

The Collaborative Roles of the Diagnostic Triad: Optometrists, Medical Laboratory Sciences, and Radiologists in Advancing Modern Healthcare Outcomes and Patient Safety

Hamad Nasser Abu Melhah¹
Mubarak Mohammed Mahdi Al Jafar²
Faten Nasser Saeed Alqahtani³
Mohammad Hussain Mohammad Al Dagrir⁴
Salem Hamad Al Haider⁵
Abdullah Mubarak Alnujaym⁶
Ali Saleh Alshehri⁷
Mohammed Futais Alhajri⁸

1. Medical Laboratory Technician, King Khalid Hospital, Najran
2. Medical Laboratory Technician, King Khalid Hospital, Najran
3. Medical Labs. Alsenayah Primary Health Care Center, Khamis Mushait
4. Laboratories And Medical Technology, Najran General Hospital, Najran
5. Optician, Al-Hadn Clinic, Najran
6. Optometry Doctor, MOH, Riyadh
7. Optometry Doctor, MOH, Riyadh
8. Radiologist, Second Health Cluster, Riyadh

Abstract

The complexities of modern healthcare require a multidisciplinary approach to improve patient outcomes and ensure safety. This review explores the synergistic roles of ophthalmologists, medical laboratory scientists, and radiologists, referred to as the diagnostic triad, in enhancing diagnostic accuracy and healthcare efficiency. Integrating their expertise enables accurate diagnosis, personalized treatment, and optimized resource utilization. Despite the transformative potential of this collaboration, systemic challenges such as communication gaps and role ambiguity hinder their full realization. Solutions, including standardized protocols, advanced technologies, and multidisciplinary training, are proposed to improve collaborative workflows. Innovations such as artificial intelligence, big data analytics, and telehealth are amplifying the impact of the triad on modern healthcare.

Keywords: Diagnostic triad, optometry, medical laboratory science, radiology, multidisciplinary collaboration, patient safety, healthcare outcomes.

Introduction:

Modern healthcare systems require a collaborative, multidisciplinary approach to overcome the complexities of healthcare and meet the diverse and complex needs of patients in the modern healthcare landscape, which enhances diagnostic accuracy, patient outcomes, and overall health [1]. Therefore, collaboration between the triad of Optometrists, Medical Laboratory specialists, and Radiologists enhances the accuracy of medical diagnoses, treatment plans, and monitoring and management of many complex diseases, which improves patient outcomes [2].

In healthcare, Optometrists play an important role in diagnosing vision-related disorders and detecting systemic diseases that are associated with eye health, such as diabetes, hypertension, and neurological diseases that manifest through ocular symptoms, which enables them to direct patients to further medical examinations and imaging in cases of systemic diseases and complex diseases [3,4]. In addition, Optometrists play an educational role in public health initiatives and preventive care [5].

Medical laboratory technicians and specialists play a pivotal role in the diagnostic process by performing biological tests and analyses that enable the identification of vital signs, monitoring disease progression, and providing accurate diagnostic data in real time, enhancing the ability of physicians and specialists to make informed, evidence-based decisions that suit the diverse needs of patients [6]. Radiologists complement this collaborative approach, as advanced imaging technologies contribute to early detection and accurate diagnosis of pathogens [7]. Radiologists contribute critical visual insights that often confirm laboratory findings or guide clinical interventions through X-rays, CT scans, MRIs, and ultrasound [8]. Furthermore, the integration of medical imaging findings with clinical and laboratory data effectively enhances patient outcomes through a comprehensive diagnostic approach.

Therefore, integrating the diagnostic triad into healthcare in modern healthcare enhances timely diagnostic accuracy, reduces medical errors, and improves the use of healthcare resources [9]. However, the potential of

this triad remains underutilized due to barriers such as communication gaps, role ambiguity, and systemic challenges [10].

Accordingly, this review aims to explore the complementary roles of optometrists, medical laboratory scientists, and radiologists in modern healthcare, highlighting their collaborative contributions to improving healthcare outcomes and patient safety.

Competencies and contributions of the diagnostic triad: optometrists, medical laboratory technicians, and radiologists

In modern healthcare, the diagnostic triad provides accurate, comprehensive, and timely diagnoses that inform evidence-based treatment decisions. Each specialty contributes unique skills and knowledge, providing complementary insights that collectively improve healthcare outcomes and patient safety.

Optometrists:

Optometrists are vital contributors to modern healthcare. Optometrists play a pivotal role in bridging the healthcare gap between eye care and systemic disease detection. The primary tasks of optometrists are to diagnose and manage eye conditions such as cataracts, glaucoma, macular degeneration, and others [11]. They also play a role in identifying systemic diseases related to vision health such as diabetes, hypertension, and neurological disorders [3,4,11]. Regular screenings by optometrists enable early detection of systemic diseases, enabling timely interventions that improve patient outcomes and prevent complications. Furthermore, optometrists play a pivotal role in public health by conducting community screenings and educating patients about the importance of regular vision care. This proactive approach improves access to healthcare, engages patients in their treatment plans, and improves adherence and health outcomes [12].

As healthcare becomes increasingly multidisciplinary, the role of optometrists continues to evolve. Their collaboration with other professionals, such as medical laboratory scientists and radiologists, highlights the importance of integrating visual findings into a comprehensive diagnostic framework [13]. Optometrists ensure that both the visual and systemic aspects of patient care are addressed holistically, enhancing diagnostic accuracy, quality of outcomes, and overall standards of modern healthcare.

Medical Laboratory Technicians:

In modern healthcare, medical laboratory technicians (MLTs) play a pivotal role in providing accurate and efficient diagnoses by analyzing patients' biological samples. Their mission is to provide accurate data that helps detect disease biomarkers, monitor health conditions, and support clinical decisions [14]. The MLTs are responsible for executing a wide range of diagnostic tests across multiple specialties, including hematology, microbiology, biochemistry, and immunology. These tests form the foundation of evidence-based medicine, providing critical insights into conditions such as infections, chronic diseases, and organ dysfunctions [15]. In addition, medical laboratory technicians play a transformative role in personalized medicine, using genetic testing and molecular diagnostics to customize personalized treatments for patients, which contributes to improving patient outcomes. Medical laboratory technicians also contribute to monitoring disease progression, ensuring that treatment plans are developed to enhance patient outcomes and improve patient health [16]. Furthermore, MLTs contribute to the broader healthcare system by supporting preventive and public health efforts. Their work in surveillance and outbreak investigations is also instrumental in controlling the spread of infectious diseases, safeguarding both individual and community health [17]. Technological advances, such as automation, artificial intelligence, and molecular diagnostics, have enhanced the ability of medical laboratory technicians to perform diagnostic laboratory tests quickly and accurately and develop innovative approaches to patient care [18].

Therefore, Medical laboratory technicians are essential to the diagnostic process, providing the technical expertise and operational support needed to deliver high-quality healthcare. Their work ensures that doctors have reliable data, enabling accurate diagnoses and effective treatments.

Radiologists:

Radiologists are vital contributors to modern healthcare. Advanced imaging modalities such as X-rays, CT scans, MRIs, and ultrasounds provide detailed visual insights into the internal structures of the body, enhancing the ability to diagnose patients early and accurately [19]. Radiological imaging, combined with laboratory findings, increases diagnostic accuracy and early detection of complex diseases. In addition, medical images enable radiologists to guide treatment through image-guided procedures. Such procedures as biopsies, abscess drainage, and catheter placement are performed precisely under real-time imaging, ensuring accuracy, minimizing surgical intervention, and reducing risks to patients [20]. This multidisciplinary approach promotes evidence-based decision-making, especially in complex cases such as cancer staging, where radiological findings often determine the scope and direction of treatment [21]. Furthermore, radiologists contribute significantly to treatment planning, especially in radiation oncology and interventional radiology. Digital technologies and artificial intelligence tools have improved the accuracy of radiological images, their processing and presentation into digital data, and the accuracy of interpretations. Furthermore, technologies such as 3D imaging and augmented reality are enhancing pre-operative planning and procedural accuracy, further elevating the standard of care [22]. Therefore, radiologists play an important role in the diagnostic triad, bridging the gap

in healthcare through a proactive approach that enhances patient outcomes, and ensuring the delivery of accurate, patient-centered care.

Synergy in Diagnostic and Therapeutic Pathways

The collaboration between Optometrists, medical laboratory technicians, and radiologists embodies the integration of expertise to enhance diagnostic accuracy and patient care.

- The Collaborative Diagnostic Workflow

In the diagnostic triad, Optometrists often serve as the first point of contact, detecting signs of systemic or ocular disease [11]. Medical laboratory scientists validate these findings through careful analysis of biomarkers [14], while radiologists provide detailed imaging to confirm and localize the condition [19]. This integrated process ensures accurate diagnoses and personalized treatment plans, supporting the effective management of conditions such as diabetic retinopathy and optic nerve disorders [9].

- Enhancing Patient Safety

Collaboration between different disciplines reduces diagnostic errors and ensures timely interventions. The diagnostic triad enhances accuracy and reduces the risk of misdiagnoses by cross-validating diagnostic results. Effective communication between these professionals supports evidence-based decisions, ensuring that patients receive the most appropriate care promptly [23].

- Improving Healthcare Efficiency

Collaboration streamlines patient care by reducing duplication and improving resource utilization. Coordinated workflows prevent unnecessary testing and speed up the diagnostic process, saving time and costs. This efficiency benefits patients by providing faster, more accurate care while reducing the strain on healthcare systems [24].

Challenges and Strategies for Enhancing Interdisciplinary Collaboration

Collaboration between optometrists, medical laboratory scientists, and radiologists is essential for effective patient care. However, challenges such as communication gaps, systemic barriers, and role ambiguity negatively impact the collaborative approach.

Communication Gaps and Standardized Protocols

Communication gaps, stemming from inconsistent terminology and reporting formats, often disrupt collaboration between disciplines. To resolve this, standardized protocols are essential. Clear guidelines outlining roles, responsibilities, and data-sharing practices ensure team members operate with a unified understanding, reducing errors and enhancing workflow efficiency [25].

Systemic Barriers and Technology Integration

Fragmented health records and limited access to collaborative tools present systemic challenges that delay diagnostic and treatment processes. Integrating advanced technologies, such as AI-driven diagnostics, telemedicine, and interoperable electronic health records, can bridge these gaps. These tools facilitate seamless data sharing, improve diagnostic accuracy, and enhance real-time collaboration, ensuring cohesive patient care [26].

Role Ambiguities and Shared Education and Training

Unclear role boundaries often lead to inefficiencies and misunderstandings in team workflows. Interdisciplinary education and training programs are critical to overcoming this challenge. Healthcare professionals can better understand each other's contributions, fostering mutual respect and enhancing efficiency by clarifying roles through collaborative workshops and simulation exercises [27].

Professional Isolation and a Safety-Oriented Culture

Siloed training and limited opportunities for interdisciplinary interaction reinforce professional isolation. Regular interdisciplinary case reviews, open communication, and non-punitive feedback mechanisms encourage teamwork and keep patient safety as the primary focus [28].

Innovations in Driving the Diagnostic Triad

Technological advances are revolutionizing the diagnostic triad, enabling ophthalmologists, medical laboratory scientists, and radiologists to collaborate more effectively and deliver accurate, effective care.

Artificial Intelligence and Machine Learning

Artificial intelligence and machine learning are transforming diagnostics by enhancing accuracy and enabling real-time decision-making. AI-powered tools help radiologists detect subtle abnormalities, support laboratory scientists in analyzing complex data sets, and help ophthalmologists identify early signs of systemic diseases such as diabetes through retinal scans. Artificial intelligence and machine learning Improving diagnostic accuracy and response times, especially in critical cases by prioritizing cases and streamlining workflows, are improving diagnostic accuracy and response times [29].

Wearable and Remote Monitoring

Wearable devices and remote monitoring tools collect continuous health data, providing valuable insights across the diagnostic triad. For example, ophthalmologists can track eye pressure in glaucoma patients through smart contact lenses, while laboratory scientists and radiologists use metrics derived from wearable devices to improve

their outcomes. These devices empower patients to actively participate in their care and enable early detection of health problems [30].

Big Data Analytics

Big data analytics enhances the ability of the diagnostic triad to identify patterns, improve protocols, and predict outcomes. Laboratory scientists can discover new biomarkers, radiologists can analyze imaging trends to predict disease progression, and ophthalmologists can personalize care based on demographic insights [31]. This proactive approach drives more informed decisions and improves healthcare efficiency.

Expanding Telehealth

Telehealth expands access to care by connecting the diagnostic triad through virtual platforms. Ophthalmologists can conduct remote assessments, refer patients for lab tests or imaging when needed, while specialists collaborate on diagnoses and treatment plans in real time [32]. This approach ensures comprehensive care, especially for patients in remote or underserved areas.

Conclusion

The integration of ophthalmologists, medical laboratory scientists, and radiologists into healthcare delivery represents a pivotal advance in diagnostic accuracy and patient care. Their collective expertise ensures comprehensive assessments, reduces diagnostic errors, and promotes timely interventions. However, systemic barriers and communication gaps must be addressed to unlock their full potential. Leveraging technology, promoting multidisciplinary education, and implementing standardized protocols will enhance synergy within the diagnostic triad. As healthcare evolves, this collaborative framework holds the promise of improving patient outcomes, optimizing resource utilization, and setting a new standard for safety and efficiency in modern medical practice.

References

1. Rees, Daniel J., et al. "Collaborating to deliver value in health care: exploring conditions required for successful healthcare and life science sector collaboration." *Transforming Government: People, Process and Policy* 15.1 (2021): 169-190.
2. Astik, Gopi, et al. "The Diagnostic Error in Medicine 13th Annual." *Planning* (2020).
3. Elam, Angela R., et al. "Disparities in vision health and eye care." *Ophthalmology* 129.10 (2022): e89-e113.
4. Singh, Rohan Bir, et al. "Window to the circulatory system: ocular manifestations of cardiovascular diseases." *European Journal of Ophthalmology* 30.6 (2020): 1207-1219.
5. Khan, Rakibul Hasan. "A Study On The Role Of Optometrists In Abilities In The Public And Private Sectors." *European Journal of Molecular & Clinical Medicine* 10.01: 2023.
6. Orwell, Nathan. *Lab Values: An Easy Guide to Learn Everything You Need to Know About Laboratory Medicine and Its Relevance in Diagnosing Disease*. Nathan Orwell, 2022.
7. Irede, Egwonor Loveth, et al. "Medical imaging: a critical review on X-ray imaging for the detection of infection." *Biomedical Materials & Devices* (2024): 1-45.
8. Kitson, Sean L. "Modern Medical Imaging and Radiation Therapy." *Cyber Security| Big Data| AI. Open Med Science* (2024).
9. Prabhod, Kummaragunta Joel, and Asha Gadhira. "Foundation Models in Medical Imaging: Revolutionizing Diagnostic Accuracy and Efficiency." *Journal of Artificial Intelligence Research and Applications* 4.1 (2024): 471-511.
10. Beckham, Jessica. "Factors Impacting Multidisciplinary Team Communication And Patient-Centered Communication Along The Cancer Care Continuum." (2022).
11. Hiukka, Pasi. "Optometrists as Primary Eye Care Providers and their Role as Clinical Eye Health Assessors in Finland." (2023).
12. Al-Worafi, Yaser Mohammed. "Optometry Research in Developing Countries." *Handbook of Medical and Health Sciences in Developing Countries: Education, Practice, and Research*. Cham: Springer International Publishing, 2024. 1-25.
13. Onosakponome, Evelyn Orevaghe, et al. "Comprehensive Techniques In Laboratory Medicine: An In-Depth Guide." *Issues On Health Science* 1.1 (2024): 21-65.
14. Turgeon, Mary Louise. *Clinical Laboratory Science-E-Book: Clinical Laboratory Science-E-Book*. Elsevier Health Sciences, 2022.
15. SHIRVAN, Samad Joshani. "The Importance of Laboratory Technicians in Health." *Academic Researches in* (2021): 583.
16. Strianese, Oriana, et al. "Precision and personalized medicine: how genomic approach improves the management of cardiovascular and neurodegenerative disease." *Genes* 11.7 (2020): 747.
17. Al-Worafi, Yaser Mohammed. "Laboratory Medicine Practice in Developing Countries." *Handbook of Medical and Health Sciences in Developing Countries: Education, Practice, and Research*. Cham: Springer International Publishing, 2024. 1-24.

18. Wilson, Siobhan, Shannon Steele, and Khosrow Adeli. "Innovative technological advancements in laboratory medicine: Predicting the lab of the future." *Biotechnology & Biotechnological Equipment* 36.sup1 (2022): S9-S21.
19. Islam, SK M. Shadekul, et al. "Introduction of medical imaging modalities." *Data Driven Approaches on Medical Imaging*. Cham: Springer Nature Switzerland, 2023. 1-25.
20. Friebe, Michael, and Alfredo Illanes. "Advancements in Medical Imaging and Image-Guided Procedures: A Potential—Or Rather Likely—Paradigm Shift in Diagnosis and Therapy: Understand Disruption and Take Advantage of It!" *Applied Sciences* 13.16 (2023): 9218.
21. Shore, Neal D., et al. "Addressing challenges and controversies in the management of prostate cancer with multidisciplinary teams." *Targeted oncology* 17.6 (2022): 709-725.
22. Najjar, Reabal. "Redefining radiology: a review of artificial intelligence integration in medical imaging." *Diagnostics* 13.17 (2023): 2760.
23. Singh, Hardeep, et al. "System-related interventions to reduce diagnostic errors: a narrative review." *BMJ quality & safety* 21.2 (2012): 160-170.
24. Alsubaie, Saad Saud, et al. "Multidisciplinary Approaches in General Medical Practice: Enhancing Collaboration for Better Patient Care." *Journal of Ecohumanism* 3.7 (2024): 2659-2669.
25. Nahar, Nadia, et al. "Collaboration challenges in building ml-enabled systems: Communication, documentation, engineering, and process." *Proceedings of the 44th international conference on software engineering*. 2022.
26. Beauchamp, Norman J., et al. "Integrative diagnostics: the time is now—a report from the International Society for Strategic Studies in Radiology." *Insights into Imaging* 14.1 (2023): 54.
27. Zajac, Stephanie, et al. "Overcoming challenges to teamwork in healthcare: a team effectiveness framework and evidence-based guidance." *Frontiers in Communication* 6 (2021): 606445.
28. Falade, Ifeoluwa Mary, et al. "A Comprehensive Review of Effective Patient Safety and Quality Improvement Programs in Healthcare Facilities." *Medical Research Archives* 12.7 (2024).
29. Waqar, Muhammad, Arbaz Haider Khan, and Iftikhar Bhatti. "Artificial Intelligence in Automated Healthcare Diagnostics: Transforming Patient Care." *Revista Espanola de DocumentacionCientifica* 19.2 (2024): 83-103.
30. Vijayan, Vini, et al. "Review of wearable devices and data collection considerations for connected health." *Sensors* 21.16 (2021): 5589.
31. Galdames, Iván Suazo. "From Anatomy to Algorithm: Scope of AI-Assisted Diagnostic Competencies in Health Sciences Education." *International Journal of Medical and Surgical Sciences,(IJMSS)* 11.3 (2024): 1-24.
32. Ezeamii, Victor C., et al. "Revolutionizing healthcare: how telemedicine is improving patient outcomes and expanding access to care." *Cureus* 16.7 (2024): e63881.