

# Disconnected Lifelines: The Crisis of Interoperability in Emergency Medical Services, Technicians, and Specialists

**Isra Hassan Hussain Alghafly<sup>1</sup>, Mansour Ali Mansour Johali<sup>2</sup>, Hussain Ali Jubran Shafei<sup>3</sup>, Osama Bin Jadih Mshhour<sup>4</sup>, Abdulaziz Saeed Almutairi<sup>5</sup>, Sultan Murdi Almutairi<sup>6</sup>, Ahmed Fari Almutairi<sup>7</sup>, Abdulaziz Mastour Almutairi<sup>8</sup>**

1. *Emergency Medical Services Eastern Health Cluster Dammam*

2. *Emergency Medical Technician Jazan Health Cluster Jazan*

3. *Emergency Medical Technician Jazan Health Cluster Jazan*

4. *Emergency Medical Technician Bish General Hospital Jazan*

5. *Emergency Medicine Specialist Alyamamah Hospital Riyadh*

6. *Emergency Medical Services Alyamama Hospital Riyadh*

7. *Emergency Medical Services Alyamamah Hospital Riyadh*

8. *Emergency Medical Technician Al Yamamah Hospital Riyadh*

**Abstract:** The interoperability crisis in Emergency Medical Services (EMS), technicians, and specialists creates significant barriers to effective emergency responses. Issues such as incompatible technologies, lack of standardized protocols, and organizational misalignment result in delayed care, miscommunication, and compromised patient safety. Addressing these challenges requires integrating technological solutions, standardized frameworks, and collaborative policies to ensure seamless communication and data sharing.

**Aim of Work:** This study aims to analyze the root causes and implications of interoperability challenges in EMS and healthcare systems, emphasizing the roles of EMS personnel, technicians, and specialists. It seeks to propose frameworks and technological innovations to enhance communication, coordination, and data-sharing efficiency, ultimately improving emergency response outcomes.

**Keywords:** Interoperability, Emergency Medical Services, Technological Solutions, Data Sharing, Standardization, Crisis Management, Patient Safety.

## Introduction

Interoperability failures in emergency medical services (EMS) present significant challenges and consequences, impacting the efficiency and effectiveness of emergency response. These failures often arise from incompatible communication systems, lack of standardized protocols, and the complexity of coordinating multiple agencies. The consequences can be severe, leading to delayed response times, miscommunication, and ultimately, compromised patient safety. Addressing these challenges requires a multifaceted approach, including technological solutions, improved training, and policy reforms. Communication Barriers Different EMS agencies often use incompatible radio systems, operating on various frequencies and employing diverse communication techniques, which leads to uncoordinated responses and a fragmented chain of command (Mohammed et al., 2018). The lack of a common operational picture and standardized communication protocols hinders effective collaboration across organizational and jurisdictional boundaries (Schütte et al., 2013) (Kuehn et al., 2011).

**Technological Solutions:** Implementing Service-Oriented-Architectures (SOA) and mediation algorithms can facilitate interoperability by enabling seamless communication between different EMS systems (Schütte et al., 2013). The use of information brokers and event-driven processes can help overcome communication obstacles and empower public participation in emergency response (Kuehn et al., 2011).

**Organizational and Cultural Challenges:** EMS agencies often focus on agency-specific behaviors rather than coordinated multi-agency functioning, reducing the ability to perform collaborative decision-making and action implementation (House et al., 2014). A hierarchical command structure may inhibit effective decision-making, suggesting a need for a

decentralized, interoperable management network (House et al., 2014) Safety and Security Concerns. Interoperability failures can lead to patient harm through incorrect monitoring, unauthorized disclosure of health information, and other safety risks (Venkatasubramanian, 2014). Ensuring failure-free operation of interoperable medical devices is crucial for maintaining both safety and security in EMS (Venkatasubramanian, 2014).

**The role of Emergency Medical Services (EMS), technicians, and specialists in critical care pathways** is integral to the effective management and treatment of critically ill patients. These professionals contribute to a multidisciplinary approach that enhances patient outcomes through specialized skills and coordinated care. Their involvement spans various stages of patient care, from initial assessment and stabilization to ongoing management and recovery. The following sections detail their specific roles and contributions. EMS professionals are often the first point of contact in critical care situations, responsible for the initial assessment and stabilization of patients (Beed et al., 2013). They play a crucial role in ensuring timely and safe transport of patients to appropriate care facilities, which is vital for conditions requiring immediate intervention (Beed et al., 2013). **Role of Technicians:** Technicians, including respiratory therapists, radiology technologists, and laboratory technicians, provide essential support in monitoring and diagnostic procedures (Grenvik, 1974). They are involved in the operation and maintenance of critical care equipment, such as ventilators and monitoring systems, ensuring accurate data collection and patient safety (Grenvik, 1974). **Role of Specialists:** Specialists, such as biomedical equipment technicians and emergency medical technicians, contribute to the development and implementation of critical care pathways by providing expertise in specific areas (Grenvik, 1974). Their involvement in interdisciplinary teams helps streamline care processes, reduce complications, and improve resource utilization (Redick et al., 1994) (Buchman & Buchman, 2014).

## ➤ **Defining Interoperability in Emergency Healthcare**

**Explanation of interoperability as seamless communication and data sharing among EMS, technicians, and specialists:** Interoperability in the context of Emergency Medical Services (EMS) refers to the seamless communication and data sharing among EMS, technicians, and specialists. This concept is crucial for ensuring efficient and effective emergency response, as it allows for the integration of various systems and technologies to facilitate the exchange of critical information. Interoperability encompasses technological, data, human, and institutional layers, each playing a vital role in achieving seamless communication. The following sections elaborate on these aspects.

**Technological Interoperability:** Technological interoperability involves the integration of different communication technologies such as broadband, Voice over IP (VoIP), and Radio over IP (RoIP) to enhance data transfer capabilities between EMS and hospitals (Careless & Erich, 2008). The use of blockchain technology for Electronic Health Records (EHRs) exemplifies how cross-chain interoperability can secure and streamline data exchange among healthcare providers (Puneeth & Parthasarathy, n.d.).

**Data Interoperability:** Data interoperability focuses on the ability to transfer and render useful data across different systems. This is essential for EMS to access and share patient information quickly and accurately during emergencies (Gasser, 2015). The REDIRNET project highlights the importance of a decentralized framework for data sharing among emergency agencies, ensuring that data from various sources can be accessed and utilized effectively (Machalek & Dunlop, 2016).

**Human and Institutional Interoperability:** Human interoperability involves the collaboration and communication between EMS personnel, technicians, and specialists, ensuring that all parties have access to the necessary information and tools to perform their duties (Gasser, 2015). Institutional interoperability requires the alignment of policies and procedures across different organizations to facilitate seamless data sharing and

communication (Gasser, 2015). While interoperability offers numerous benefits, such as improved innovation and access, it also presents challenges, including security and privacy risks, and the need for cost-effective solutions (Gasser, 2015) (Machalek & Dunlop, 2016). Addressing these challenges is crucial for enhancing the interoperability capabilities of EMS and other emergency response agencies.

**Importance of interoperability in time-sensitive emergency scenarios:** Interoperability in time-sensitive emergency scenarios is crucial for effective crisis management, as it facilitates seamless communication and coordination among diverse emergency response systems and stakeholders. The integration of data and systems across different organizations is a significant challenge, but it is essential for improving the efficiency and effectiveness of emergency responses. Interoperability ensures that information is transmitted in real-time to the appropriate parties, enabling timely and informed decision-making. The following sections highlight key aspects of interoperability in emergency scenarios.

**Semantic Interoperability:** Semantic interoperability involves the use of standardized languages and ontologies to enable different systems to understand and process shared data. The Emergency Data Exchange Language (EDXL) is one such standard that supports data integration across Emergency Response Systems (ERS) by acting as an interlingua, facilitating communication between disparate systems (Barros et al., 2016). The Semantic Sensor Web (SSW) and Semantic Sensor Network Ontology (SSNO) are used to enhance the semantic integration of sensor data, allowing for more effective emergency response management by combining sensor data with human observations and decisions (Lezcano et al., 2013).

**Technological Solutions:** An emergency communication server can enhance interoperability by enabling communication between different groups involved in emergency response. This server processes inputs from electronic devices and generates notifications to be shared across various communication groups, ensuring that all relevant parties are informed and can collaborate effectively (Songwei & Francis, 2020). IoT-based solutions support device interoperability and behavior reconfiguration, allowing devices to collaborate autonomously within emergency management workflows. This approach ensures that data is exchanged in a suitable format, enhancing the overall efficiency of emergency management operations (Brut et al., 2014).

**Frameworks and Assessment:** A framework for assessing interoperability in crisis management can identify gaps and areas for improvement in disaster response capabilities. The use of multi-criteria decision analysis techniques, such as the Analytic Hierarchy Process (AHP), helps in specifying integrated solutions that meet interoperability requirements in disaster management scenarios (Avanzi et al., 2016).

## ➤ Challenges in Achieving Interoperability

**Incompatible technologies and software systems among emergency medical services, technicians, and specialists and healthcare system:** Incompatible technologies and software systems among emergency medical services (EMS), technicians, specialists, and the broader healthcare system present significant challenges. These issues stem from a lack of interoperability, which hinders effective communication and coordination during emergency responses. The integration of disparate systems is crucial for improving the efficiency and effectiveness of EMS operations. The following sections explore the key aspects of this issue, drawing insights from the provided research papers.

**Integration and Interoperability Challenges:** Disparate data systems in emergency medicine create barriers to integration, leading to inefficiencies in information management and decision-making processes (Barthell et al., 2004). Cultural, semantic, and linguistic differences further complicate interoperability, especially in international contexts, slowing down decision-making and response times (Casado et al., 2015). The lack of interoperability results

in treatment delays, redundant tests, and increased costs, as seen in the challenges faced by veterans navigating the healthcare system (Fetter, 2009).

**Technological Solutions and Initiatives:** The Chungbuk Smart Emergency Service Project demonstrates the potential of ICT to enhance EMS by facilitating real-time information sharing and coordination among healthcare providers (Kim, 2023). The EMERGEL ontology and the DISASTER service-oriented architecture offer solutions for data interoperability, addressing the diversity of data protocols and formats in EMS (Casado et al., 2015). Efforts in countries like Australia and the United States focus on developing interoperability standards to ensure seamless information exchange across healthcare systems (Kuziemsky et al., 2009).

**Broader Implications and Perspectives:** While technological advancements and initiatives aim to address interoperability issues, challenges remain, including technical, social, legal, and policy-based barriers. The healthcare system's complexity and the need for coordinated care across distributed settings highlight the importance of continued research and development in this area. The potential of Health 2.0 applications to transform healthcare delivery underscores the need for a holistic approach to interoperability, considering not only technical but also workflow and communication factors (Kuziemsky et al., 2009).

**Lack of standardized data formats and communication protocols:** The lack of standardized data formats and communication protocols among emergency medical services (EMS), technicians, specialists, and the broader healthcare system presents significant challenges. This issue hinders the seamless exchange of critical patient information, which is essential for timely and effective medical interventions. Standardization and interoperability are crucial for overcoming these barriers, as they enable different systems and devices to communicate effectively, ensuring that patient data is consistently and accurately shared across various points of care. The following sections explore the importance of standardization, the challenges faced, and potential solutions.

**Importance of Standardization and Interoperability:** Standardized data formats and communication protocols streamline data exchange, ensuring consistency and accuracy in medical records (Nomula, 2024). Interoperability allows for the seamless flow of patient information across different healthcare systems, improving healthcare quality and patient safety (Nomula, 2024). In emergency medicine, standardized documentation and digitalization reduce data redundancies and facilitate the secondary use of clinical data (Lucas et al., 2019).

**Challenges in Achieving Standardization:** Implementation challenges include the need for updated infrastructure, privacy concerns, and resistance to change within healthcare organizations (Nomula, 2024). Cultural, semantic, and linguistic differences among international stakeholders complicate emergency management and decision-making processes (Casado et al., 2015).

**Solutions and Frameworks:** The use of international standards like HL7 v3 and FHIR can facilitate semantic interoperability, allowing for the integration of legacy systems into a network-centric environment (Blendal & Pape-Hauggaard, 2018) (Sartipi & Yarmand, 2008). The development of a common and modular ontology, such as EMERGEL, addresses cultural and linguistic issues, providing a flexible data model for emergency response (Casado et al., 2015). Service-oriented architectures, like the DISASTER framework, offer extensible solutions for data interoperability, enhancing coordination among EMSs (Casado et al., 2015).

## ➤ Impact of Interoperability Failures

**Delays in diagnosis and treatment due to fragmented information:** Delays in diagnosis and treatment due to fragmented information are a significant issue in healthcare systems worldwide. Fragmented information can lead to miscommunication, inefficiencies, and ultimately, delays in patient care. This problem is exacerbated by various systemic and socio-cultural factors, as highlighted in multiple studies. The following sections explore these factors in detail.

**Socioeconomic and Sociocultural Barriers:** Underserved racial and ethnic populations face diagnostic delays due to low health literacy, distrust in healthcare systems, and cultural and linguistic barriers. These factors contribute to healthcare avoidance and a fragmented care environment, which complicates timely diagnosis and treatment (Faugno et al., 2024). In Ukraine, the war situation and economic challenges, such as expensive diagnostic tests and high treatment costs, further delay cancer diagnosis and treatment (Liakh et al., 2024).

**Health System Inefficiencies:** Fragmented health systems, characterized by paper-based reporting and scattered health records, hinder efficient healthcare delivery. This fragmentation leads to delayed access to critical test results and compromises patient outcomes (Yadav & Singh, 2024). In India, patients face significant challenges in navigating the diagnostic ecosystem, including overcoming cost and distance barriers, which can lead to delays in diagnosis and treatment (Yellappa et al., 2017).

**Provider-Level Challenges:** Cognitive biases, breakdowns in patient-provider communication, and lack of disease knowledge among providers contribute to diagnostic delays. These issues are compounded by administrative barriers and a lack of organizational cultural competence (Faugno et al., 2024). In the Veterans Health Administration, delays in diagnosis and treatment are often due to inadequate standardization of care processes and poor communication within and between departments (Politi et al., 2022).

**Increased risks of medical errors and adverse outcomes:** Medical errors and adverse outcomes are significant concerns in healthcare, with substantial impacts on patient safety and healthcare costs. These errors can occur in various settings, including hospitals, clinics, and even at home, and can lead to severe consequences such as death or long-term disability. The prevalence and preventability of these errors highlight the need for effective strategies to mitigate risks and improve patient outcomes. The following sections explore the types of medical errors, their impacts, and strategies for prevention.

**Types of Medical Errors:** Medication Errors: These are common and can occur due to incorrect dosages or wrong medications being administered (Khader et al., 2024). Diagnostic Inaccuracies: Misdiagnosis or delayed diagnosis can lead to inappropriate treatment and adverse outcomes (Khader et al., 2024). Communication Lapses: Errors in communication, particularly in operating rooms, are a leading cause of serious adverse events (Hanna & Saad, 2024).

**Impacts of Medical Errors:** Adverse Events: In high-income countries, 10% of patients experience adverse events, with this figure rising to 25% in low- and middle-income countries (Han, 2022) (Radwan, 2022). Economic Burden: Adverse events contribute to increased healthcare costs, including prolonged hospital stays and readmissions, with indirect costs reaching up to 2 trillion USD annually (Han, 2022) (Radwan, 2022). Patient Outcomes: Errors can result in severe outcomes, such as persistent vegetative states, as seen in long-term care cases (Baig et al., 2021).

**Prevention Strategies:** Technological Interventions: Adoption of electronic health records and checklist systems can reduce error rates (Khader et al., 2024). Organizational Changes: Implementing structured communication protocols and fostering a non-punitive culture can enhance safety (Khader et al., 2024) (Han, 2022). Education and Training: Regular staff training on safety practices is crucial for error prevention (Khader et al., 2024). While the focus is often on preventing errors, it is equally important to address the challenges in disclosing medical errors. Disclosure practices are essential for transparency and trust but are often hindered by fears of legal repercussions and cultural barriers, especially in developing countries (Han, 2022) (Radwan, 2022).

➤ **Technological Innovations for Interoperability:**

**Role of electronic health records (EHRs) and cloud-based systems in bridging communication gaps:** Electronic Health Records (EHRs) and cloud-based systems play a crucial role in bridging communication gaps within the healthcare ecosystem by enhancing interoperability, data accessibility, and security. These systems facilitate seamless information exchange among diverse stakeholders, including patients, providers, and payers, thereby improving healthcare delivery and coordination.

The integration of cloud computing with EHRs addresses traditional challenges such as data fragmentation and limited accessibility, offering a centralized and secure platform for managing patient information. Below are key aspects of how EHRs and cloud-based systems contribute to bridging communication gaps:

**Interoperability and Standardization:** Cloud-based EHR systems employ semantic interoperability to enable the exchange of healthcare information among diverse stakeholders. This is achieved through standardized data structures and models, such as the OpenEHR two-level approach and HL7-FHIR standards, which ensure consistent data representation and integration across different systems (Shinde et al., 2024). The use of a cloud repository with high availability features allows stakeholders to access patient records from a single integrated data repository, reducing communication barriers between disparate EHR systems ("Cloud Architecture for Electronic Health Record Systems Interoperability," 2022) (Gómez et al., 2021).

**Enhanced Data Accessibility and Security:** Cloud-based EHRs provide ubiquitous access to patient information, allowing healthcare providers to retrieve and update records in real-time, regardless of their location. This centralization of data enhances the coordination of care and reduces the risk of errors associated with fragmented data (Laxmanrao & Vidhate, 2023). Advanced security measures in cloud environments ensure the confidentiality, integrity, and availability of sensitive health data, addressing concerns related to data breaches and unauthorized access (Laxmanrao & Vidhate, 2023). **Integration of Advanced Technologies:** The integration of data analytics and machine learning within CloudEHR systems empowers healthcare organizations with valuable insights for personalized patient care and predictive analytics. This capability enhances decision-making and improves patient outcomes by providing actionable health metrics (Laxmanrao & Vidhate, 2023).

➤ **Role of emergency medical services, technicians, and specialists in addressing Interoperability**

Emergency medical services (EMS), technicians, and specialists play a crucial role in addressing interoperability challenges in emergency response systems. Interoperability is essential for effective communication and coordination among various emergency services, which include police, fire, and medical teams. The integration of different systems and data formats is necessary to ensure seamless operations during emergencies. This involves the use of standardized data sets, semantic models, and collaborative frameworks to enhance the efficiency and effectiveness of emergency responses. Below are key aspects of how EMS, technicians, and specialists contribute to solving interoperability issues.

**Development of Common Data Standards:** The creation of international minimal patient care reports using standards like FHIR facilitates the standardization and interoperability of EMS data, ensuring that critical information is accessible across different healthcare systems (Blendal & Pape-Hauggaard, 2018). The use of common data sets and profiling them in FHIR helps in establishing a universal exchange standard, which is crucial for interoperability (Blendal & Pape-Hauggaard, 2018).

**Semantic Interoperability and Ontology:** The DISASTER project emphasizes the development of a common and modular ontology to address cultural, linguistic, and legal differences in cross-border emergency operations (Schütte et al., 2013). SEMIoTICS framework focuses on semantic model-driven development for IoT interoperability, enhancing

the integration of various data sources and improving situation awareness and decision support in emergency services (Moreira, 2019).

**Collaborative Frameworks and Training:** The Joint Emergency Services Interoperability Programme (JESIP) aims to improve collaboration among police, fire, and ambulance services through training and shared protocols, which are essential for interoperability (Flanagan, 2014). Cultivating a culture of interoperability within the first responder community involves training and public policy initiatives to foster collaborative environments (Thomas et al., 2010).

## ➤ Case Studies

### United Kingdom

The UK has faced criticism for its emergency services' lack of interoperability, as highlighted by public inquiries. The challenges include ineffective communication and the need for a decentralized and flexible team network. Psychological principles such as trust, secure team identities, and cohesive goals are essential for improving interoperability. Regular training targeting these principles is recommended to enhance the social fabric of multi-team systems ("The Psychology of Interoperability: A Systematic Review and Case Study from the UK Emergency Services", 2023).

### European Union

The EU's DISASTER project addresses interoperability issues in cross-border emergency operations. It proposes a common operational picture through a shared ontology and Service-Oriented-Architectures (SOA) mediation algorithms. This approach aims to create a concept mediation solution that transcends mere translation, allowing users to understand shared information within their own frameworks (Schütte et al., 2013).

### Republic of China (Taiwan), Republic of Croatia, Republic of Estonia, and Commonwealth of Australia

These countries have made progress in healthcare interoperability, which is crucial for EMS. The focus is on sharing information across devices, sources, and organizations. Despite advancements, challenges remain in standardizing heterogeneous data and improving device/equipment compatibility, organizational involvement, and data migration issues (MBA et al., 2023).

While these case studies highlight efforts to improve interoperability, challenges persist due to varying cultural, linguistic, and legal contexts. The development of frameworks like the Trusted Exchange Framework and Common Agreement (TEFCA) in healthcare shows promise in reducing data exchange friction, suggesting that similar approaches could benefit EMS interoperability (MBA et al., 2023).

## ➤ Barriers to Implementation

**Financial constraints in adopting new systems in healthcare system:** The adoption of new systems in the healthcare sector is often hindered by several financial constraints. These constraints can significantly impact the ability of healthcare organizations to implement cost-reducing innovations and modern technologies. The financial barriers are multifaceted, involving both direct and indirect costs associated with new system adoption. Below are the primary financial constraints identified from the research papers.

**High Initial Costs:** The implementation of new healthcare systems, such as Hospital Management Information Systems (HMIS) and Electronic Health Record Systems (EHRs), often requires substantial initial investment. This includes costs for infrastructure, software, and hardware, which can be prohibitive for many healthcare organizations, especially in developing regions like India and Saudi Arabia (Gupta et al., 2024) (Alzghaibi & Hutchings, 2024).

**Ongoing Operational Expenses:** Beyond initial setup costs, ongoing operational expenses such as maintenance, updates, and technical support add to the financial burden. These

recurring costs can deter healthcare facilities from adopting new systems, as they may not have the budget to sustain these expenses over time (Alzghaibi & Hutchings, 2024).

**Lack of Financial Incentives:** The absence of financial incentives for adopting cost-reducing innovations is another significant barrier. In many cases, healthcare systems operate under fee-for-service models that do not reward cost efficiency, leading to a lack of motivation to invest in innovations that could lower costs (Missing Innovations, 2023).

**Insufficient Financial Resources:** Many healthcare organizations face a general lack of financial resources, which limits their ability to invest in new technologies. This is compounded by inadequate funding from government or private sectors, making it challenging to prioritize and allocate budgets for system upgrades (Alsaleem & Aldakheel, 2024) (Eriksson et al., 2024).

**Resistance to change among healthcare providers:** Resistance to change among healthcare providers is a multifaceted issue that can significantly impact the implementation of new practices and technologies within healthcare systems. This resistance can manifest at various levels, from individual to multinational, and is often driven by factors such as fear, mistrust, and communication barriers. Understanding and addressing these factors is crucial for successful change management in healthcare settings. The following sections explore the key aspects of resistance to change among healthcare providers.

**Individual and Group Resistance:** Resistance at the individual level often stems from perceived threats to baseline status, leading to behaviors aimed at maintaining the status quo (DuBose et al., 2020). Group resistance can occur when healthcare providers collectively oppose changes due to shared concerns or interests, which may be amplified by organizational culture and communication barriers (Change Resistance, 2024).

**Organizational and Systemic Resistance:** At the organizational level, resistance can be influenced by structural and policy-related factors, such as inadequate resources or conflicting interests (Evans & Britt, 2022). Systemic resistance may arise from broader healthcare systems, where entrenched practices and norms hinder the adoption of new technologies or practices (Essex, 2021).

**Strategies to Overcome Resistance:** Effective change management strategies, such as fostering open communication and building trust, can help mitigate resistance and facilitate the adoption of new practices (Change Resistance, 2024). Engaging healthcare providers in the change process and addressing their concerns can also reduce resistance and promote cooperation (DuBose et al., 2020).

## ➤ Future Directions

**Policy recommendations for incentivizing interoperability:** To incentivize interoperability, policy recommendations should focus on fostering open standards, protecting intellectual property, and promoting technological neutrality. These strategies can enhance innovation, market uptake, and efficient governance. By supporting open platforms and standards, governments and organizations can create an environment conducive to interoperability, which is crucial for sectors like IT and biodiversity data management. The following sections outline specific policy recommendations derived from the provided research papers.

**Support Open Platforms and Standards:** Encourage the development and adoption of open technical standards to ensure transparency, cost efficiency, and interoperability in various sectors, including e-Governance and IT (Höpken, 2022) (DeNardis & DeNardis, 2010). Invest in standards compliance and collaborate with standards organizations to develop and extend existing standards (Meeus et al., 2022).

**Intellectual Property and Innovation:** Protect intellectual property to drive innovation while avoiding technology mandates that could stifle growth (Tsilas, 2007). Promote choice and technological neutrality in procurement decisions to foster a competitive and innovative market environment (Tsilas, 2007).

**Market Uptake and User Information:** Stimulate market uptake by providing information to end-users, helping them make informed purchase decisions that favor interoperable solutions (Höpken, 2022). Facilitate external reporting and requests for new features to improve infrastructure interoperability (Meeus et al., 2022).

**Organizational and Infrastructure Interoperability:** Use data brokers and cloud computing to enhance interoperability between infrastructures, especially when direct linking is not feasible (Meeus et al., 2022). Build communities and trust through open forums and collaborative environments, encouraging shared management and knowledge exchange (Meeus et al., 2022).

**Advances in cross-system communication technologies for addressing Interoperability among EMS, technicians, specialists and other health care providers:** Advances in cross-system communication technologies have significantly enhanced interoperability among Emergency Medical Services (EMS), technicians, specialists, and other healthcare providers. These advancements focus on integrating disparate systems to facilitate seamless data exchange, thereby improving patient care and operational efficiency. The development of standardized frameworks and innovative technologies plays a crucial role in achieving this interoperability.

**Standardization and Frameworks:** The Fast Healthcare Interoperability Resources (FHIR) standard is pivotal in integrating Electronic Health Records (EHRs) into a unified platform, allowing for comprehensive data exchange and utilization. This is achieved through the Technical Interoperability Suite (TIS) and Semantic Interoperability Suite (SIS), which transform patient data into FHIR-standardized formats (Gour et al., 2024). ByMedConnect utilizes the EN 13606 standard to define and exchange datasets among care providers, ensuring semantic interoperability through archetypes and modeling tools. This approach facilitates reliable cross-sector communication and integration of heterogeneous systems (Demski et al., 2010).

**Technological Innovations:** The Interoperability Environment system collects and transfers electronic data from various sources, applying rules to ensure compliance with hospital protocols. It supports communication across multiple platforms, enhancing data sharing and process control (Gary et al., 2019). A service-oriented architecture (SOA) supports real-time data exchange in emergency medical response, integrating systems like MICHAELS, ESSENCE, and WISER. This architecture enables communication with new data sources, such as wireless vital sign sensors and web portals (Hauenstein et al., 2006).

**Cognitive Radio and Communication Models:** Cognitive radio technology is crucial for emergency communication systems, addressing both technical and organizational interoperability challenges. A model-based design framework incorporates cognitive radio capabilities to ensure optimal semantic interoperability, supporting effective public safety communication (Kwon, 2010). While these advancements significantly improve interoperability, challenges remain, such as aligning organizational practices and ensuring data security. Continuous development and evaluation of these technologies are essential to address these issues and further enhance cross-system communication in healthcare settings.

## Conclusion

Resolving interoperability issues in EMS requires a comprehensive strategy encompassing technology integration, policy standardization, and cultural transformation across organizations. Key advancements such as service-oriented architectures, semantic models, and IoT-based systems offer practical solutions. Training and collaboration among EMS personnel and other stakeholders are essential to establish trust, ensure data security, and improve patient outcomes in emergencies.

## References

- Alsaleem, A. K., & Aldakheel, M. K. (2024). Barriers to Workforce-Driven Innovation in Healthcare. *Cureus*. <https://doi.org/10.7759/cureus.72316>
- Alzghaibi, H., & Hutchings, H. (2024). *Barriers to the implementation of large-scale electronic health record systems in Primary Healthcare centers*. <https://doi.org/10.21203/rs.3.rs-4461961/v1>
- Avanzi, D. da S., Foggiatto, A., Loures, E. de F. R., & Deschamps, F. (2016). *A Framework for Interoperability Assessment in Crisis Management*.
- Baig, Z. F., Khan, A., Zaidi, I. H., Khan, M. A., & Ashra, M. S. (2021). *Medical error, persistent vegetative state and over nineteen long years of medical care*. <https://doi.org/10.51253/PAFMJ.V7I14.7307>
- Barros, R., Vieira, V., Salvador, L. do N., & Almeida, R. de F. (2016). Interoperabilidade Semântica entre Sistemas de Resposta a Emergências. *Brazilian Symposium on Databases*.
- Barthell, E. N., Coonan, K., Finnell, J. T., Pollock, D., & Cochrane, D. G. (2004). Disparate systems, disparate data: integration, interfaces, and standards in emergency medicine information technology. *Emergency Medicine Academic Emergency Medicine*. <https://doi.org/10.1197/J.AEM.2004.08.008>
- Beed, M., Sherman, R., & Mahajan, R. (2013). *Emergencies in Critical Care*.
- Blendal, R. G., & Pape-Haugaard, L. (2018). *An International Minimal Patient Care Report Exemplified in FHIR to Facilitate Standardisation and Interoperability of Emergency Medical Services Data*.
- Brut, M., Gatellier, P., Excoffier, D., Salhi, I., Cherrier, S., Ghamri, Y., Dumont, N., & Lopez-Ramos, M. (2014). When devices become collaborative: Supporting device interoperability and behaviour reconfiguration across emergency management scenario. *The Internet of Things*. <https://doi.org/10.1109/WF-IOT.2014.6803169>
- Buchman, T. G., & Buchman, T. G. (2014). *Health Professionals in Critical Care*. [https://doi.org/10.1007/978-1-4939-0811-0\\_4](https://doi.org/10.1007/978-1-4939-0811-0_4)
- Careless, J., & Erich, J. (2008). *Making connections. Voice and data solutions for EMS*.
- Casado, R., Rubiera, E., Sacristan, M., Schütte, F., & Peters, R. (2015). Data interoperability software solution for emergency reaction in the Europe Union. *Natural Hazards and Earth System Sciences*. <https://doi.org/10.5194/NHESS-15-1563-2015>
- Change Resistance. (2024). <https://doi.org/10.4018/978-1-7998-8989-2.ch006>
- Cloud architecture for electronic health record systems interoperability. (2022). *Technology and Health Care*. <https://doi.org/10.3233/thc-212806>
- Demski, H., Hildebrand, C., Brass, A., Jedamzik, S., & Engelbrecht, R. (2010). Improvement of cross-sector communication in the integrated health environment. *Studies in Health Technology and Informatics*. <https://doi.org/10.3233/978-1-60750-563-1-95>
- DeNardis, L., & DeNardis, L. (2010). E-Governance Policies for Interoperability and Open Standards. *Social Science Research Network*. <https://doi.org/10.2139/SSRN.1629833>
- DuBose, B. M., DuBose, B. M., & Mayo, A. M. (2020). Resistance to change: A concept analysis. *Nursing Forum*. <https://doi.org/10.1111/NUF.12479>
- Eriksson, N., Rexhepi, H., Javid, R., Djäken, E. M., & Lifvergren, S. (2024). How Innovation Systems Promote and Hinder Innovations in Healthcare - a Swedish Case. *Journal of Innovation Management*. [https://doi.org/10.24840/2183-0606\\_012.001\\_0008](https://doi.org/10.24840/2183-0606_012.001_0008)
- Essex, R. (2021). Resistance in health and healthcare. *Bioethics*. <https://doi.org/10.1111/BIOE.12862>
- Evans, M. I., & Britt, D. W. (2022). Resistance to Change. *Reproductive Sciences*. <https://doi.org/10.1007/s43032-022-01015-9>

- Faugno, E., Galbraith, A., Walsh, K. E., Maglione, P. J., Farmer, J. R., & Ong, M. (2024). Experiences with diagnostic delay among underserved racial and ethnic patients: a systematic review of the qualitative literature. *BMJ Quality & Safety*. <https://doi.org/10.1136/bmjqqs-2024-017506>
- Fetter, M. S. (2009). Interoperability--making information systems work together. *Issues in Mental Health Nursing*. <https://doi.org/10.1080/01612840902722138>
- Flanagan, J. (2014). Joint Emergency Services Interoperability Programme: working together saving lives. *Journal of Paramedic Practice*. <https://doi.org/10.12968/JPAR.2014.6.6.284>
- Gary, C., Magdalla, B., Saracino, G., William, M., Lecamwasam, H., Victor, L., Matthew, S., & Kevin, G. (2019). *Improved healthcare interoperability environment system*.
- Gasser, U. (2015). Interoperability in the Digital Ecosystem. *Social Science Research Network*. <https://doi.org/10.2139/SSRN.2639210>
- Gómez, D., Romero, J. S. H., López, P., Vazquez, J. L., Cappo, C., Pinto, D., & Villalba, C. (2021). Cloud architecture for electronic health record systems interoperability. *Technology and Health Care*. <https://doi.org/10.3233/THC-212806>
- Gour, S., Peake, A. R., Tong, C., Churm, J., Ahmad, B., Pournik, O., & Arvanitis, T. N. (2024). Advancing Healthcare Through Interoperability: Implementing Scalable Solutions for Patient Data Integration. *Studies in Health Technology and Informatics*. <https://doi.org/10.3233/shti240390>
- Grenvik, A. (1974). Role of allied health professionals in critical care medicine. *Critical Care Medicine*. <https://doi.org/10.1097/00003246-197401000-00002>
- Gupta, A., Sharma, A., & Jha, D. K. (2024). *Overcoming Obstacles STEP By STEP: A Comprehensive Review of Challenges and Strategies in Implementing Hospital Management Information Systems in India*. <https://doi.org/10.21203/rs.3.rs-4631703/v1>
- Han, H. (2022). Disclosing Adverse Events in Healthcare: Understanding the Gap Between Knowledge and Practice in Developing Countries. *Global Journal on Quality and Safety in Healthcare*. <https://doi.org/10.36401/jqsh-22-x4>
- Hanna, J. S., & Saad, R. (2024). *Medical Errors*. <https://doi.org/10.1093/med/9780197584569.003.0336>
- Hauenstein, L., Gao, T., Sze, T., Crawford, D., Alm, A. M., & White, D. T. (2006). A Cross-Functional Service-Oriented Architecture to Support Real-Time Information Exchange in Emergency Medical Response. *International Conference of the IEEE Engineering in Medicine and Biology Society*. <https://doi.org/10.1109/IEMBS.2006.260878>
- Höpken, W. (2022). *Interoperability*. <https://doi.org/10.4337/9781800377486.interoperability>
- House, A., Power, N., & Alison, L. (2014). A systematic review of the potential hurdles of interoperability to the emergency services in major incidents: recommendations for solutions and alternatives. *Cognition, Technology & Work*. <https://doi.org/10.1007/S10111-013-0259-6>
- Khard, M. H. A., Tobiqe, R. F., M, Aldawsari. M. B., Khardali, A., khardali, K. M., Alirfan, H. H., Alomari, F. M., mansour, A. S. M. A., Hamad, A. M. Y., & H, A.-S., Ali Mansoor. (2024). Patient Safety and Medical Error Prevention in General Practice: A Comprehensive Systematic Review. *Journal of Ecohumanism*. <https://doi.org/10.62754/joe.v3i7.4686>
- Kim, S.-C. (2023). Integration of information and communication technology in emergency medical services: The Chungbuk Smart Emergency Service Project. *Journal of The Korean Medical Association*. <https://doi.org/10.5124/jkma.2023.66.7.450>
- Kuehn, A., Kaschewsky, M., Kappeler, A., Spichiger, A., & Riedl, R. (2011). Interoperability and information brokers in public safety: an approach toward seamless emergency communications. *Journal of Theoretical and Applied Electronic Commerce Research*. <https://doi.org/10.4067/S0718-18762011000100005>

- Kuziemsky, C. E., Archer, N., & Peyton, L. (2009). Towards E-Health Interoperability: Challenges, Perspectives and Solutions. *Journal of Emerging Technologies in Web Intelligence*. <https://doi.org/10.4304/JETWI.1.2.107-109>
- Kwon, G. H. (2010). *A Model based Design Framework for Interoperable Communication Systems*.
- Laxmanrao, R. C., & Vidhate, S. P. (2023). Health Metrics Generation by Streamlining Health Care Service through Cloud based Electronics Health Record. *International Journal of Science and Research*. <https://doi.org/10.21275/sr231212200724>
- Lezcano, L., Santos, L., & García-Barriocanal, E. (2013). Semantic Integration of Sensor Data and Disaster Management Systems: The Emergency Archetype Approach. *International Journal of Distributed Sensor Networks*. <https://doi.org/10.1155/2013/424821>
- Liakh, A., Dzhemiliey, A., Antoniv, M., Uzlova, A., Matiushenko, I., Reutova, M., Kopetskyi, V., Huiyanuk, I., Beznosenko, A., & Melnitchouk, N. (2024). Factors Affecting Cancer Diagnosis and Treatment Delays in Ukraine. *JCO Global Oncology*. <https://doi.org/10.1200/go-24-66000>
- Lucas, B., Brammen, D., Schirrmeister, W., Aleyt, J., Kulla, M., Röhrig, R., & Walcher, F. (2019). Requirements for a sustainable standardization and digitalization in clinical emergency and acute medicine. *Unfallchirurg*. <https://doi.org/10.1007/S00113-019-0603-2>
- Machalek, A., & Dunlop, D. (2016). *Collaboration Web - Social Computing Technology for Emergency Data Interoperability*.
- MBA, B. P., BS, V. W., ME, J. K., (Candidate), J. C., BS, (Candidate), A. S., BS, & MBA/PhD, A. G. (2023). Surmounting Barriers to Healthcare Data and Information: International Case Studies. *Telehealth and Medicine Today*. <https://doi.org/10.30953/thmt.v8.428>
- Meeus, S., Addink, W., Agosti, D., Arvanitidis, C., Balech, B., Dillen, M., Dimitrova, M., González-Aranda, J. M., Holetschek, J., Islam, S., Jeppesen, T. S., Mietchen, D., Nicolson, N., Penev, L., Robertson, T., Ruch, P., Trekels, M., & Groom, Q. (2022). Recommendations for interoperability among infrastructures. *Research Ideas and Outcomes*. <https://doi.org/10.3897/rio.8.e96180>
- Missing Innovations. (2023). <https://doi.org/10.1093/oso/9780197603109.003.0003>
- Mohammed, A. A., Saeed, R., & Awouda, A. E. (2018). *Microcontroller-Based Two-Way Radio Interoperability System Public Safety Communications*.
- Moreira, J. L. R. (2019). *SEMIoTICS: Semantic Model-driven Development for IoT Interoperability of Emergency Services : Improving the Semantic Interoperability of IoT Early Warning Systems*. <https://doi.org/10.3990/1.9789402815870>
- Nomula, V. K. (2024). *Imperative of Standards and Interoperability in Modern Medicine*. <https://doi.org/10.69888/ftshsl.2024.000170>
- Politi, R. E., Mills, P. R., Zubkoff, L., & Neily, J. (2022). Delays in Diagnosis, Treatment, and Surgery: Root Causes, Actions Taken, and Recommendations for Healthcare Improvement. *Journal of Patient Safety*. <https://doi.org/10.1097/PTS.0000000000001016>
- Puneeth, R. P., & Parthasarathy, G. (n.d.). Seamless Data Exchange: Advancing Healthcare with Cross-Chain Interoperability in Blockchain for Electronic Health Records. *International Journal of Advanced Computer Science and Applications*. <https://doi.org/10.14569/ijacs.2023.0141031>
- Radwan, M. (2022). Disclosing Adverse Events in Healthcare: Understanding the Gap Between Knowledge and Practice in Developing Countries. *Global Journal on Quality and Safety in Healthcare*. <https://doi.org/10.36401/JQSH-22-X4>
- Redick, E., Stroud, A. R., & Kurack, T. (Terri) B. (1994). Expanding the use of critical pathways in critical care. *Dimensions of Critical Care Nursing*. <https://doi.org/10.1097/00003465-199411000-00013>

- Sartipi, K., & Yarmand, M. H. (2008). Standard-based data and service interoperability in eHealth systems. *International Conference on Software Maintenance*. <https://doi.org/10.1109/ICSM.2008.4658067>
- Schütte, F., Casado, R., & Rubiera, E. (2013). *Solving interoperability issues in cross border emergency operations*.
- Schütte, F., Casado, R., & Rubiera, E. (2013). Solving interoperability issues in cross border emergency operations.
- Shinde, Y., Adsure, Mr. S., Sakore, S., Jadhav, O., & Bhandarkar, T. (2024). Empowering Electronic Health Record Systems (EHRs) with Cloud Storage Management. *International Journal of Advanced Research in Science, Communication and Technology*. <https://doi.org/10.48175/ijarsct-15021>
- Songwei, M., & Francis, S. J. (2020). *Systems, methods and techniques for interoperable emergency communication*.
- The Psychology of Interoperability: A Systematic Review and Case Study from the UK Emergency Services. (2023). <https://doi.org/10.31234/osf.io/kzd9r>
- Thomas, K., Bergethon, P. R., & Reimer, M. (2010). Interoperability for First Responders and Emergency Management: Definition, Need, and the Path Forward. *World Medical & Health Policy*. <https://doi.org/10.2202/1948-4682.1070>
- Tsilas, N. L. (2007). Enabling open innovation and interoperability: recommendations for policy-makers. *International Conference on Theory and Practice of Electronic Governance*. <https://doi.org/10.1145/1328057.1328071>
- Venkatasubramanian, K. K. (2014). The Chronicles of Interoperability: Failures, Safety, and Security. *Biomedical Instrumentation & Technology*. <https://doi.org/10.2345/0899-8205-48.S1.19>
- Yadav, E., & Singh, E. (2024). Centralized Health Coordination System for Managing Medical Records. *International Journal For Science Technology And Engineering*. <https://doi.org/10.22214/ijraset.2024.62687>
- Yellappa, V., Devadasan, N., Krumeich, A., Pai, N. P., Vadnais, C., Pai, M., & Engel, N. (2017). *How patients navigate diagnostic ecosystem in a fragmented health system : A qualitative study from India*. *Tropical Medicine & International Health*.