# The Role of Medical Laboratory Specialists and Phlebotomists in Reducing Errors and Enhancing Patient Safety

Hanadi Faleh Salem Albalawi<sup>1</sup>, Jasser Hamed Hamad Almutiri<sup>2</sup>, Majed Abdullah Alqahtani<sup>3</sup>, Jawaher Abdulaziz Alsubaie<sup>4</sup>, Mashaal Saad A Abo Glead<sup>5</sup>, Aminah Ahmad Mansoor Tamah<sup>6</sup>, Sawsan Saeed Mohammed Al Jayzani<sup>7</sup>, Ahmed Mufarah Alanazi<sup>8</sup>

- 1 Laboratory, Al Sharqia Health Care Center, Yanbu
- 2 Laboratory Technician, Madinah Cardiac Center, Almadina Almonwarh
- 3 Laboratory Specialist, Eman General Hospital, Riyadh
- 4 laboratory specialists, Prince sultan cardiac center, Riyadh
- 5 Blood Draw Technician, Security Forces Hospital, Riyadh
- 6 Blood Draw Technician, Security Forces Hospital, Riyadh
- 7 Blood Draw Technician. Security Forces Hospital. Rivadh
- 8 Medical Laboratory Technician, Ministry of Health Branch, Riyadh

#### Abstract

Medical and clinical laboratories play a critical role in healthcare by providing accurate diagnostic data that informs clinical decisions and treatment plans. However, errors in the pre- and post-analytical stages of laboratory testing can compromise patient safety and clinical outcomes. This review explores the nature and impact of pre- and post-analytical errors, highlighting common issues such as sample collection errors, inaccurate labeling, poor handling of transport, and delays in reporting results. The critical role of medical laboratory professionals, technicians, and phlebotomists in reducing these errors through adherence to protocols and quality assurance practices is emphasized. Furthermore, the research examines the transformative impact of technological advances, including automation, laboratory information management systems (LIMS), artificial intelligence, and point-of-care testing (POCT), in reducing errors and improving the reliability of laboratory results. Addressing the challenges facing laboratory services and leveraging opportunities for innovation is essential to improving diagnostic accuracy, enhancing patient safety, and achieving better healthcare outcomes.

**Keywords:** Clinical laboratories, analytical errors, patient safety, medical laboratory specialists, phlebotomy, automation, artificial intelligence

#### Introduction

In modern healthcare, medical and clinical laboratories contribute to providing accurate diagnostic data that enhances the ability of physicians to make medical decisions and develop treatment plans efficiently and effectively [1]. Therefore, medical laboratory specialists, technicians, and blood drawing technicians must consider all scientific and technical aspects to achieve the accuracy and reliability of laboratory results [2]. The reliability of laboratory results depends on the pre-analysis, intra-analysis, and post-analysis stages of laboratory tests, as errors in these stages significantly affect the accuracy of laboratory test results that result in making treatment decisions for patients [3,4].

Preanalytical errors typically involve patient preparation, sample collection, labeling, transportation, storage, and hemolysis due to mishandling or insufficient sample volume. These errors constitute the majority of laboratory-related errors [5]. These errors are caused by poor communication, inadequate training, or lack of standardized procedures that compromise patient safety. Postanalytical errors include inaccurate medical reports, poor interpretation of results, and delays in communicating results to specialized medical teams [6]. Transcription errors or delays in communicating laboratory results to clinicians can lead to inappropriate clinical decisions, negatively impacting patient outcomes [7]. In the healthcare landscape and the increasing demand for medical laboratory services, these errors can have disastrous consequences that impact patient safety and healthcare [8]. Therefore, addressing these

challenges requires adopting error-handling strategies and technologies that contribute to improving the reliability of laboratory tests, enhancing patient safety, and enhancing healthcare efficiency [9].

Accordingly, this review aims to explore pre- and post-analytical errors and their impact on patient care and safety, and to identify strategies and the role of technology in mitigating them.

# **Pre-Analytical Errors in Laboratory Diagnostics**

Laboratory errors usually occur in the pre-analytical stage of patient preparation, sample collection, labeling, transportation, and storage. This affects the integrity and quality of the sample, which directly impacts the reliability of the analytical stage. Proper communication and adherence to protocols during these steps are essential to avoid compromising sample integrity [10].

## - Patient-related issues

Pre-analytical errors often arise from poor communication with patients or patient lack of readiness and following instructions such as stopping medications and fasting, which can affect sample quality and reliability of results [11]. Patient education and clarity of instructions and directions enhance the accuracy of laboratory tests.

## - Sample Collection Errors

Phlebotomy technicians play a vital role in ensuring that samples are collected accurately, efficiently, and follow approved medical protocols. Errors such as collecting insufficient sample volumes or improper handling during venipuncture can lead to errors. The expertise of phlebotomy technicians is critical in reducing these errors and ensuring that collected samples meet the required standards for testing [12].

## - Labeling Errors

Labeling errors often occur due to work pressures, where samples are left unlabeled. Medical laboratory technicians play a critical role in ensuring accurate labeling and traceability of samples. Their attention to detail helps prevent mix-ups and ensures results are matched to the correct patient [13].

## - Transportation and Storage

Transporting and storing samples requires proper conditions such as temperature stability or timely delivery. Medical laboratory technicians play a critical role in monitoring and managing these processes to maintain sample quality and ensure that samples reach the analytical stage in optimal condition [14].

## **Post-Analytical Errors in Laboratory Diagnostics**

Postanalytical errors refer to inaccuracies or delays that occur during the reporting, communication, or interpretation of laboratory results. These errors may include transcription errors, delays in reporting critical values, or misinterpretation of results. Postanalytical errors are errors that occur after the analytical process has been completed [15]. These errors are particularly important because they directly impact how laboratory results are communicated and interpreted, which can impact clinical decision-making and patient outcomes.

#### - Reporting and Communication Issues

Reporting errors such as misprints of results or delays in communicating critical results to healthcare providers are major causes of post-analytical errors. Laboratory technicians are responsible for ensuring accurate and timely delivery of results, as delays or inaccuracies can lead to inappropriate clinical procedures, misdiagnoses, or delayed interventions [16].

# - Misinterpretation of Results

Post-analytical errors arise due to ambiguity in laboratory reports or lack of clear reference ranges, resulting in inaccurate clinical decisions. Medical laboratory technicians play a critical role in reducing these errors by providing detailed, standardized reports that facilitate accurate interpretation [17].

#### - Critical Value Notification Failure

The inability of medical laboratory technicians to provide critical laboratory values for laboratory tests due to ineffective communication protocols or technological failures impairs the ability of clinicians to make clinical decisions [18].

# Role of Medical Laboratory Specialists and Technicians

The knowledge and technical expertise of medical laboratory technicians contribute to the quality of clinical laboratory work and adherence to standards and protocols that enhance the accuracy and results of laboratory tests [19]. The role of medical laboratory technicians includes managing the validation of test results, implementing quality control measures, and addressing technical issues that may compromise diagnostic accuracy. They are also responsible for training and guiding laboratory technicians and specimen collection technicians in the latest techniques and promoting error prevention

Hanadi Faleh Salem Albalawi<sup>1</sup>, Jasser Hamed Hamad Almutiri<sup>2</sup>, Majed Abdullah Alqahtani<sup>3</sup>, Jawaher Abdulaziz Alsubaie<sup>4</sup>, Mashaal Saad A Abo Glead<sup>5</sup>, Aminah Ahmad Mansoor Tamah<sup>6</sup>, Sawsan Saeed Mohammed Al Jayzani<sup>7</sup>, Ahmed Mufarah Alanazi<sup>8</sup>

strategies. Medical laboratory technicians ensure the accuracy and reliability of laboratory results by implementing rigorous quality assurance programs, which support clinical decision-making and patient care [20]. Medical laboratory technicians verify the validity of test results by applying their knowledge of laboratory techniques and quality control measures. They evaluate the consistency of results with expected standards and identify and address potential abnormalities that may affect clinical decisions [21].

## **Role of Phlebotomists in the Diagnostic Process**

Phlebotomy technicians play a critical role in the pre-analytical phase of laboratory diagnostics by ensuring accurate collection of patient samples. Their primary responsibility is to obtain high-quality samples while minimizing pre-analytical errors such as hemolysis or contamination. Proper sample collection techniques are critical to maintaining sample integrity, which directly impacts the reliability of laboratory results [22]. In addition, phlebotomy technicians are the first point of contact with patients during laboratory testing, requiring effective patient communication skills, confidence building, and patient anxiety management, which contribute to the accuracy of diagnostic results and enhance the patient experience [23]. Phlebotomy technicians also participate in regular training and skill development, keeping up with developments in sample collection methods, safety protocols, and patient care techniques. This helps bridge the gap between patients and laboratory services [22,23].

## **Relationship Between Laboratory Errors and Patient Safety**

Errors in laboratory tests affect patient safety, as errors resulting from insufficient blood sample, incorrect classification, and poor transportation and storage conditions lead to inaccurate results that affect the accuracy and efficiency of clinical interventions and therapeutic decisions [24]. In addition, delays in reporting results, especially critical values, lead to postponed interventions and negative patient outcomes [14]. Therefore, providing accurate and reliable laboratory results in real time contributes to [25]:

- **Improving diagnosis and treatment:** High-quality laboratory practices ensure that diagnostic results are consistent with the patient's clinical presentation, enabling accurate and targeted treatments.
- **Reducing hospital stay:** Reliable results help avoid unnecessary repeat tests or interventions, which promotes faster recovery and shorter hospital stays.
- **Improving patient experience:** Quality laboratory results enhance patient confidence and experience, which contributes to patient adherence to healthcare plans, which contributes to achieving better health outcomes in the long term.

The collaborative efforts of laboratory professionals, technicians, and phlebotomists are critical to reducing errors and improving patient outcomes. Specialists and technicians ensure accuracy through rigorous verification and quality assurance processes, while phlebotomists maintain sample integrity through proper collection and handling [26].

#### **Technological Advancements in Reducing Laboratory Errors**

Technological advances have revolutionized laboratory operations by reducing errors, improving efficiency, and enhancing the reliability of diagnostic processes. These innovations address challenges at every stage of testing, from pre-analysis to post-analysis, ensuring accurate and timely results.

# - Automation in Laboratory Operations

Automation in laboratory operations enables data entry, sample processing, and result validation to be automated systems, reducing human error. Robotic technologies ensure uniform sample handling and processing, enhancing the accuracy of laboratory results [27].

#### - Laboratory Information Management Systems (LIMS)

Laboratory Information Management Systems (LIMS) play a crucial role in streamlining laboratory operations by providing a central platform for data management and sample tracking. They also ensure accurate documentation and prevent errors associated with manual labeling or reporting. LIMS also provide automated alerts for critical values [28]. Furthermore, through integration with electronic health records, LIMS facilitates enhanced communication and coordination among clinical teams, enhancing the accuracy of laboratory results [29].

#### - Artificial Intelligence and Machine Learning

Artificial intelligence and machine learning tools have been introduced to enhance the ability of medical laboratory professionals to accurately detect errors and anomalies. These technologies support predictive analysis by identifying potential errors before they occur, allowing for proactive intervention.

Additionally, AI-powered decision support systems provide clinicians with data-driven insights, enhance diagnostic accuracy and improving patient outcomes [30].

# - Point-of-care testing (POCT)

Point-of-care testing devices bring diagnostic capabilities closer to the patient, reducing errors associated with transportation, storage, and delays in reporting. These portable devices enable immediate testing and delivery of results, especially in emergency situations or in resource-limited environments. POCT enhances accessibility and ensures timely clinical decisions [31].

# - Barcoding and tracking technologies

Barcoding and tracking technologies have dramatically improved sample identification and monitoring. Barcode systems eliminate labeling errors by ensuring that each sample is uniquely and accurately identified. Real-time tracking tools monitor the status and location of samples throughout their life cycle [32].

## **Challenges in Laboratory Services**

- **Resource constraints:** Limited budgets, workforce shortages, and inadequate infrastructure can hinder the implementation of advanced diagnostic tools and quality improvement initiatives.
- **Human factors:** Errors due to fatigue, disconnection, or lack of training among laboratory staff remain significant issues.
- **Rapid technological advances:** Keeping up with advanced diagnostic technologies requires ongoing investment in equipment and staff training, which can strain resources.
- **Data management issues:** With increasing reliance on digital systems, laboratories face challenges in managing large amounts of data securely and efficiently while avoiding errors in reporting and interpretation.
- **Regulatory compliance:** Navigating stringent regulatory requirements and maintaining accreditation requires ongoing monitoring and adaptation, which can be resource-intensive

## Opportunities for improvement and innovation

- **Automation and AI integration:** Adopting automated systems and AI tools can reduce human error, improve efficiency, and support accurate data interpretation. These technologies streamline processes such as sample tracking, result validation, and critical value alerts.
- **Enhanced training programs:** Regular, advanced training for laboratory staff helps address knowledge gaps, improve error prevention, and keep staff up to date with the latest technologies and protocols.
- **Digital transformation:** Implementing laboratory information management systems (LIMS) can improve workflow management, data tracking, and communication with healthcare providers.
- Quality assurance: Strengthening quality control measures and adopting standardized protocols across laboratories enhances consistency and reliability in diagnostic testing.

#### Conclusion

Errors in the pre- and post-analytical stages of laboratory testing have far-reaching implications for patient safety and clinical outcomes. Mitigating these errors requires the combined efforts of medical laboratory professionals, technicians, and phlebotomists, along with the adoption of technological advances. Implementing quality assurance protocols, incorporating innovative solutions such as automation, laboratory information management systems, and artificial intelligence, and addressing resource constraints and training gaps, can improve the accuracy of medical laboratories and the reliability of laboratory results. Enhancing communication and standardizing practices across laboratories also ensures that healthcare providers have access to accurate and timely diagnostic data, ultimately improving patient care and reducing healthcare costs.

## References

- 1. Alowais, Shuroug A., et al. "Revolutionizing healthcare: the role of artificial intelligence in clinical practice." *BMC medical education* 23.1 (2023): 689.
- 2. SHIRVAN, Samad Joshani. "The Importance of Laboratory Technicians in Health." *Academic Researches in* (2021): 583.
- 3. Scuffi, Cosimo. "Interstitium versus blood equilibrium in glucose concentration and its impact on subcutaneous continuous glucose monitoring systems." *European Endocrinology* 10.1 (2014): 36.

Hanadi Faleh Salem Albalawi<sup>1</sup>, Jasser Hamed Hamad Almutiri<sup>2</sup>, Majed Abdullah Alqahtani<sup>3</sup>, Jawaher Abdulaziz Alsubaie<sup>4</sup>, Mashaal Saad A Abo Glead<sup>5</sup>, Aminah Ahmad Mansoor Tamah<sup>6</sup>, Sawsan Saeed Mohammed Al Jayzani<sup>7</sup>, Ahmed Mufarah Alanazi<sup>8</sup>

- 4. do Nascimento, Israel Júnior Borges, et al. "The global effect of digital health technologies on health workers' competencies and health workplace: an umbrella review of systematic reviews and lexical-based and sentence-based meta-analysis." *The Lancet Digital Health* 5.8 (2023): e534-e544.
- 5. Mankar, Pooja Dattatray, et al. "Enhancing Quality in Hematology Laboratory Testing: A Comprehensive Review of Preanalytical Phase Errors and Prevention Strategies." *Journal of Applied Hematology* 15.2 (2024): 95-101.
- 6. Bolandbala, Zahra. *Root Cause Analysis of Pre-analytical Errors in Laboratory Diagnostics*. Diss. University of Phoenix, 2017.
- 7. Arifin, Azila, and Maryati Mohd-Yusof. "Error evaluation in the laboratory testing process and laboratory information systems." *Journal of Medical Biochemistry* 41.1 (2022): 21.
- 8. Fenta, Demissie Assegu, and Musa Mohammed Ali. "Factors affecting quality of laboratory result during ordering, handling, and testing of the patient's specimen at hawassa university college of medicine and health science comprehensive specialized hospital." *Journal of Multidisciplinary Healthcare* (2020): 809-821.
- 9. Stergiou, Christos L., et al. "Secure Monitoring System for IoT Healthcare Data in the Cloud." *Applied Sciences* 14.1 (2023): 120.
- 10. Azocar González, Ignacio, et al. "Pre-analytical Errors in Clinical Laboratories: An Integrative Review." *Enfermería: Cuidados Humanizados* 13.2 (2024).
- 11. Samuel, Mburu, Mutuku Irene, and Kimani Kenny. "Readiness of Primary Health Care Diagnostic Laboratory Services to Support UHC Programme in Kenya: A Case Study of Three Counties." *Journal of Health and Environmental Research* 6.4 (2020): 128-42.
- 12. King, Sandy. "Analysis of Phlebotomy Training Implementation to Reduce Lab Errors in the Clinical Setting." (2023).
- 13. Cornish, Nancy E., et al. "Clinical laboratory biosafety gaps: lessons learned from past outbreaks reveal a path to a safer future." *Clinical microbiology reviews* 34.3 (2021): 10-1128.
- 14. Maki, Kevin C., et al. "Perspective: Laboratory considerations and clinical data management for human nutrition randomized controlled trials: Guidance for ensuring quality and integrity." *Advances in Nutrition* 12.1 (2021): 46-58.
- 15. Alrashidi, STRATEGIES Mohamed Nashi, et al. "ANALYZING ERRORS IN LABORATORY TESTING: CAUSES AND PREVENTION STRATEGIES." *Neuropsychopharmacologia Hungarica* 21.1 (2023).
- 16. Alsaedi, Abdulmajeed Salem Atallah, et al. "Improving Eminence Assurance: The Crucial Role Of Lab Technicians In Ensuring Accurate Test Results For Nurses." *Journal of Namibian Studies: History Politics Culture* 32 (2022): Abdullah-Salem.
- 17. Ly, Huong. *Medical Laboratory Managers Success with Preanalytical Errors*. Diss. Walden University, 2017.
- 18. Carey, Roberta B., et al. "Practical guidance for clinical microbiology laboratories: Implementing a quality management system in the medical microbiology laboratory." *Clinical microbiology reviews* 31.3 (2018): 10-1128.
- 19. Babyar, Julie. "Laboratory science and a glimpse into the future." *International Journal of Healthcare Management* (2020).
- 20. Lubin, Ira M., et al. "Bringing the clinical laboratory into the strategy to advance diagnostic excellence." *diagnosis* 8.3 (2021): 281-294.
- 21. Sirois, Margi. Laboratory Procedures for Veterinary Technicians E-Book: Laboratory Procedures for Veterinary Technicians E-Book. Elsevier Health Sciences, 2018.
- 22. Lifshitz, Mark S. "Optimizing laboratory workflow and performance." *Henry's clinical diagnosis and management by laboratory methods E-book. St. Louis: Elsevier Health Sciences* (2017): 11-9.
- 23. Little, Kimberly Townsend. Fundamental Concepts and Skills for the Patient Care Technician-E-Book: Fundamental Concepts and Skills for the Patient Care Technician-E-Book. Elsevier Health Sciences, 2022.
- 24. Alshaghdali, Khalid, et al. "Detecting preanalytical errors using quality indicators in a hematology laboratory." *Quality Management in Healthcare* 31.3 (2022): 176-183.

- 25. Lippi, Giuseppe, and Mario Plebani. "Integrated diagnostics: the future of laboratory medicine?." *Biochemia medica* 30.1 (2020): 18-30.
- 26. Al-Worafi, Yaser Mohammed. "Patient Care Related Issues in the Developing Countries: Laboratory Tests and its Interpretation." (2024).
- 27. More, Dnyaneshwar, et al. "An update on current trend in sample preparation automation in bioanalysis: Strategies, challenges and future direction." *Critical Reviews in Analytical Chemistry* (2024): 1-25.
- 28. Laboratory Information Management Systems (LIMS) play a crucial role in streamlining laboratory operations by providing a central platform for data management and sample tracking.
- 29. Nasrumminallah, Maryam, and Fatima Rehan. "Laboratory Information Management System (LIMS) Analysis: A Lucrative Tool to Support the Control of Antimicrobial Resistance (AMR)." *Antimicrobial Stewardship-New Insights*. IntechOpen, 2024.
- 30. AL Thagafi, Shuroog Hassn, et al. "Revolutionizing Healthcare: The Technological Transformation of Medical Laboratory Outcomes." *EPH-International Journal of Biological & Pharmaceutical Science* 8.1 (2022): 1-8.
- 31. Al-Worafi, Yaser Mohammed. "Patient Care Related Issues in the Developing Countries: Laboratory Tests and its Interpretation." (2024).
- 32. Yang, Mingzhu, Yong Liu, and Xingyu Jiang. "Barcoded point-of-care bioassays." *Chemical Society Reviews* 48.3 (2019): 850-884.