𝛾 = 10]𝑎𝑛𝑑[𝑐 = 10, 𝛾 =
10]played a critical role in ensuring a well-regularized model that balanced bias and variance.

Despite the dataset being split across two nodes, the distributed approach did not compromise accuracy.

This demonstrates that the ADMM-based optimization successfully coordinated between the nodes to

achieve a global solution equivalent to centralized training.

Fig 3. Training Accuracy of ADMM-SVM for Incremental Dataset

Vijayakumar H. Bhajantri, Shashikumar G. Totad, Geeta R. Bharamagoudar

1174

The IJCNN dataset (2, 79,944 instances) was divided into training and testing subsets, with 80% (2, 23,955

instances) used for training and 20% (55,988 instances) reserved for testing. The Fig 4.depicts the algorithm

ensures the test data remains unseen during training, allowing for an unbiased evaluation.The distributed SVM

model achieved an accuracy of approximately 95% on the test set.This indicates that the model was effective in
generalizing the patterns learned during training to unseen data. The testing accuracy of the distributed SVM

was comparable to centralized SVM implementations, demonstrating that the distributed approach did not

compromise model performance.

Fig 4. Testing Accuracy of ADMM-SVM for Incremental Dataset

While accuracy is an essential metric, additional metrics were evaluated to gain deeper insights:

 Precision: Assessed the proportion of true positive predictions among all positive predictions.

 Recall: Measured the model's ability to identify all positive instances.

 F1-Score: Balanced precision and recall to provide a single performance measure.

 ROC-AUC: Analyzed the trade-off between true positive rate and false positive rate.

The convergence of the ADMM algorithm was monitored through: Primal Residual: The difference between

local and global parameters across nodes. Dual Residual: The change in the global parameters during successive

iterations.Convergence was declared when both residuals fell below a predefined tolerance threshold (e.g,10−4).
 Fast Initial Convergence: In the early iterations, ADMM quickly reduced both residuals due to the

balanced 𝜌 = 1, ensuring steady updates.

 Stable Final Convergence: After approximately 40 iterations, the algorithm reached a stable solution where

residuals no longer decreased significantly.

The penalty parameter controls the balance between convergence speed and stability during the optimization

process. Hence ρ=1 was chosen for ADMM, as shown in Figure 5, number of iterations 1 for the SVM optimal

hyperparameters [𝐶 = 0.1, 𝛾 = 10], [𝐶 = 1, 𝛾 = 10]𝑎𝑛𝑑 [𝑐 = 10, 𝛾 = 10].

Fig 5. ADMM-SVM Convergence after Number of Iterations

Scalable Distributed Computing for Large-Scale SVM: A Symmetric ADMM Approach

1175

Factors Affecting Convergence:

 Penalty Parameter (ρ):

 The 𝜌 = 1 provided a good balance between convergence speed and stability. Higher

values (𝜌 > 1) can lead to faster convergence but risk instability, while lower values (𝜌 < 1)
slow down convergence.

 Data Distribution:

 Even splitting of the dataset between the nodes helped maintain symmetry in computations,

which positively impacted convergence.

The distributed setup achieved convergence in approximately 25% less time compared to centralized training,

making it more suitable for large-scale problems.

 Efficiency: The distributed training approach significantly reduced computation time compared to

centralized traini.ng. This efficiency was achieved by parallelizing the workload across two nodes

 Scalability: The experiment validated the scalability of the distributed SVM approach. While tested on

a 2-node cluster, the method can be extended to clusters with more nodes for handling larger datasets.

 Accuracy and Performance: The SVM model achieved high classification accuracy, demonstrating the
effectiveness of the polynomial kernel in capturing non-linear relationships.The use of γ=10 and C=10

proved optimal for this dataset, balancing overfitting and underfitting.

This experiment highlights the viability of distributed SVM training using the IJCNN dataset on a 2-node

cluster. The polynomial kernel combined with the Symmetric ADMM optimization approach demonstrated

robust performance. These findings underscore the potential of distributed machine learning techniques for

efficiently handling large-scale datasets while maintaining high accuracy.

Iterations Primal Residual 𝒓𝒌 Dual Residual 𝒔𝒌 Objective Value Testing Accuracy (%)

24 0.320 0.250 0.50 74.5

34 0.110 0.090 0.18 90.2

40 0.010 0.006 0.14 90.3

1 0.001 0.001 0.12 94.5

Table 1. Observations of the Convergence after Number of Iterations and Accuracy

The Table 1, depicts convergence is achieved within 40 iterations for different SVM hyper-parameters and it is

also achieved in 1 iteration with optimal SVM hyper-parameters, with primal and dual residuals falling below

the predefined threshold10−3. The objective value stabilizes at 0.12, and testing accuracy reaches 94.5%.

(a) (c)

(b) (d)

Figure 6. Symmetric ADMM-SVM for the incremental dataset (a) Training Time and (c) Training Accuracy for

and (b) is Testing Accuracy and (d) Convergence after number of iterations.

Vijayakumar H. Bhajantri, Shashikumar G. Totad, Geeta R. Bharamagoudar

1176

The Figure 6 depicts the performance of Symmetric ADMM for the incremental dataset by varying the C and

gamma value from [0.1, 1, and 10] with penalty parameter rho =1.

(a) (c)

(b) (d)

Figure 7. Symmetric ADMM-SVM with Optimal SVM Hyper-parameters (a) Training Time and (c) Training

Accuracy and (b) Convergence after number of iterations (d) Testing accuracy for the 2239552 Instances.

Observing the optimal hyper-parameters we tested the algorithm for only optimal hyper-parameters [c and

gamma] for the incremental dataset, the output is shown in the Figure 7. (a), (b), (c), (d), training and testing

accuracy, training time and convergence after N iterations.
Advantages of Symmetric ADMM

 Decentralized Architecture:Each node contributes equally, and no central coordinator is required.

 Scalability:The algorithm scales well with an increasing number of nodes.

 Efficient Communication:Symmetric updates reduce communication overhead compared to standard

ADMM.

 Convergence:Convergence is guaranteed under mild convexity assumptions, making it robust for

distributed SVM.

5. Conclusion

The exploration of distributed Support Vector Machines (SVMs) using symmetric Alternating Direction Method

of Multipliers (ADMM) for large-scale datasets, such as the IJCNN dataset, demonstrates significant

advancements in scalability, efficiency, and accuracy. Symmetric ADMM enables distributed systems to
achieve convergence efficiently by balancing computational loads across nodes and ensuring robust

communication between them. This approach effectively handles the complexity of non-linear kernels, such as

polynomial kernels, while preserving the accuracy of the classification. The adaptability of symmetric ADMM

to various hyperparameters like ρ (rho), and its ability to optimize dual variables, showcases its superiority over

traditional optimization methods in distributed settings.

Through experiments, it is evident that symmetric ADMM facilitates faster convergence rates without

compromising the testing accuracy, making it a viable solution for real-world applications involving massive

datasets. Furthermore, the framework provides a foundation for future research on incorporating advanced

kernel functions and dynamic parameter tuning to further enhance performance in distributed environments.

Thus, distributed SVM with symmetric ADMM emerges as a robust and scalable framework for tackling

challenges

.

Scalable Distributed Computing for Large-Scale SVM: A Symmetric ADMM Approach

1177

References

[1]. Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distributed optimization and statistical

learning via the alternating direction method of multipliers. Foundations and Trends® in Machine Learning,

3(1), 1-122.

[2]. Huang, S.-A., & Yang, C.-H. (2019). A hardware-efficient ADMM-based SVM training algorithm for edge
computing. arXiv preprint arXiv:1907.09916.

[3]. Das, A., & Bhattacharya, S. (2015). Distributed weighted parameter averaging for SVM training on big

data. arXiv preprint arXiv:1509.09030.

[4]. Shi, Y., & Zhu, B. (2023). An ADMM solver for the MKL-$L_{0/1}$-SVM. arXiv preprint

arXiv:2303.04445.

[5]. Wen, J. (2023). Efficient computing algorithm for high dimensional sparse support vector machine. arXiv

preprint arXiv:2312.15590.

[6]. Tavara, S., &Schliep, A. (2021). Effects of network topology on the performance of consensus and

distributed learning of SVMs using ADMM. PeerJ Computer Science, 7, e397.

[7]. Symmetric ADMM-based federated learning with a relaxed step. (2023). Mathematics, 12(17), 2661.

[8]. Distributed support vector machine in master–slave mode. (2018). ResearchGate. Available at:

https://www.researchgate.net/publication/323207581_Distributed_support_vector_machine_in_master-
slave_mode.

[9]. Distributed training of structured SVM. (2015). ResearchGate. Available at:

https://www.researchgate.net/publication/277959141_Distributed_Training_of_Structured_SVM.

[10]. Mota, J. F. C., Xavier, J. M. F., Aguiar, P. M. Q., &Püschel, M. (2013). D-ADMM: A communication-

efficient distributed algorithm for separable optimization. IEEE Transactions on Signal Processing, 61(10),

2718-272

[11]. Geeta, R. B., Totad, S. G., Reddy, P., &Shobha, R. B. (2015). Big data structure and usage mining

coalition. International Journal of Services Technology and Management, 21(4/5), 6.

[12]. Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on

Intelligent Systems and Technology (TIST), 2(3), 1-27.

[13]. Chen, Y., Yang, X., & Zhao, Z. (2019). Distributed SVM based on ADMM for classification. Journal of
Parallel and Distributed Computing, 129, 119-126.

[14]. Forero, P. A., Cano, A., &Giannakis, G. B. (2010). Consensus-based distributed support vector machines.

The Journal of Machine Learning Research, 11, 1663-1707.

[15]. Zheng, S., Kwok, J. T., & Zhang, B. (2007). Fast and scalable algorithms for kernel support vector

machines. Proceedings of the 21st International Conference on Neural Information Processing Systems, 617-

624.

[16]. Wang, C., & Wang, S. (2017). Distributed support vector machines for big data. International Journal of

Machine Learning and Cybernetics, 8(1), 101-110.

[17]. Totad, S.G., Geeta, R.B. & Prasad Reddy, P.V.G.D. Batch incremental processing for FP-tree construction

using FP-Growth algorithm. KnowlInfSyst 33, 475–490 (2012). https://doi.org/10.1007/s10115-012-0514-9.

[18]. Xu, J., & Yang, W. (2020). A parallel ADMM algorithm for distributed SVM training with guaranteed

convergence. IEEE Transactions on Knowledge and Data Engineering, 32(9), 1737-1750.
[19]. Peng, Z., Zhang, Y., & Zhang, L. (2016). An efficient ADMM algorithm for large-scale sparse SVM.

Pattern Recognition Letters, 83, 74-80.

[20]. Smith, V., Chiang, C. K., Sanjabi, M., & Talwalkar, A. (2017). Federated multi-task learning. Advances in

Neural Information Processing Systems, 30, 4427-4437.

[21]. Gadepally, V., Kepner, J., &Samsi, S. (2015). Parallel algorithms for support vector machines. 2015 IEEE

High Performance Extreme Computing Conference (HPEC), 1-6.

[22]. Liu, H., Wang, Y., & Li, W. (2018). Asynchronous distributed support vector machines via ADMM. IEEE

Access, 6, 23940-23948.

[23]. Shashikumar G. Totad, Geeta R. B. , Chennupati R Prasanna , N Krishna Santhosh , PVGD Prasad Reddy,

“ Scaling Data Mining Algorithms to Large and Distributed Datasets”, International Journal of Database

Management Systems (IJDMS), Vol.2, No.4, November 2010.
[24]. João F. C. Mota, João M. F. Xavier, Pedro M. Q. Aguiar, Markus Püschel (2013). D-ADMM: A

Communication-Efficient Distributed Algorithm For Separable Optimization, IEEE Transactions on Signal

Processing, 61(10), 2718-2723.

[25]. Meyer, O., Bischl, B., &Weihs, C. (2014). Support vector machines on large data sets: Simple parallel

approaches. In Data Analysis, Machine Learning and Knowledge Discovery (pp. 87–95). Springer.

[26]. Zhou, Y.-H., & Zhou, Z.-H. (2019). Parallel computing of support vector machines: A survey. ACM

Computing Surveys, 51(6), 1–38.

[27]. Bengio, S., &Bengio, Y. (2002). A parallel mixture of SVMs for very large scale problems. Neural

Computation, 14(5), 1105–1114.

https://www.researchgate.net/publication/323207581_Distributed_support_vector_machine_in_master-slave_mode
https://www.researchgate.net/publication/323207581_Distributed_support_vector_machine_in_master-slave_mode
https://www.researchgate.net/publication/277959141_Distributed_Training_of_Structured_SVM

Vijayakumar H. Bhajantri, Shashikumar G. Totad, Geeta R. Bharamagoudar

1178

[28]. Zanni, L., Serafini, T., &Zanghirati, G. (2006). Parallel software for training large scale support vector

machines on multiprocessor systems. Journal of Machine Learning Research, 7, 1467–1492.

[29]. Zhang, Y., & Lin, X. (2019). Reduction of Training Data Using Parallel Hyperplane for Support Vector

Machine. Applied Artificial Intelligence, 33(7), 601–617.

[30]. Vladimir Vapnik. 2013. The Nature of Statistical Learning Theory. Springer Science & Business Media.
314 pages.

[31]. Joshi, Y., Totad, S.G., Geeta, R.B., Prasad Reddy, P.V.G.D. (2018). “Mobile Agent-Based Frequent

Pattern Mining for Distributed Databases.” In: Bhalla, S., Bhateja, V., Chandavale, A., Hiwale, A., Satapathy,

S. (eds) Intelligent Computing and Information and Communication. Advances in Intelligent Systems and

Computing, vol 673. Springer, Singapore. https://doi.org/10.1007/978-981-10-7245-1_9.

[32]. Yang, Y., Guan, X., Jia, Q.-S., Yu, L., Xu, B., &Spanos, C. J. (2022). A survey of ADMM variants for

distributed optimization: Problems, algorithms and features. arXiv preprint arXiv:2208.03700.

[33]. Zeng, R., Zhuang, S., & Li, X. (2020). Distributed support vector machine training for large-scale data

using dynamic ADMM. Journal of Computational Science, 41, 101083.

[34].Huang, F., & Lin, C.-J. (2012). Linear and kernel classification: When to use which? Proceedings of the

25th Annual Conference on Neural Information Processing Systems, 3196-3204.

https://doi.org/10.1007/978-981-10-7245-1_9

	Vijayakumar H. Bhajantri1, Shashikumar G. Totad2,3, Geeta R. Bharamagoudar4

