Recent Technologies and Updates in Cardiac Imaging

Abdulelah Alonazi¹, Rasha Alghamdi¹, Shaykhah Almutlaq¹, Maryam Bukhamseen¹, Nada Alshayeb¹, Amin Alamri¹, Abdullah Alshumaymiri²

- 1. Echocardigraphy sonographer, National Guard hospital, Riyadh, Saudi Arabia
- 2. Echocardigraphy sonographer, Prince sultan cardiac center, Riyadh, Saudi Arabia

ABSTRACT

Cardiovascular disease remains a leading cause of premature mortality and disability globally, necessitating early and effective diagnostic imaging strategies to enhance population health and quality of life. This study explores the utilization of various cardiovascular imaging modalities-including echocardiography, nuclear imaging, computed tomography (CT), magnetic resonance imaging (MRI), and invasive catheterization-as preventative measures to identify cardiovascular issues before they escalate. Each imaging technique offers unique advantages, from the noninvasive, high-resolution capabilities of echocardiography to the detailed anatomical insights provided by cardiac MRI and the real-time analysis possible with catheterization. However, the limitations and associated risks, such as exposure to radiation and contrast-induced nephropathy, must be carefully considered. Furthermore, the integration of artificial intelligence (AI), machine learning (ML), and deep learning (DL) into cardiovascular imaging is emerging as a transformative frontier, enabling enhanced prognostication and diagnostic accuracy. This article underscores the importance of adopting multimodal imaging approaches, emphasizing the need for ongoing research to improve imaging protocols and the application of AI technologies to optimize patient outcomes and streamline clinical decision-making in cardiovascular care.

KEYWORDS: cardiac imaging technologies, MRI, CT, multimodal, machine learning, artificial technology, CXR, echocardiography.

Introduction

Cardiovascular disease is a substantial factor in premature death and disability worldwide. Diagnostic imaging may positively influence overall population health, morbidity, and quality of life through early and effective means. The goal is to utilize cardiovascular imaging as a preventative measure rather than a reactive strategy to reduce cardiovascular issues by catching concerns early. However, the strengths and limitations and the array of imaging options may be an obstacle for the clinician. From the earliest development, standard imaging techniques are as follows: echocardiogram via ultrasound, x-ray, computed tomography (CT), nuclear scans, magnetic resonance imaging (MRI), and catheterization [1].

Echocardiography employs high-frequency sound waves, essentially ultrasound, to penetrate the body and reflect off relevant structures to create an image. Transducers produce sound waves that are captured by a receiver at a rate of up to one hundred frames per second, enabling the generation of real-time moving images. Within these images, fluids or blood appear black, reflective surfaces like calcified structures show up as white, while muscle tissue is depicted in gray. Transthoracic echocardiography combines multiple images obtained from different scanning locations on the chest wall. A specific type of transthoracic echocardiography, called transesophageal echocardiography, involves placing the transducer on an endoscope inserted into the esophagus [2], which enhances the visualization of cardiac structures with reduced interference from the chest wall, muscles, and ribs. This method requires less penetration, enhancing image quality and spatial resolution of various cardiac components. Transesophageal echocardiography necessitates topical anesthetics for the oropharynx and patient sedation, typically conducted under conscious sedation. Consent is mandatory, and patients require continuous monitoring during and after the procedure throughout the recovery period. Beyond imaging, echocardiography can also evaluate the velocity of blood flow through the heart and vessels using its Doppler functionality. Pressure variations between chambers and valves can be assessed through this velocity measurement. Doppler imaging not only helps in visualizing blood flow but also identifies turbulent areas of accelerated flow [3]. This capability can assist in diagnosing valvular insufficiency. Stress echocardiography, whether through exercise or pharmacological means, is commonly utilized to assess cardiac function under physical stress. A more recent advancement, three-dimensional echocardiography, captures three-dimensional datasets for analysis, allowing for the specific assessment of chamber volumes, valvular abnormalities, and other structural pathologies. Additionally, strain rate imaging is a technique for evaluating the regional or global deformation of the heart muscle to monitor changes in shape and dimensions throughout the cardiac cycle [4].

Nuclear imaging entails the injection of intravenous radioactive tracers that become trapped within the myocytes after navigating through the surrounding vasculature of the myocardium. Different tracers are employed based on their half-life and the specific diagnostic needs of the study. These radioactive tracers emit rays that specialized scanners can detect, converting them into images that depict heart perfusion. Similarly to echocardiography, nuclear imaging can be performed during stress (either through exercise or pharmacological means) to evaluate for signs of ischemia [5].

Cardiac computed tomography employs multiple x-ray beams from a computed tomography (CT) scanner positioned at various angles to generate cross-sectional images. As the x-ray beams traverse the body, they are captured by a detector array that produces an image. The resulting gray scale is influenced by the beam's trajectory through tissues of differing densities, with bone appearing white, air black, and blood and muscle depicted in varying shades of gray. To enhance the distinction between cardiac chambers and vascular structures, contrast agents are frequently utilized. These images can also be manipulated to create a three-dimensional representation of the heart. CT coronary angiography specifically employs contrast

Abdulelah Alonazi, Rasha alghamdi, Shaykhah Almutlaq, Maryam Bukhamseen, Nada Alshayeb, Amin Alamri, Abdullah Alshumaymiri

dye to generate a three-dimensional depiction of the heart's vascular system, eliminating the necessity for invasive coronary catheterization [6].

Cardiac magnetic resonance imaging utilizes the protons found in hydrogen molecules to form images. Given that the human body consists largely of water, hydrogen molecules are abundant. An MRI machine generates a magnetic field that alters the spin of the protons. The frequencies of these spins vary based on their environment. These frequencies are then detected and used to reconstruct an image. MRI provides excellent visualization of cardiac structures, with a more pronounced contrast between tissues and vascular components compared to cardiac CT [7].

Invasive cardiac catheterization is a procedure that employs fluoroscopy to evaluate coronary anatomy and is considered the gold standard in cardiac imaging. This technique involves gaining direct access to the coronary arteries through peripheral vessels, typically via the wrist or groin. A flexible sheath is inserted into the vessel for percutaneous access, allowing catheters to be advanced toward the heart. The catheter serves a diagnostic purpose and can measure hemodynamic pressure changes in both the right and left ventricles. Its primary diagnostic utility lies in coronary angiography, which, with the aid of contrast agents, enables real-time visualization of the coronary arteries during the cardiac cycle. Cardiac catheterization serves both diagnostic and therapeutic roles, offering options for myocardial reperfusion through balloon angioplasty and stent placement [8].

Objective:

We aimed in this study to assess recent innovations in cardiac imaging technologies, such as advanced echocardiography, cardiac MRI, and CT angiography, with a focus on their impact on diagnostic accuracy and patient outcomes.

Echocardiography:

Echocardiography is commonly the initial assessment tool for evaluating cardiac structure and function due to its excellent temporal and spatial resolution, portability, cost-effectiveness, and absence of ionizing radiation. Over the past twenty years, the use of three-dimensional (3D) echocardiography has gained traction for the quantitative assessment of left ventricular (LV) function and structural heart issues [9]. Unlike two-dimensional (2D) echocardiography, real-time full volume 3D echocardiography avoids geometric assumptions regarding LV shape, rendering it a more precise and consistent method for measuring LV volumes and systolic function, with strong correlation to cardiac magnetic resonance (CMR) imaging. Furthermore, LV volumes and ejection fraction (EF) obtained from 3D echocardiography have been associated more strongly with clinical outcomes compared to those derived from 2D echocardiography [10]. Additionally, 3D echocardiography is particularly effective for evaluating valve function due to the non-planar anatomy and spatial changes associated with valvular heart disease. This imaging technique has greatly enhanced understanding of the mechanics behind functional and ischemic mitral regurgitation by illustrating the complex interactions between the mitral valve leaflets, chordal structures, papillary muscles, and the LV myocardium [11]. Interventional echocardiography, an emerging subspecialty within cardiac imaging, often utilizes 3D transesophageal echocardiography for real-time evaluation of valve anatomy, which is crucial for directing percutaneous valvular interventions, especially transcatheter aortic valve replacement (TAVR), mitral valve clip repair, and most recently, transcatheter implantation of mitral and tricuspid valves [12].

Cardiac computed tomography:

The application of coronary computed tomography (CCT) in clinical settings has seen a remarkable rise in the 21st century. The launch of multidetector computed tomography (MDCT) in 1998 marked a significant advancement in anatomic imaging, resulting in rapid technological developments in MDCT throughout the following decade. The baseline requirement for cardiac CT angiography (CCTA) today is the 64-slice MDCT, which became available in 2005. By 2008, innovations in CT technology led to the emergence of 256- and 320-slice MDCT scanners that can image the entire heart within one to two rotations, thereby significantly reducing both acquisition time and image artifacts [13]. In addition, the exceptional spatial and temporal resolution of CCTA is particularly advantageous for assessing coronary artery disease (CAD). Like cardiac catheterization, CCTA offers an anatomical evaluation of CAD and the severity of luminal stenosis; however, unlike invasive angiography, CCTA also provides insights into the burden and composition of plaque within the vessel wall. As a result, CCTA demonstrates a high sensitivity (ranging from 95% to 99%) for detecting both obstructive and non-obstructive CAD, along with a strong negative predictive value (NPV of 97% to 99%) for ruling out CAD [14]. This non-invasive understanding of CAD burden can be instrumental in managing and prognosticating patients. For instance, non-obstructive CAD—which may not trigger ischemic responses in functional imaging but can be easily detected by CCTA—has been linked to a higher incidence of adverse cardiac events, particularly in women, even without the presence of obstructive CAD [15]. Additionally, CCTA enables the quantification and characterization of atherosclerotic plaques. Features of high-risk plaques, such as positive remodeling, spotty calcification, and low attenuation (<30 HU), have been identified as indicators of vulnerable coronary lesions associated with an elevated risk for acute coronary syndrome (ACS) [16]. Currently, research is underway to explore novel analytical methods aimed at enhancing the detection and quantification of pericoronary inflammation and atherosclerotic plaque activity via CCTA, which could further refine cardiac risk prediction and improve clinical outcomes for CAD patients [17].

Chest x-ray:

A heart x-ray, commonly called a chest x-ray (CXR), creates a visual of the heart, lungs, and surrounding bones via radiation beams and was developed in 1895. Chest radiographs are primarily used to detect the anatomy of the aorta, pulmonary veins, and pulmonary arteries. Regarding producing a visual, the body varies in depth and thickness of tissue structures; thus, amounts of radiation are absorbed differently. For example, soft tissues (e.g., blood, fat, skin, muscle) may look dark grey while bones may look white [18]. CXRs are typically used when patients come in due to dyspnea, persistent coughs, or angina. It is most commonly used because the scan is prompt, straightforward, relatively affordable, and generalizable, meaning it can be used to screen a vast number of possible conditions responsible for symptoms.

Cardiac MRI:

MRI is known as the gold standard due to its accuracy, dependability, and specificity. It can be utilized in various applications, including risk stratification, noninvasive volumetric and functional assessment of the ventricles, evaluation of myocardial viability, tissue characterization, analysis of the size and function of the heart's chambers, and the assessment of the movement thickness of the heart walls [19]. Additionally, MRI can evaluate the extent of damage resulting from heart disease or myocardial infarctions, detect structural issues in the aorta (such as aneurysms or dissections), assess stress function (using dobutamine or exercise), measure blood flow, and identify inflammation or blockages in blood vessels. MRI is predominantly employed to image the central nervous system, encompassing the brain and spinal cord. In the context of cardiac MRI, it has shown significant value in identifying anatomical abnormalities of the cardiovascular system, functional irregularities, conditions associated with CAD and cardiomyopathy, as well as locating tumors. Different types of MRI include magnetic resonance angiography (MRA), magnetic resonance venography (MRV), cardiac MRI (which assesses cardiac viability, right and left ventricular function, structure, and perfusion), and peripheral MRA [20]. Each type serves distinct purposes and offers specific advantages. These imaging modalities utilize gadolinium-based contrast agents, often referred to as contrast agents, dyes, or media. When administered, the gadolinium agent enhances the quality of MRI images, enabling radiologists to interpret or identify abnormalities with greater accuracy [21].

Nuclear cardiology:

Nuclear cardiology is the most commonly utilized functional imaging technique, resulting in a substantial body of evidence pertaining to diagnosis and long-term outcomes. Radionuclide myocardial perfusion imaging is primarily governed by SPECT, which assesses the relative distribution of blood flow in the coronary myocardium. The sensitivity and specificity of SPECT for diagnosing CAD range from 87% to 79% and 73% to 75%, respectively, with variations depending on the radionuclide and stress modality used [22]. Since its introduction in 1980, SPECT imaging has seen significant advancements. Recent innovations include cadmium zinc telluride (CZT) detectors, gamma cameras, iterative reconstruction techniques, and software for half-dose or half-time protocols, all aimed at reducing radiation exposure, speeding up image acquisition, and enhancing image quality. Nevertheless, despite these technological improvements, SPECT is still constrained by its qualitative—at best, semi-quantitative—approaches to detect myocardial ischemia. In patients with multivessel CAD, SPECT might underestimate the overall severity of the condition, as it is more adept at identifying severe lesions compared to milder stenoses. Moreover, due to the dependence on relative variations in counts during SPECT imaging, patients exhibiting a uniformly reduced myocardial blood flow may paradoxically present with a normal or nearly normal scan, even when they have extensive high-risk CAD [23].

Complications of cardiac imaging:

The method and necessity for sedation during transesophageal echocardiography present various risks to the patient. These risks can include esophageal damage such

as perforation, aspiration, and complications associated with anesthesia. Although these complications are quite rare, particularly in experienced facilities, they are still a concern. Cardiac CT involves exposure to ionizing radiation, which is known to have adverse effects. While the risk of developing malignancy due to this exposure is challenging to quantify and is likely minimal, it remains a potential concern. It is essential to weigh the risks against the benefits when evaluating these imaging techniques, and the cumulative exposure should be taken into account, especially for repeat imaging studies and in younger patients [24]. The application of contrast agents significantly enhances the diagnostic efficacy of radiologic imaging and is frequently utilized in cardiac CT, cardiac catheterization, and cardiac magnetic resonance (CMR) imaging. The most concerning complication is contrast-induced nephropathy. For individuals with normal renal function, this side effect is typically self-limiting. However, in patients with pre-existing renal issues, particularly those with diabetes, the likelihood of progressing to chronic kidney disease is notably high. Cardiac magnetic resonance imaging employs a magnetic field to create images, making the presence of metallic implants a significant risk during the procedure. Although the first CMR-compatible pacemaker was introduced in 2011, a permanent pacemaker is still considered a contraindication for CMR, as are implantable defibrillators [25]. Cardiac catheterization is the most invasive imaging method and carries the highest risk of adverse effects. These risks include renal injury and potential renal failure due to contrast exposure, myocardial infarction, stroke, the onset of arrhythmias, and vascular complications such as bleeding. While there are no absolute contraindications to cardiac catheterization, there are several relative contraindications, including decompensated heart failure, bacteremia, acute stroke, and acute renal failure [26].

Artificial intelligence, machine learning, and deep learning:

There has been an increase in newly published studies examining artificial intelligence (AI), machine learning (ML), and deep learning (DL) techniques in cardiovascular imaging. AI refers to the development of computer systems capable of performing tasks that generally require human intelligence, such as decisionmaking, visual perception, and interpretation [27]. An illustration of this is the Mayo Clinic's use of AI to analyze and respond to cardiovascular scans, enabling the detection of heart disease and enhancing radiology images to improve patient outcomes [28]. ML, a subset of AI, advances the concept by utilizing programs that can learn and adapt without explicit instructions through algorithms and statistical models that analyze patterns in data tendencies. For instance, ML enhances generalizability, resulting in better disease prognostications and survival outcomes [29]. A particular study [30] incorporated three-dimensional ventricular systolic motion using MRI and ML, which significantly enhanced survival predictions in individuals with pulmonary hypertension compared to traditional clinical measures, conventional imaging, hemodynamic assessments, and functional data. Recently, Ebrahimian and colleagues [31] indicated a lack of publicly available information for validating the datasets of several FDA-regulated imaging-based AI/ML algorithms, urging for more objective data publication to support clinical applications. Cai and associates [32] discovered that ML algorithms and ML-enhanced image analysis improved the diagnosis, prediction, and classification of heart failure and Abdulelah Alonazi, Rasha alghamdi, Shaykhah Almutlaq, Maryam Bukhamseen, Nada Alshayeb, Amin Alamri, Abdullah Alshumaymiri

hypertension, although further investigation into the management of these cardiac conditions is necessary. Current challenges also encompass the absence of ML standardization, which is essential for weighing all variables equally, ensuring consistent quality, maintaining patient safety, and guaranteeing interoperability. DL, a subfield of machine learning, focuses on learning techniques utilizing artificial neural network layers with representation learning, thereby enabling the analysis of large datasets [33]. Despite the anticipated high diagnostic and predictive capabilities of DL, tools employing temporal data for image processing have yet to be incorporated into routine clinical practice [34]. While AI, ML, and DL present significant potential to enhance cardiovascular imaging and improve patient outcomes, the availability of high-quality data and model verification on unseen datasets is essential for achieving that success [35]. Continuous enhancements in algorithms are expected to advance the standardization of imaging protocols, and parameters will also evolve to increase the accuracy of risk assessment [36]. Looking ahead, it is anticipated that AI will be integrated into standard cardiac imaging techniques commonly employed. Furthermore, AI software may also be implemented in clinical reporting, automated data analysis, and computing risk scores to provide real-time prognostics and guide patient-centered treatments.

Conclusion:

In conclusion, the advancements in cardiovascular imaging techniques, such as echocardiography, nuclear imaging, cardiac CT, and MRI, play a critical role in the early detection and management of cardiovascular diseases, thereby improving patient outcomes and quality of life. While each modality offers unique advantages and potential risks—ranging from non-invasive insights to the invasive nature of catheterization—the integration of these imaging technologies as preventive tools signifies a paradigm shift in cardiology. Moreover, the emergence of artificial intelligence and machine learning in this field promises to enhance diagnostic precision, streamline imaging protocols, and facilitate personalized treatment approaches. As we continue to refine these technologies and address their limitations, a concerted focus on patient safety and the minimization of procedural risks will be essential in leveraging the full potential of cardiovascular imaging to combat the global burden of heart disease.

References

- Guglielmo M, Baggiano A, Muscogiuri G, Fusini L, Andreini D, Mushtaq S, Conte E, Annoni A, Formenti A, Mancini EM, Gripari P, Guaricci AI, Rabbat MG, Pepi M, Pontone G. Multimodality imaging of left atrium in patients with atrial fibrillation. J Cardiovasc Comput Tomogr. 2019 Nov-Dec;13(6):340-346. [PubMed]
- Williams MC, Newby DE, Nicol ED. Coronary atherosclerosis imaging by CT to improve clinical outcomes. J Cardiovasc Comput Tomogr. 2019 Sep-Oct;13(5):281-287. [PMC free article] [PubMed]
- Antoniades C, Kotanidis CP, Berman DS. State-of-the-art review article. Atherosclerosis affecting fat: What can we learn by imaging perivascular adipose tissue? J Cardiovasc Comput Tomogr. 2019 Sep-Oct;13(5):288-296. [PMC free article] [PubMed]
- Singh M, Sporn ZA, Schaff HV, Pellikka PA. ACC/AHA Versus ESC Guidelines on Prosthetic Heart Valve Management: JACC Guideline Comparison. J Am Coll Cardiol.

- 2019 Apr 09;73(13):1707-1718. [PubMed]
- Pettemerides V, Turner T, Steele C, Macnab A. Does stress echocardiography still have a role in the rapid access chest pain clinic post NICE CG95? Echo Res Pract. 2019 Jun 01;6(2):17-23. [PMC free article] [PubMed]
- Calogero E, Fabiani I, Pugliese NR, Santini V, Ghiadoni L, Di Stefano R, Galetta F, Sartucci F, Penno G, Berchiolli R, Ferrari M, Cioni D, Napoli V, De Caterina R, Di Bello V, Caramella D. Three-Dimensional Echographic Evaluation of Carotid Artery Disease. J Cardiovasc Echogr. 2018 Oct-Dec;28(4):218-227. [PMC free article] [PubMed]
- Rischpler C, Woodard PK. PET/MR Imaging in Cardiovascular Imaging. PET Clin. 2019 Apr;14(2):233-244. [PubMed]
- Yannopoulos D, Bartos JA, Aufderheide TP, Callaway CW, Deo R, Garcia S, Halperin HR, Kern KB, Kudenchuk PJ, Neumar RW, Raveendran G., American Heart Association Emergency Cardiovascular Care Committee. The Evolving Role of the Cardiac Catheterization Laboratory in the Management of Patients With Out-of-Hospital Cardiac Arrest: A Scientific Statement From the American Heart Association. Circulation. 2019 Mar 19;139(12):e530-e552. [PubMed]
- Hung J, Lang R, Flachskampf F, Shernan SK, McCulloch ML, Adams DB, et al.. 3D echocardiography: a review of the current status and future directions. J Am Soc Echocardiogr 2007; 20: 213–33. doi: 10.1016/j.echo.2007.01.010 [PubMed] [CrossRef] [Google Scholar]
- Dorosz JL, Lezotte DC, Weitzenkamp DA, Allen LA, Salcedo EE. Performance of 3-dimensional echocardiography in measuring left ventricular volumes and ejection fraction: a systematic review and meta-analysis. J Am Coll Cardiol 2012; 59: 1799–808. doi: 10.1016/j.jacc.2012.01.037 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Thavendiranathan P, Liu S, Verhaert D, Calleja A, Nitinunu A, Van Houten T, et al.. Feasibility, accuracy, and reproducibility of real-time full-volume 3D transthoracic echocardiography to measure LV volumes and systolic function: a fully automated endocardial contouring algorithm in sinus rhythm and atrial fibrillation. JACC Cardiovasc Imaging 2012; 5: 239–51. doi: 10.1016/j.jcmg.2011.12.012 [PubMed] [CrossRef] [Google Scholar]
- Stanton T, Jenkins C, Haluska BA, Marwick TH. Association of outcome with left ventricular parameters measured by two-dimensional and three-dimensional echocardiography in patients at high cardiovascular risk. J Am Soc Echocardiogr 2014; 27: 65–73. doi: 10.1016/j.echo.2013.09.012 [PubMed] [CrossRef] [Google Scholar]
- Min JK, Shaw LJ, Berman DS. The present state of coronary computed tomography angiography a process in evolution. J Am Coll Cardiol 2010; 55: 957–65. doi: 10.1016/j.jacc.2009.08.087 [PubMed] [CrossRef] [Google Scholar]
- Fordyce CB, Douglas PS. Optimal non-invasive imaging test selection for the diagnosis of ischaemic heart disease. Heart 2016; 102: 555–64. doi: 10.1136/heartjnl-2015-307764 [PubMed] [CrossRef] [Google Scholar]
- Pagidipati NJ, Hemal K, Coles A, Mark DB, Dolor RJ, Pellikka PA, et al.. Sex differences in functional and CT angiography testing in patients with suspected coronary artery disease. J Am Coll Cardiol 2016; 67: 2607–16. doi: 10.1016/j.jacc.2016.03.523 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Motoyama S, Sarai M, Harigaya H, Anno H, Inoue K, Hara T, et al.. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol 2009; 54: 49–57. doi: 10.1016/j.jacc.2009.02.068 [PubMed] [CrossRef] [Google Scholar]
- Kolossváry M, Park J, Bang J-I, Zhang J, Lee JM, Paeng JC, et al.. Identification of invasive and radionuclide imaging markers of coronary plaque vulnerability using radiomic analysis of coronary computed tomography angiography. Eur Heart J Cardiovasc Imaging 2019; 20: 1250–8. doi: 10.1093/ehjci/jez033 [PMC free article] [PubMed] [CrossRef]

Abdulelah Alonazi, Rasha alghamdi, Shaykhah Almutlaq, Maryam Bukhamseen, Nada Alshayeb, Amin Alamri, Abdullah Alshumaymiri

[Google Scholar]

- Tsakok M, Gleeson F. The chest radiograph in heart disease. Medicine. (2018) 46:453–7. 10.1016/j.mpmed.2018.05.007 [CrossRef] [Google Scholar]
- Seraphim A, Knott KD, Augusto J, Bhuva AN, Manisty C, Moon JC. Quantitative cardiac MRI. J Magn Reson Imaging. (2020) 51:693–711. 10.1002/jmri.26789 [PubMed] [CrossRef] [Google Scholar]
- Patel AR, Salerno M, Kwong RY, Singh A, Heydari B, Kramer CM. Stress cardiac magnetic resonance myocardial perfusion imaging: JACC review topic of the week. J Am Coll Cardiol. (2021) 78:1655–68. 10.1016/j.jacc.2021.08.022 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Kwong RY, Ge Y, Steel K, Bingham S, Abdullah S, Fujikura K, et al. Cardiac magnetic resonance stress perfusion imaging for evaluation of patients with chest pain. J Am Coll Cardiol. (2019) 74:1741–55. 10.1016/j.jacc.2019.07.074 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Klocke FJ, Baird MG, Lorell BH, Bateman TM, Messer JV, Berman DS, et al.. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging-executive summary: a report of the American College of Cardiology/American Heart association task force on practice guidelines (ACC/AHA/ASNC committee to revise the 1995 guidelines for the clinical use of cardiac radionuclide imaging. J Am Coll Cardiol 2003; 42: 1318–33. doi: 10.1016/j.jacc.2003.08.011 [PubMed] [CrossRef] [Google Scholar]
- Duvall WL, Guma KA, Kamen J, Croft LB, Parides M, George T, et al.. Reduction in occupational and patient radiation exposure from myocardial perfusion imaging: impact of stress-only imaging and high-efficiency SPECT camera technology. J Nucl Med 2013; 54: 1251–7. doi: 10.2967/jnumed.112.112680 [PubMed] [CrossRef] [Google Scholar]
- Shan K, Constantine G, Sivananthan M, Flamm SD. Role of cardiac magnetic resonance imaging in the assessment of myocardial viability. Circulation 2004; 109: 1328–34. doi: 10.1161/01.CIR.0000120294.67948.E3 [PubMed] [CrossRef] [Google Scholar]
- Mittal TK, Panicker MG, Mitchell AG, Banner NR. Cardiac allograft vasculopathy after heart transplantation: electrocardiographically gated cardiac CT angiography for assessment. Radiology 2013; 268: 374–81. doi: 10.1148/radiol.13121440 [PubMed] [CrossRef] [Google Scholar]
- Min JK, Shaw LJ, Berman DS. The present state of coronary computed tomography angiography a process in evolution. J Am Coll Cardiol 2010; 55: 957–65. doi: 10.1016/j.jacc.2009.08.087 [PubMed] [CrossRef] [Google Scholar]
- Fordyce CB, Douglas PS. Optimal non-invasive imaging test selection for the diagnosis of ischaemic heart disease. Heart 2016; 102: 555–64. doi: 10.1136/heartjnl-2015-307764 [PubMed] [CrossRef] [Google Scholar]
- Xu B, Kocyigit D, Grimm R, Griffin BP, Cheng F. Applications of artificial intelligence in multimodality cardiovascular imaging: a state-of-the-art review. Prog Cardiovasc Dis. (2020) 63:367–76. 10.1016/j.pcad.2020.03.003 [PubMed] [CrossRef] [Google Scholar]
- Attia ZI, Kapa S, Lopez-Jimenez F, McKie PM, Ladewig DJ, Satam G, et al. Screening for cardiac contractile dysfunction using an artificial intelligence—enabled electrocardiogram. Nat Med. (2019) 25:70–4. 10.1038/s41591-018-0240-2 [PubMed] [CrossRef] [Google Scholar]
- Seetharam K, Shrestha S, Sengupta P. Artificial intelligence in cardiac imaging. US Cardiol Rev. (2020) 13:110–6. 10.15420/usc.2019.19.2 [CrossRef] [Google Scholar]
- Al'Aref SJ, Anchouche K, Singh G, Slomka PJ, Kolli KK, Kumar A, et al. Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging. Eur Heart J. (2019) 40:1975–86. 10.1093/eurheartj/ehy404 [PubMed] [CrossRef] [Google Scholar]
- Ebrahimian S, Kalra MK, Agarwal S, Bizzo BC, Elkholy M, Wald C, et al. FDA-regulated AI algorithms: trends, strengths, and gaps of validation studies. Acad Radiol. (2022) 29:559—

- 66. 10.1016/j.acra.2021.09.002 [PubMed] [CrossRef] [Google Scholar]
- Cai A, Zhu Y, Clarkson SA, Feng Y. The use of machine learning for the care of hypertension and heart failure. JACC: Asia. (2021) 1:162–72. 10.1016/j.jacasi.2021.07.005 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Hernandez KAL, Rienmüller T, Baumgartner D, Baumgartner C. Deep learning in spatiotemporal cardiac imaging: a review of methodologies and clinical usability. Comput Biol Med. (2021) 130:104200. 10.1016/j.compbiomed.2020.104200 [PubMed] [CrossRef] [Google Scholar]
- Slart RH, Williams MC, Juarez-Orozco LE, Rischpler C, Dweck MR, Glaudemans AW, et al. Position paper of the EACVI and EANM on artificial intelligence applications in multimodality cardiovascular imaging using SPECT/CT, PET/CT, and cardiac CT. Eur J Nucl Med Mol Imaging. (2021) 48:1399–413. 10.1007/s00259-021-05341-z [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Lin A, Kolossváry M, Motwani M, Išgum I, Maurovich-Horvat P, Slomka PJ, et al. Artificial intelligence in cardiovascular imaging for risk stratification in coronary artery disease. Radiol Cardiothorac Imaging. (2021) 3:e200512. 10.1148/ryct.2021200512 [PMC free article] [PubMed] [CrossRef] [Google Scholar]