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Abstract 
Titanium, the prevailing material in dental implantology, encounters challenges such as peri-implantitis 
and suboptimal osseointegration, potentially compromising long-term success. Graphene, a two- 
dimensional nanomaterial with exceptional properties, has emerged as a promising avenue for enhancing 
implant performance. This review comprehensively examines the current applications of graphene and 
its derivatives, graphene oxide (GO) and reduced graphene oxide (rGO), in dental implants. We explore 
graphene's multifaceted role in augmenting osseointegration, combating bacterial infections, serving as a 
platform for drug delivery and biosensing, and reinforcing dental materials. Different incorporation 
methods, including coatings, composites, and functionalized membranes, are discussed, alongside their 
respective advantages and limitations. Finally, we address the challenges and future perspectives of 
graphene in dental implantology, underscoring the need for rigorous research, particularly clinical trials, 
to fully translate its remarkable potential into clinical practice. 

 

Introduction 

Dental implants have profoundly transformed restorative dentistry, providing a robust solution for 

replacing missing teeth. Titanium and its alloys remain the preferred materials due to their 

biocompatibility, mechanical strength, and corrosion resistance (Elias et al., 2012; Shah et al., 2019). 

However, challenges persist, including peri-implantitis (inflammation of the tissues surrounding the 

implant) and insufficient osseointegration (direct bone-to-implant contact), which can jeopardize implant 

longevity (Albrektsson&Sennerby, 1991; Esposito et al., 1998; Xu et al., 2022). These complications arise 

from a confluence of factors, including bacterial colonization, inadequate bone formation, and corrosion 

of the implant material (Eliaz, 2019; Delgado-Ruiz &Romanos, 2018). 

Nanomaterials present a promising approach to mitigate these limitations, and graphene, with its unique 

attributes, has garnered significant attention (Li et al., 2022; Tahriri et al., 2019). Graphene, a single layer 

of carbon atoms arranged in a hexagonal lattice, boasts exceptional mechanical strength, remarkable 

electrical conductivity, and inherent biocompatibility (Allen et al., 2010; Novoselov et al., 2012; Williams 

et al., 2023). Its derivatives, GO and rGO, offer further advantages such as enhanced hydrophilicity and 

the presence of functional groups that facilitate biomolecule attachment (Inchingolo et al., 2023; Li et al., 

2022; Jiˇríˇckov´a et al., 2022). 

This review meticulously explores the current applications of graphene in dental implants, focusing on its 

potential to: 1) enhance osseointegration, 2) combat bacterial infections, 3) act as a platform for drug 

delivery, 4) facilitate biosensing, and 5) reinforce dental materials. We examine the various methods 

employed to incorporate graphene into implant coatings and composites, analyzing their benefits and 

limitations. Finally, we discuss the challenges and future directions of graphene in dental implantology, 

emphasizing the critical need for further research, especially clinical trials, to fully realize its 

transformative clinical potential. 
Synthesis and Properties of Graphene and Its Derivatives 

Graphene, a single atomic layer of sp² hybridized carbon atoms arranged in a honeycomb lattice, has 

captivated the scientific community due to its extraordinary properties. Since its isolation in 2004 

(Novoselov et al., 2004), extensive research has focused on developing scalable synthesis methods and 

exploring its potential in various fields, including dental implantology. The synthesis method employed 
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significantly influences the characteristics of the resulting graphene, impacting its suitability for specific 

applications. Furthermore, chemical modifications of graphene have led to the development of derivatives 

like graphene oxide (GO) and reduced graphene oxide (rGO), each possessing unique properties that 

further broaden the scope of graphene's applications. 

Several methods exist for synthesizing graphene, each with its own advantages and disadvantages 

regarding scalability, cost, and the quality of the resulting material. Mechanical exfoliation, the original 

method used to isolate graphene, involves peeling layers from highly ordered pyrolytic graphite using 

adhesive tape (Novoselov et al., 2004). While this method yields high-quality, single-layer graphene with 

minimal defects, it is not scalable for large-scale production. Liquid-phase exfoliation offers a more 

scalable approach, involving the sonication or shearing of graphite in solvents to separate individual 

graphene sheets (Ghuge et al., 2017). However, this method often results in small graphene flakes with 

varying numbers of layers and may require the use of toxic organic solvents. 

Chemical vapor deposition (CVD) has emerged as a prominent method for producing large-area, high- 

quality graphene films (Saeed et al., 2020). In CVD, a hydrocarbon gas is decomposed on a metal 

substrate at high temperatures, leading to the formation of a graphene layer on the substrate surface. The 

quality and thickness of the graphene film can be controlled by adjusting the growth parameters, making 

CVD a versatile method for tailoring graphene for specific applications. Chemical exfoliation, typically 

employing modified Hummers' method, is widely used for producing GO (Chen et al., 2022; Hummers Jr 

&Offeman, 1958; Tienne et al., 2022). This method involves oxidizing graphite with strong oxidizing 

agents, introducing oxygen-containing functional groups that make GO highly dispersible in water. GO 

can then be further reduced to rGO using reducing agents, partially restoring the sp² carbon network and 

enhancing its electrical conductivity (Côté et al., 2009; Guo et al., 2009; Pei & Cheng, 2012). 

Other synthesis methods include epitaxial growth on silicon carbide substrates and various solution-based 

methods. Epitaxial growth involves heating SiC under ultra-high vacuum, causing silicon atoms to 

sublimate and leaving a carbon-rich surface that rearranges to form graphene (Norimatsu& Kusunoki, 

2014). Solution-based methods typically involve the reduction of GO or the exfoliation of graphite in 

specific solvents, offering potential for scalable and cost-effective production of graphene. 

The properties of graphene and its derivatives are central to their applications in dental implantology. 

Graphene's exceptional mechanical strength, attributed to its strong covalent bonds within the hexagonal 

lattice, makes it a promising material for reinforcing dental composites and improving the wear resistance 

of implants (Allen et al., 2010; Lee et al., 2015a). Its high electrical conductivity, arising from the 

delocalized pi-electrons in the sp² carbon network, is advantageous for biosensing applications and may 

also play a role in cell stimulation (Novoselov et al., 2012; Tahriri et al., 2019). 

The biocompatibility of graphene and its derivatives is a critical factor for their use in dental implants. 

While graphene is generally considered biocompatible, its interaction with biological systems is complex 

and influenced by factors like concentration, lateral size, surface functionalization, and synthesis method 

(Duch et al., 2011; Olteanu et al., 2015; Rosa et al., 2021). Studies have shown that graphene can 

stimulate cell differentiation, particularly osteogenic differentiation, which is essential for promoting 

osseointegration of implants (Kang et al., 2021; Li & Wang, 2020; Shin et al., 2018). This osteogenic 

potential is attributed to graphene's ability to enhance protein adsorption, promote cell adhesion and 

proliferation, and modulate cellular signaling pathways involved in bone formation (Li et al., 2015; Park 

et al., 2017; Zhou et al., 2016). 

Furthermore, graphene and its derivatives exhibit antibacterial properties, inhibiting the growth of various 

oral pathogens (Dybowska-Sarapuk et al., 2017; He et al., 2015; Srimaneepong et al., 2022). The 

mechanisms of antibacterial action are still under investigation but are thought to involve membrane 

disruption, oxidative stress, and trapping of bacteria by graphene sheets (Akhavan& Ghaderi, 2010; Liu et 

al., 2011). The antibacterial properties of graphene make it a promising material for preventing peri- 

implantitis and improving the long-term success of dental implants. 

The unique properties of GO and rGO, arising from their oxygen-containing functional groups, offer 

additional advantages for dental applications. GO's hydrophilicity and dispersibility in water make it 

easier to process and incorporate into various dental materials (Jiříčková et al., 2022). The functional 

groups on GO also provide sites for chemical modification and conjugation with biomolecules or drugs, 

enabling targeted drug delivery and enhanced bioactivity (Li & Wang, 2020; Ren et al., 2017). rGO, with 

its partially restored sp² carbon network, exhibits improved electrical conductivity compared to GO, 

making it suitable for biosensing applications (Wang et al., 2018). The tunable properties of GO and rGO 

further expand the possibilities for their application in dental implantology. 

Applications of Graphene in Dental Implants 

Graphene's unique physicochemical properties, combined with its biocompatibility and antibacterial 

activity, have positioned it as a promising material for various applications in dental implantology. 

Current research focuses on leveraging graphene and its derivatives to enhance osseointegration, combat 

bacterial infections, facilitate targeted drug delivery, enable biosensing, and reinforce dental materials. 
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Enhancing Osseointegration: Osseointegration, the direct structural and functional connection between 

living bone and the surface of a load-bearing implant (Albrektsson et al., 1981), is crucial for the long- 

term success of dental implants. Graphene's ability to promote osteogenic differentiation, the process by 

which mesenchymal stem cells differentiate into bone-forming osteoblasts, is a key advantage in 

enhancing osseointegration. Studies have demonstrated that graphene coatings and composites can 

significantly increase bone-to-implant contact (BIC) and bone volume fraction (BVF) around implants, 

leading to a stronger and more stable implant-bone interface (Folkman et al., 2020; Kwak et al., 2022; 

Park et al., 2017; Shin et al., 2022). 

Several mechanisms contribute to graphene's osteogenic potential. Graphene's surface topography, even at 

the nanoscale, can influence cell behavior, promoting cell adhesion, spreading, and proliferation (Cervino 

et al., 2021; Zhu et al., 2021). Its electrical conductivity may also play a role in stimulating osteogenic 

differentiation by influencing cellular signaling pathways (Li et al., 2015; Tahriri et al., 2019). 

Furthermore, graphene can enhance protein adsorption, creating a more favorable environment for bone 

cell attachment and growth (Park et al., 2017; Zhou et al., 2016). In vivo studies using animal models have 

shown that graphene-coated implants exhibit enhanced bone formation and faster healing compared to 

uncoated titanium implants, further supporting its potential for improving osseointegration (Li & Wang, 

2020; Shin et al., 2022). 

Combating Bacterial Infections: Peri-implantitis, a common complication characterized by 

inflammation of the tissues surrounding a dental implant, is a major cause of implant failure (Jansåker et 

al., 2003; Kordbacheh et al., 2019). Bacterial biofilm formation on the implant surface plays a critical role 

in the development and progression of peri-implantitis (Manaf& Rahman, 2020). Graphene's inherent 

antibacterial properties offer a promising strategy for preventing and treating this debilitating condition. 

Graphene coatings on implants can effectively inhibit bacterial adhesion and growth, reducing the risk of 

biofilm formation and subsequent infection (Jang et al., 2021; Rocha et al., 2023; Zafar et al., 2019). The 

antibacterial activity of graphene is attributed to several mechanisms, including physical disruption of 

bacterial membranes by graphene's sharp edges, oxidative stress induced by graphene's interaction with 

bacterial cells, and trapping of bacteria by graphene sheets (Akhavan& Ghaderi, 2010; Liu et al., 2011). 

Furthermore, graphene can be functionalized with antimicrobial agents like silver nanoparticles or 

antibiotics, creating synergistic antibacterial coatings that further enhance the implant's resistance to 

infection (Jin et al., 2017; Qian et al., 2018; Souza et al., 2019). These combined approaches offer a 

powerful tool for combating peri-implantitis and improving the long-term success of dental implants. 

Drug Delivery: Graphene and its derivatives, particularly GO, can serve as versatile drug delivery 

platforms, enabling localized and sustained release of therapeutic agents at the implant site (Li et al., 2022; 

Malhotra et al., 2020). GO's abundant oxygen-containing functional groups provide sites for chemical 

conjugation with various drugs, allowing for controlled release and targeted delivery to the peri-implant 

tissues (Li & Wang, 2020; Ren et al., 2017). This localized drug delivery approach minimizes systemic 

side effects and maximizes therapeutic efficacy, offering significant advantages over conventional drug 

administration methods. 

Graphene-based drug delivery systems can be used to deliver a wide range of therapeutic agents, including 

antibiotics, anti-inflammatory drugs, growth factors, and bone morphogenetic proteins (Bjeli´c&Finˇsgar, 

2021; Chi et al., 2022). For instance, delivering antibiotics directly to the implant site can effectively treat 

peri-implantitis and prevent recurrent infections. Similarly, delivering growth factors or bone 

morphogenetic proteins can promote bone regeneration and accelerate osseointegration, particularly in 

patients with compromised bone quality (Delgado-Ruiz &Romanos, 2018; Safavi et al., 2022). 

Biosensing: Graphene's exceptional electrical conductivity and large surface area make it an ideal material 

for biosensor applications in dental implantology (Goldoni et al., 2021; Tahriri et al., 2019). Graphene- 

based biosensors can be integrated into implants to monitor biomarkers in the surrounding tissues, 

providing valuable real-time information for diagnosis and treatment (Li et al., 2022; Wei et al., 2021). 

These sensors can detect a wide range of biomarkers, including inflammatory mediators, bacterial 

byproducts, and even specific pathogens, enabling early detection of peri-implantitis and other implant- 

related complications (Chekin et al., 2018; Verma et al., 2017). 

The high sensitivity and selectivity of graphene-based biosensors allow for precise monitoring of the peri- 

implant environment, providing valuable insights into the healing process and enabling timely intervention 

in case of complications. For example, detecting elevated levels of inflammatory markers could indicate 

the onset of peri-implantitis, prompting early treatment and potentially preventing implant failure. 

Furthermore, graphene biosensors can be designed to detect specific bacterial species associated with peri- 

implantitis, enabling targeted antimicrobial therapy and personalized treatment strategies. 

Methods of Incorporating Graphene into Dental Implants 

Several methods have been developed to incorporate graphene and its derivatives into dental implants, 

each offering distinct advantages and posing specific challenges. The primary methods include creating 
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graphene coatings on titanium surfaces, incorporating graphene into composite materials, and 

functionalizing collagen membranes with graphene. 

Coatings: Applying graphene coatings directly onto titanium implant surfaces is a widely explored 

approach. These coatings aim to enhance the surface properties of the implant, promoting osseointegration 

and imparting antibacterial properties. Various techniques are employed for creating these coatings, 

including chemical vapor deposition (CVD), electrophoretic deposition, spin coating, and layer-by-layer 

assembly (Corado et al., 2022; Li et al., 2015; Park et al., 2017; Qian et al., 2019). CVD allows for the 

growth of high-quality graphene films directly on the titanium surface, while electrophoretic deposition 

enables controlled deposition of graphene or GO onto complex implant geometries. Spin coating offers a 

simple and cost-effective method for applying thin graphene coatings, and layer-by-layer assembly allows 

for the creation of multilayered coatings with tailored properties. A key challenge with graphene coatings 

lies in ensuring their long-term stability and adhesion to the titanium substrate, preventing delamination 

and potential release of graphene particles into the surrounding tissues. 

Composites: Incorporating graphene into composite materials used for implant fabrication or as bone 

graft substitutes is another promising approach. Graphene can be added to polymer matrices like 

polymethyl methacrylate (PMMA) or calcium silicate cements, enhancing their mechanical properties, 

bioactivity, and antibacterial activity (Azadian et al., 2020; Dubey et al., 2017; Lorusso et al., 2021; 

Nileshkumar et al., 2017; Patil et al., 2020; Suo et al., 2018; Wu et al., 2019). The addition of graphene 

can improve the strength and toughness of PMMA, making it more resistant to fracture and wear. In bone 

graft composites, graphene can act as a scaffold for bone cell attachment and growth, promoting bone 

regeneration. The uniform dispersion of graphene within the composite matrix is crucial for achieving 

optimal performance and preventing agglomeration, which can compromise the material's properties. 

Functionalized Membranes: Collagen membranes are frequently used in guided bone regeneration 

(GBR) and guided tissue regeneration (GTR) procedures to prevent soft tissue ingrowth and promote bone 

healing. Functionalizing these membranes with graphene can enhance their biocompatibility, mechanical 

properties, and ability to promote bone regeneration (Chu et al., 2017a; Chu et al., 2017b; Di Marco et al., 

2017). Graphene can be incorporated into collagen membranes through various methods, including non- 

covalent functionalization via hydrogen bonding or covalent attachment using chemical crosslinkers. The 

presence of graphene can improve the membrane's stability, prevent premature degradation, and enhance 

its ability to promote cell adhesion and differentiation. Optimizing the interaction between graphene and 

collagen within the membrane is crucial for maximizing its beneficial effects on bone regeneration. 
Challenges and Future Perspectives 

Despite its immense potential, several challenges need to be addressed before graphene can be universally 

adopted in dental implantology: 

• Long-term Biocompatibility and Biodegradability in vivo: While preliminary studies indicate good 

biocompatibility in vitro, the long-term effects of graphene in vivo, including its biodegradation pathways 

and potential accumulation in organs, warrant further investigation (Lotz et al., 2020; Malhotra et al., 

2020; Vaidya et al., 2024). Understanding the long-term fate of graphene in the biological environment is 

crucial for ensuring its safety and efficacy in clinical applications. 

• Standardized Synthesis and Characterization: Variations in graphene synthesis methods can result in 

inconsistencies in its properties, posing challenges for reproducible results in clinical settings (Mbayachi 

et al., 2021; Safian et al., 2021). Establishing standardized protocols for graphene synthesis and 

comprehensive characterization is essential for clinical translation and ensuring consistent performance of 

graphene-based dental materials. 

• Cost-Effectiveness: The cost of graphene production remains a barrier to its widespread use in dental 

implants. Developing more cost-effective and scalable synthesis methods is crucial for making graphene- 

based implants economically viable and accessible to a broader patient population. 

• Clinical Trials: While preclinical studies have yielded promising results, large-scale, well-designed 

clinical trials are indispensable to validate the safety and efficacy of graphene-based dental implants in 

humans (Aneksomboonpol et al., 2023; Velasco-Ortega et al., 2022). These trials should assess long-term 

outcomes, including osseointegration success, peri-implantitis rates, and any potential adverse effects. 

• Delamination of Graphene Coatings: One concern with graphene coatings is the potential for 

delamination under mechanical stress, which could lead to particle release and inflammation (Rosa et al., 

2021; Schupbach et al., 2019). Improving the adhesion and stability of graphene coatings on implant 

surfaces is crucial for ensuring their long-term performance and preventing complications. 

• Effects on Cell Cycle and DNA Synthesis: Some studies suggest that graphene oxide may interfere with 

cell cycle progression and DNA synthesis, raising concerns about potential genotoxicity (Hashemi et al., 

2020). Further research is needed to fully understand these effects and ensure the safety of graphene-based 

materials for dental applications. 

• Antibacterial Efficacy in Polymicrobial Biofilms: While graphene has shown antibacterial activity 

against single bacterial species, its effectiveness against complex polymicrobial biofilms, which are 
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characteristic of peri-implantitis, needs further investigation. Developing graphene-based strategies that 

can effectively disrupt these complex biofilms is crucial for preventing and treating peri-implantitis. 

The future of graphene in dental implantology holds immense promise. Addressing the current challenges 

through rigorous research can unlock its full clinical potential. Promising future directions include: 

• Developing novel graphene-based coatings with enhanced bioactivity, antibacterial properties, and 

improved adhesion to implant surfaces. 

• Optimizing drug delivery systems using graphene and its derivatives for targeted therapy of peri- 

implantitis and bone regeneration. 

• Creating advanced biosensors for real-time monitoring of implant health, surrounding tissue status, 

and early detection of complications. 

• Exploring the synergistic use of graphene in combination with other nanomaterials, biomolecules 

(e.g., growth factors), or therapeutic modalities (e.g., photobiomodulation) (Dompe et al., 2020) for 

enhanced implant performance. 
Conclusion 

Graphene and its derivatives possess transformative potential for revolutionizing dental implantology. 

Their unique properties offer innovative solutions to current challenges, including peri-implantitis and 

limitations in osseointegration. While challenges remain, ongoing research and development efforts are 

paving the way for the clinical translation of graphene-based dental implants. With continued 

advancements, graphene has the potential to significantly improve implant success rates, reduce 

complications, and ultimately enhance patient outcomes in restorative dentistry. 
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