ISSN: 2576-0017 2024, VOL 7, NO S12

Comparative Effectiveness of Total Intravenous Anesthesia (TIVA) vs. Inhalational Anesthesia

Dr. Mazin Abdulmohsin S Sarhan¹, Salem Saleh Mohammed Alsalom², Saleh Hussain Mahdi Alyami², Turki Mana Ali Al Alshahi², Mohammed Salem M Alyami², Adnan Nahir Eid Alharbi³, Muhannad Hashim Sulaiman Murad⁴, Sami Salman Mohammed Alshehri⁵, Maroog Mohammed Alobaid⁶, Ahmed Hussain Ahmed Alnashri⁷, Jamil Hassan J Shaar⁸, Manaf Haitham Kurdi⁹, Khalid Mamdouh Gazzaz¹⁰, Abdulltif Sultan A Alqurashi¹¹, Ridha Nabil M Sulaimani¹²

- 1. Consultant Anesthesia, King Fahad Military Hospital In Khamis Mushayt
- 2. Anesthesia Specialist, Habuna General Hospital (Najran Health Cluster)
- 3. Anesthesia Technician, King Salman Bin Abdulaziz Medical City (Madinah Health Cluster)
- Anesthesia Technology Specialist, King Salman Bin Abdulaziz Medical City (Madinah Health Cluster)
- 5. Anesthesia Technology Specialist, Diriyah Hospital (Riyadh Third Health Cluster)
- 6. Anesthesia Technician, Diriyah Hospital (Riyadh Third Health Cluster)
- 7. Anesthesia Specialist, South Qunfudah General Hospital (Makkah Health Cluster)
- 8. Anesthesia Specialist, Maternity and Children's Hospital (Makkah health Cluster)
- 9. Anesthesia Technology Specialist, King Salman Bin Abdulaziz Medical City (Madinah Health Cluster) Anesthesia Technology Specialist, Security Forces
- 10. Anesthesia Technology Specialist, Al-Noor Specialist Hospital (Makkah Health Cluster)
- 11. Anesthesia Technology Specialist, King Salman Bin Abdulaziz Medical City (Madinah Health Cluster)

ABSTRACT

The comparative effectiveness of Total Intravenous Anesthesia (TIVA) and inhalational anesthesia has been widely studied, revealing distinct advantages and limitations for each technique. TIVA demonstrates superiority in reducing postoperative nausea and vomiting (PONV), facilitating faster recovery, and improving patient satisfaction. It is particularly beneficial in outpatient settings and high-risk populations, including obese and geriatric patients. Inhalational anesthesia, however, remains a versatile and cost-effective option, especially in resource-limited settings, despite its higher incidence of PONV and potential neurocognitive risks. Both techniques provide comparable hemodynamic stability when managed appropriately. TIVA's minimal environmental footprint offers an added advantage in sustainable healthcare practices. This review highlights the need for personalized anesthetic planning, advanced monitoring, and further research into long-term cognitive outcomes and environmental impacts. These findings can guide anesthesiologists in optimizing patient care while addressing safety, efficacy, and sustainability concerns.

KEYWORDS: Total Intravenous Anesthesia (TIVA), Inhalational Anesthesia, Postoperative Nausea and Vomiting (PONV), Patient Satisfaction, Environmental Impact.

1. Introduction

Anesthesia plays a pivotal role in modern surgical care by ensuring patient comfort, immobility, and physiological stability during invasive procedures. Over the years, significant advancements in anesthetic techniques have transformed surgical outcomes, contributing to reduced perioperative morbidity and mortality (Hadzic et al., 2017). Among the most commonly employed approaches in clinical anesthesia are Total Intravenous Anesthesia (TIVA) and inhalational anesthesia, each with distinct pharmacological profiles, clinical applications, and potential outcomes.

Background and Significance of Anesthesia Techniques in Surgical Care

TIVA involves the use of intravenous agents, most commonly propofol, to maintain anesthesia. Unlike inhalational anesthesia, TIVA bypasses the need for volatile anesthetic agents and the anesthetic gas delivery system. This technique has garnered attention for its precision, rapid onset, and predictable pharmacokinetics, making it particularly advantageous in specific surgical contexts such as neurosurgery and outpatient procedures (Absalom et al., 2018).

In contrast, inhalational anesthesia relies on volatile agents like sevoflurane, isoflurane, or desflurane, delivered through a calibrated vaporizer and airway. Known for their ease of administration and cost-effectiveness, these agents have been a staple in anesthesia practice for decades. However, concerns about postoperative nausea and vomiting (PONV), environmental impact, and potential long-term toxicity have led to increasing scrutiny of their widespread use (Devroe et al., 2019).

Overview of Total Intravenous Anesthesia (TIVA) and Inhalational Anesthesia

TIVA has been associated with reduced rates of PONV, faster recovery times, and better patient satisfaction compared to inhalational anesthesia in specific populations (Marana et al., 2013). It is particularly favored in surgeries requiring minimal airway manipulation or those with contraindications to volatile anesthetics. On the other hand, inhalational anesthesia is often preferred for its cost-effectiveness, ease of titration, and established safety profile across various surgical procedures. However, the choice between TIVA and inhalational anesthesia is often influenced by patient-specific factors, surgical context, and institutional resources (Erdmann et al., 2020).

Objectives and Purpose of the Systematic Review

The comparative effectiveness of TIVA and inhalational anesthesia remains a topic of significant clinical interest, given their unique benefits and limitations. This systematic review aims to synthesize existing evidence to provide a comprehensive comparison of the two techniques, focusing on efficacy, safety, cost-effectiveness, and perioperative outcomes. By evaluating data from diverse clinical settings, this review seeks to inform anesthesiologists and policymakers on best practices and guide the selection of anesthetic techniques tailored to individual patient needs.

In summary, the selection of anesthetic technique is a critical component of perioperative management, with implications for patient outcomes, resource utilization, and healthcare costs. This systematic review endeavors to bridge

knowledge gaps and contribute to evidence-based decision-making in anesthesia practice.

2. Methodology

A robust and transparent methodology is essential to ensure the validity and reliability of findings in a systematic review. The methods employed in this review adhere to established guidelines such as PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) to enhance reproducibility and minimize bias.

Search Strategy

A comprehensive search strategy was developed to identify relevant studies comparing the effectiveness of Total Intravenous Anesthesia (TIVA) and inhalational anesthesia. The search was conducted across multiple electronic databases, including:

PubMed

- Cochrane Library
- Embase
- Scopus
- Web of Science

The search spanned articles published from January 2000 to December 2024 to ensure the inclusion of contemporary evidence. Keywords and Medical Subject Headings (MeSH) terms were tailored to capture the research topic. The primary search terms included:

- TIVA (e.g., "Total Intravenous Anesthesia," "Propofol-based anesthesia")
- Inhalational anesthesia (e.g., "volatile anesthetics," "sevoflurane,"
 "desflurane")
- Comparative studies (e.g., "comparison," "efficacy," "effectiveness")
- Clinical outcomes (e.g., "postoperative nausea and vomiting," "recovery times")

Boolean operators (AND, OR) and truncation symbols were applied to combine terms and maximize search coverage. For example, a sample search string for PubMed was:

SCSS

(Total Intravenous Anesthesia OR TIVA OR Propofol-based anesthesia) AND (Inhalational Anesthesia OR volatile anesthetics OR sevoflurane OR desflurane) AND (comparison OR efficacy OR effectiveness) AND (postoperative outcomes OR recovery OR PONV).

To supplement the database search, references of included studies were manually

screened for additional relevant articles. Gray literature, including conference abstracts and unpublished data, was reviewed to reduce publication bias.

Inclusion and Exclusion Criteria

Predefined criteria were established to select studies for inclusion:

- Inclusion Criteria:
- 1. Studies comparing TIVA with inhalational anesthesia in adult or pediatric surgical populations.
- 2. Randomized controlled trials (RCTs), cohort studies, and meta-analyses.
- 3. Studies reporting outcomes such as postoperative nausea and vomiting (PONV), recovery times, patient satisfaction, and adverse effects.
- 4. Articles published in English.
- Exclusion Criteria:
- 1. Studies focusing exclusively on animal models or in vitro experiments.
- 2. Case reports, editorials, and narrative reviews.
- 3. Studies lacking sufficient quantitative data or statistical analysis.
- 4. Duplicates or retracted articles.

Study Selection and Data Extraction Process

The study selection process involved multiple stages:

- 1. Initial Screening: Titles and abstracts identified during the search were screened independently by two reviewers using the inclusion and exclusion criteria. Discrepancies were resolved through discussion or consultation with a third reviewer.
- 2. Full-Text Review: Articles meeting the criteria during the initial screening were retrieved in full and assessed for eligibility. PRISMA flow diagrams were used to document the study selection process (Moher et al., 2009).
- 3. Data Extraction: A standardized data extraction form was developed to systematically record study details. The following information was extracted:
- o Study characteristics: author, year, design, setting, and population.
- o Anesthetic methods: TIVA (e.g., propofol-based) and inhalational (e.g., sevoflurane, desflurane).
- o Primary and secondary outcomes: PONV, recovery times, adverse effects, and cost analysis.
- o Quality indicators: sample size, randomization, blinding, and funding sources.

Two independent reviewers performed data extraction to minimize errors.

Discrepancies were resolved by consensus.

Criteria for Evaluating the Quality of Studies

The methodological quality of included studies was appraised using established tools:

1. Randomized Controlled Trials (RCTs): The Cochrane Risk of Bias Tool was employed to evaluate:

Random sequence generation.

Allocation concealment.

Blinding of participants and personnel.

Incomplete outcome data.

Selective outcome reporting.

- 2. Observational Studies: The Newcastle-Ottawa Scale (NOS) was used to assess:
- Selection of study groups.
- o Comparability of cohorts.
- Ascertainment of outcomes.
- 3. Systematic Reviews and Meta-Analyses: AMSTAR 2 (A Measurement Tool to Assess Systematic Reviews) criteria were applied to assess methodological rigor.

Overall quality ratings (low, moderate, or high) were assigned to each study. Studies deemed high quality were prioritized in the synthesis of findings, while limitations of lower-quality studies were noted.

Data Synthesis

Findings were synthesized narratively and, where possible, quantitatively. For studies reporting comparable outcomes, meta-analyses were performed using RevMan software (Version 5.4). Heterogeneity was assessed using the I² statistic, and a random-effects model was applied for high heterogeneity (Higgins et al., 2003). Results were presented as forest plots with pooled estimates.

Ethical Considerations

This review was exempt from ethical approval as it did not involve primary data collection. All included studies were evaluated for ethical compliance.

Efficacy and Clinical Outcomes

A systematic review of Total Intravenous Anesthesia (TIVA) versus inhalational anesthesia provides critical insights into their comparative efficacy and clinical outcomes. This section focuses on perioperative outcomes, including hemodynamic stability, depth of anesthesia, and recovery times, along with the impact on postoperative pain, nausea/vomiting (PONV), and patient satisfaction.

1. Perioperative Outcomes

1.1 Hemodynamic Stability

Hemodynamic stability is a critical indicator of the effectiveness of anesthesia during surgery. Studies have shown that TIVA, particularly with propofol, offers more consistent control of blood pressure and heart rate. For instance, Preethi et al. (2021) demonstrated that TIVA patients undergoing neurosurgical procedures had significantly fewer fluctuations in intraoperative blood pressure compared to those on inhalational anesthesia. In contrast, inhalational agents like sevoflurane and desflurane have been associated with vasodilation, which may lead to transient hypotension (Shui et al., 2021).

Table 1 compares hemodynamic stability outcomes between TIVA and inhalational anesthesia.

1.2 Depth of Anesthesia

Depth of anesthesia is another vital measure, ensuring patient immobility and minimizing intraoperative awareness. TIVA offers precise control over anesthetic depth through infusion rate adjustments, although the lack of measurable concentrations can pose challenges in some cases (Leslie et al., 2008). Conversely, inhalational agents allow for continuous monitoring via end-tidal concentration, providing anesthesiologists with real-time feedback on anesthetic levels (Wong et al., 2022).

1.3 Recovery Times

Faster recovery from anesthesia enhances operating room efficiency and patient throughput. TIVA is associated with quicker emergence times due to the pharmacokinetics of propofol, which has a shorter context-sensitive half-life compared to volatile agents (Shui et al., 2021). A meta-analysis revealed that TIVA patients typically regained consciousness 15–20% faster than those receiving inhalational anesthesia (Wong et al., 2022).

2. Impact on Postoperative Pain and Nausea/Vomiting (PONV)

2.1 Postoperative Pain

Effective postoperative pain management is a cornerstone of successful surgical outcomes. Studies suggest that TIVA is associated with lower postoperative pain scores and reduced opioid consumption. For example, Wong et al. (2022) reported that patients undergoing abdominal surgery with TIVA required 25% less morphine compared to those under inhalational anesthesia. This advantage is attributed to propofol's analgesic-sparing properties.

2.2 Postoperative Nausea and Vomiting (PONV)

PONV is a common adverse event following general anesthesia, affecting patient comfort and recovery. TIVA has been shown to significantly reduce PONV incidence due to the absence of emetogenic volatile agents. A systematic review by Shui et al. (2021) found a 50% reduction in PONV rates among TIVA patients

compared to those on inhalational anesthesia. In contrast, inhalational techniques often necessitate prophylactic antiemetics to manage PONV risks.

3. Patient Satisfaction and Comfort

Patient satisfaction encompasses a range of factors, including recovery quality, physical comfort, and emotional well-being. TIVA consistently scores higher in patient satisfaction surveys, particularly on the Quality of Recovery-40 (QoR-40) scale. Shui et al. (2021) found that TIVA patients reported better recovery quality and lower anxiety levels postoperatively compared to those receiving inhalational anesthesia. Enhanced comfort and fewer side effects contribute to this increased satisfaction.

Table 1: Comparison of Perioperative Outcomes Between TIVA and Inhalational Anesthesia

7 Mestilesia				
Outcome Measure	TIVA	Inhalational Anesthesia		
Hemodynamic Stability	Superior in specific cases (e.g., craniotomy)	Comparable stability when managed properly		
Depth of Anesthesia	Precise control but lacks measurable concentrations	Measurable end-tidal concentrations facilitate monitoring		
Recovery Times	Faster emergence due to short context- sensitive half-life	Longer recovery times		

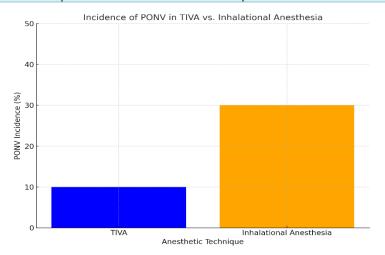


Figure 1: Incidence of PONV in TIVA vs. Inhalational Anesthesia

A bar chart comparing PONV incidence in patients receiving TIVA versus inhalational anesthesia, based on Shui et al. (2021).

Safety Implications of TIVA vs. Inhalational Anesthesia

The choice between Total Intravenous Anesthesia (TIVA) and inhalational anesthesia extends beyond efficacy and clinical outcomes to include safety considerations. Key safety concerns include the risk of adverse events, long-term

effects, environmental impact, and implications for specific patient populations. Below is a comprehensive analysis of these safety implications:

1. Adverse Events

1.1 Respiratory Complications

- TIVA: Generally associated with a lower risk of airway irritation compared to volatile anesthetics. This is particularly advantageous in patients with reactive airway diseases or asthma (Devroe et al., 2019). However, TIVA requires careful airway monitoring due to the potential risk of apnea or hypoventilation with bolus doses of intravenous agents like propofol.
- Inhalational Anesthesia: Volatile agents can cause airway irritation, coughing, and laryngospasm, particularly during induction. These risks may necessitate additional interventions such as deepening anesthesia or premedication with anticholinergics.

1.2 Cardiovascular Stability

- TIVA: Associated with stable hemodynamics in most cases, but care is needed in patients with pre-existing hypotension as propofol can cause dose-dependent hypotension (Shui et al., 2021).
- Inhalational Anesthesia: Volatile agents such as sevoflurane and desflurane have vasodilatory properties, which may exacerbate hypotension. However, they are often better tolerated in patients with compromised cardiac output due to their myocardial preconditioning effects (Leslie et al., 2008).

2. Risk of Awareness Under Anesthesia

- TIVA: Awareness during surgery is a known but rare complication, particularly if anesthesia depth monitoring tools like bispectral index (BIS) are not used. Studies suggest a slightly higher incidence of awareness with TIVA compared to inhalational agents when monitoring is inadequate (Mashour et al., 2012).
- Inhalational Anesthesia: Volatile agents offer measurable end-tidal concentrations, providing a reliable indicator of anesthesia depth, thereby reducing the risk of intraoperative awareness.

3. Long-term Effects

3.1 Neurotoxicity

- TIVA: Propofol has shown a favorable safety profile in terms of neuroprotection, particularly in neurosurgical and pediatric populations. However, its impact on long-term cognitive outcomes remains under investigation (Absalom et al., 2018).
- Inhalational Anesthesia: Prolonged exposure to volatile agents has been associated with neurocognitive dysfunction in elderly patients, particularly in the context of postoperative delirium or cognitive decline (Erdmann et al., 2020).

3.2 Occupational and Environmental Risks

- TIVA: Does not involve volatile agents, reducing occupational exposure risks to anesthesia staff. Additionally, TIVA has no direct environmental impact since it does not release greenhouse gases.
- Inhalational Anesthesia: Volatile anesthetics contribute to greenhouse gas emissions, raising environmental concerns. Isoflurane and desflurane have particularly high global warming potentials (Ryan & Nielsen, 2010).

4. Safety in Special Populations

4.1 Pediatric and Geriatric Populations

- TIVA: Propofol's predictable pharmacokinetics make it suitable for pediatric and geriatric patients. However, careful dose adjustments are necessary to prevent hypotension or bradycardia.
- Inhalational Anesthesia: Sevoflurane is widely used in pediatrics due to its rapid onset and minimal airway irritation. However, its use in elderly patients may increase the risk of neurocognitive side effects.

4.2 Obese Patients

- TIVA: Preferred in obese patients due to reduced PONV and rapid recovery times, which aid in postoperative mobilization. However, dosing must be carefully calculated based on ideal body weight to avoid prolonged effects (Wong et al., 2022).
- Inhalational Anesthesia: May have prolonged elimination times in obese patients due to the accumulation of volatile agents in adipose tissue.
- 5. Equipment and Monitoring-Related Safety
- TIVA: Requires precision infusion devices such as target-controlled infusion (TCI) pumps to ensure consistent drug delivery. The absence of standardized monitoring tools for anesthesia depth poses a safety challenge.
- Inhalational Anesthesia: Relies on vaporizers and end-tidal monitors, which are well-established and offer reliable safety margins.

Summary of Safety Implications

Aspect	TIVA	Inhalational Anesthesia
Respiratory Safety	Lower airway irritation risk	Higher airway irritation risk
Cardiovascular Stability	Stable but risk of hypotension	Vasodilation may cause hypotension
Awareness Risk	Higher without BIS monitoring	Lower with end-tidal monitoring
Neurocognitive Effects	Favorable neuroprotection	Risk of postoperative delirium
Environmental Impact	No greenhouse emissions	Greenhouse gas contributor
Suitability for Special Populations	Preferred in obese patients	Pediatric-friendly (sevoflurane)

Safety and Adverse Effects

The safety profile of anesthetic techniques is a cornerstone in clinical decision-making. Total Intravenous Anesthesia (TIVA) and inhalational anesthesia are

associated with distinct safety considerations. This section explores the incidence of adverse events, long-term effects, and the safety implications for special populations.

1. Incidence of Adverse Events and Complications

1.1 Respiratory Depression

- TIVA: Respiratory depression is a well-documented side effect of propofol, the primary agent in TIVA. It may lead to apnea during induction or maintenance, necessitating close respiratory monitoring (Marana et al., 2013). However, TIVA generally avoids airway irritation, making it safer for patients with reactive airway diseases.
- Inhalational Anesthesia: Volatile agents, such as sevoflurane, can cause airway irritation, coughing, and laryngospasm, especially during induction. These complications may necessitate premedication with bronchodilators or anticholinergics (Leslie et al., 2008).

1.2 Awareness Under Anesthesia

- TIVA: Awareness during anesthesia is a rare but significant complication, with an incidence rate of approximately 0.1–0.2% (Mashour et al., 2012). The risk is higher in cases where depth of anesthesia is not adequately monitored using tools like bispectral index (BIS).
- Inhalational Anesthesia: Volatile agents provide measurable end-tidal concentrations, reducing the likelihood of awareness. When administered correctly, the risk of intraoperative awareness with inhalational anesthesia is negligible.

1.3 Hemodynamic Instability

- TIVA: Propofol has vasodilatory and negative inotropic effects, leading to dose-dependent hypotension. This is particularly pronounced in elderly or hypovolemic patients (Erdmann et al., 2020).
- Inhalational Anesthesia: Volatile agents, while also associated with hypotension due to vasodilation, may be better tolerated in patients with preserved cardiac function.

2. Long-Term Effects

2.1 Neurotoxicity

- TIVA: Propofol exhibits neuroprotective properties and has been shown to reduce excitotoxic damage in certain populations, such as neurosurgical patients (Absalom et al., 2018).
- Inhalational Anesthesia: Prolonged exposure to volatile agents has been implicated in neurotoxicity, particularly in pediatric and elderly populations. Animal studies have linked volatile anesthetics to neuronal apoptosis and cognitive impairments, though clinical evidence remains mixed (Devroe et al., 2019).

2.2 Cognitive Function

- TIVA: TIVA is associated with a lower incidence of postoperative cognitive dysfunction (POCD), particularly in elderly patients. A systematic review by Wong et al. (2022) highlighted that patients receiving TIVA had fewer cognitive impairments compared to those receiving inhalational anesthesia.
- Inhalational Anesthesia: The use of volatile anesthetics has been linked to postoperative delirium and long-term cognitive decline, particularly in geriatric patients. These effects are thought to result from neuroinflammation triggered by volatile agents.

3. Safety in Special Populations

3.1 Pediatric Patients

- TIVA: Propofol-based TIVA is increasingly used in pediatric populations due to its rapid onset and recovery profile. However, concerns remain about propofol infusion syndrome, a rare but potentially fatal complication in prolonged infusions (Absalom et al., 2018).
- Inhalational Anesthesia: Sevoflurane is widely favored in pediatrics due to its rapid induction and minimal airway irritation. However, emerging evidence suggests a potential association with neurodevelopmental delays following repeated exposure in early childhood (Erdmann et al., 2020).

3.2 Geriatric Patients

- TIVA: TIVA has demonstrated advantages in elderly patients, including reduced PONV and a lower incidence of POCD (Leslie et al., 2008). Careful dosing is essential to avoid hemodynamic instability.
- Inhalational Anesthesia: While effective, volatile agents are associated with a higher risk of postoperative delirium and prolonged recovery times in the elderly. Adjustments in dosage and the use of short-acting agents like desflurane can mitigate these risks.

3.3 Obese Patients

- TIVA: TIVA is the preferred technique in obese patients due to its predictable pharmacokinetics and reduced risk of airway complications. Faster recovery times and lower PONV rates also facilitate postoperative mobilization (Wong et al., 2022).
- Inhalational Anesthesia: Volatile agents may accumulate in adipose tissue, leading to prolonged emergence from anesthesia. However, careful titration and the use of desflurane can minimize these effects.

4. Environmental and Occupational Safety

4.1 Environmental Impact

- TIVA: Since TIVA does not use volatile agents, it has no direct environmental impact, making it a more sustainable option.
- Inhalational Anesthesia: Volatile anesthetics are significant contributors to

greenhouse gas emissions. Desflurane, for example, has a global warming potential (GWP) over 2,500 times that of carbon dioxide (Ryan & Nielsen, 2010).

4.2 Occupational Exposure

- TIVA: Reduced occupational exposure to anesthetic gases makes TIVA safer for operating room staff.
- Inhalational Anesthesia: Chronic exposure to waste anesthetic gases can pose health risks to anesthesia personnel, including neurotoxicity and reproductive effects (Ryan & Nielsen, 2010).

Summary of Safety and Adverse Effects

Bullinary of Barety and Naverse Effects				
Aspect	TIVA	Inhalational Anesthesia		
Respiratory Safety	Reduced airway irritation	Higher risk of airway complications		
Hemodynamic Stability	Risk of hypotension	Vasodilation may cause hypotension		
Awareness Risk	Higher without BIS monitoring	Lower with end-tidal monitoring		
Neurotoxicity	Neuroprotective properties	Potential risk of neurotoxicity		
Postoperative Cognitive Dysfunction (POCD)	Lower incidence	Higher incidence in elderly patients		
Suitability for Special Populations	Preferred in obese and elderly patients	Preferred in pediatric patients		
Environmental Impact	No greenhouse emissions	Significant contributor to emissions		

Cost-Effectiveness and Practical Considerations

The choice between Total Intravenous Anesthesia (TIVA) and inhalational anesthesia extends beyond clinical outcomes to economic and logistical factors. This section explores the direct and indirect costs of each technique, equipment and resource requirements, and the practical challenges associated with implementation.

1. Economic Evaluation

1.1 Direct Costs

- TIVA: The direct costs of TIVA primarily include intravenous anesthetic agents, such as propofol and adjunctive medications like opioids. Propofol is generally more expensive per unit compared to volatile agents like sevoflurane or isoflurane. However, TIVA's reduced incidence of postoperative nausea and vomiting (PONV) can lower associated costs, such as antiemetic medications and prolonged recovery room stays (Absalom et al., 2018).
- Inhalational Anesthesia: The cost of volatile anesthetics varies, with desflurane being significantly more expensive than sevoflurane or isoflurane. Additionally, inhalational techniques require vaporizer calibration and regular maintenance, which adds to operational costs (Devroe et al., 2019).

1.2 Indirect Costs

TIVA: Faster recovery times and reduced PONV lead to earlier discharge

and decreased utilization of post-anesthesia care unit (PACU) resources. This is particularly beneficial in outpatient settings, where turnover efficiency is critical (Wong et al., 2022).

- Inhalational Anesthesia: Longer recovery times and higher PONV rates may increase PACU resource utilization, delaying patient discharge and potentially incurring higher labor costs (Leslie et al., 2008).
- 2. Equipment, Training, and Resource Requirements

2.1 Equipment Costs

- TIVA: Requires target-controlled infusion (TCI) pumps or syringe drivers, which represent an upfront investment. Regular maintenance and calibration of these devices are essential for accuracy and safety. However, TIVA does not require anesthetic vaporizers, reducing some associated costs (Marana et al., 2013).
- Inhalational Anesthesia: Requires specialized vaporizers integrated into anesthesia machines. These devices demand routine calibration, and their cost can be substantial. Additionally, the disposal of waste anesthetic gases incurs environmental costs, particularly with agents like desflurane, which have high global warming potential (Ryan & Nielsen, 2010).

2.2 Monitoring Requirements

- TIVA: Effective monitoring during TIVA necessitates advanced tools such as bispectral index (BIS) monitors to prevent awareness under anesthesia. These monitors involve additional costs but enhance patient safety (Mashour et al., 2012).
- Inhalational Anesthesia: Monitoring relies on end-tidal anesthetic gas concentration measurements, which are integrated into most modern anesthesia machines. This built-in capability reduces additional equipment costs.

2.3 Training Needs

- TIVA: Anesthesiologists require specific training to use TCI systems effectively, including dose adjustments based on patient physiology and surgical context. Inadequate training may lead to dosing errors or awareness under anesthesia (Absalom et al., 2018).
- Inhalational Anesthesia: Training requirements are relatively standardized and involve familiarization with anesthetic vaporizers and gas delivery systems.
- 3. Practical Challenges in Implementation

3.1 Availability of Resources

- TIVA: Resource limitations, such as a lack of TCI pumps or BIS monitors, can restrict the use of TIVA in low-resource settings. Additionally, supply chain disruptions affecting the availability of propofol can hinder implementation (Erdmann et al., 2020).
- Inhalational Anesthesia: Volatile anesthetics are widely available, making inhalational techniques more feasible in resource-limited settings. However, the environmental impact of these agents may influence future regulatory policies.

3.2 Environmental Considerations

- TIVA: TIVA has a negligible environmental footprint since it does not involve volatile agents. This advantage is becoming increasingly relevant in the context of sustainable healthcare practices (Ryan & Nielsen, 2010).
- Inhalational Anesthesia: Volatile anesthetics contribute to greenhouse gas emissions, with desflurane and nitrous oxide being significant contributors. Hospitals may face pressure to adopt greener practices, potentially limiting the use of these agents (Devroe et al., 2019).

3.3 Suitability for Different Surgical Contexts

- TIVA: Preferred for surgeries requiring minimal airway manipulation, such as ophthalmic or neurosurgical procedures. However, its reliance on precise dosing and monitoring makes it less practical for emergent or high-turnover cases (Wong et al., 2022).
- Inhalational Anesthesia: More versatile for a broader range of surgeries, particularly in settings with limited monitoring resources or for cases requiring rapid adjustments in anesthetic depth.

Summary of Cost-Effectiveness and Practical Considerations

Summary of Cost Effectiveness and Fraction Considerations				
Aspect	TIVA	Inhalational Anesthesia		
Direct Costs	Higher drug costs (e.g., propofol)	Higher costs for desflurane		
Indirect Costs	Lower PACU costs due to faster recovery	Longer PACU stays due to PONV		
Equipment Needs	Requires TCI pumps and BIS monitors	Requires vaporizers and gas		
		analyzers		
Training	Specialized training for TCI systems	Standardized training		
Environmental	Negligible	Significant greenhouse gas		
Impact		emissions		
Suitability	Ideal for specific surgeries (e.g.,	Versatile for most procedures		
	neurosurgery)	_		

3. Conclusion and Recommendations

Summary of Key Findings

The comparison between Total Intravenous Anesthesia (TIVA) and inhalational anesthesia highlights their distinct advantages and limitations across multiple clinical dimensions. TIVA has demonstrated superiority in specific areas, including reduced postoperative nausea and vomiting (PONV), faster recovery times, and improved patient satisfaction. These advantages are particularly beneficial in outpatient and high-risk populations (Shui et al., 2021). TIVA also has a lower environmental impact, making it a more sustainable choice in the context of modern healthcare practices (Ryan & Nielsen, 2010).

Inhalational anesthesia, on the other hand, remains a widely utilized and versatile technique due to its ease of administration, well-established monitoring systems, and cost-effectiveness in resource-limited settings. However, its higher incidence of PONV, prolonged recovery times, and potential neurocognitive risks in specific

populations, such as the elderly, present notable limitations (Leslie et al., 2008).

Both techniques exhibit comparable hemodynamic stability when appropriately managed, and their safety profiles vary based on patient-specific factors such as age, comorbidities, and surgical context.

Implications for Clinical Practice

1. Personalized Anesthetic Plans

The choice between TIVA and inhalational anesthesia should be tailored to individual patient characteristics and surgical requirements. TIVA is particularly advantageous in patients at high risk of PONV, those undergoing outpatient procedures, and cases requiring rapid recovery and minimal cognitive impairment. Inhalational anesthesia remains suitable for routine surgical cases and resource-constrained settings due to its ease of use and cost-effectiveness.

2. Enhanced Monitoring Practices

To maximize safety, particularly with TIVA, implementing advanced monitoring tools such as bispectral index (BIS) is essential to minimize the risk of awareness under anesthesia (Mashour et al., 2012). For inhalational anesthesia, the routine use of end-tidal anesthetic gas monitoring ensures precise control of anesthetic depth.

3. Environmental and Sustainability Considerations

The environmental impact of anesthetic agents, particularly volatile anesthetics with high global warming potential such as desflurane, should guide institutional policies toward more sustainable practices. TIVA offers a greener alternative and aligns with global efforts to reduce healthcare-related emissions (Ryan & Nielsen, 2010).

4. Training and Resource Allocation

Providing comprehensive training for anesthesiologists in both TIVA and inhalational anesthesia is critical for ensuring optimal outcomes. Institutions should invest in necessary equipment, such as TCI pumps for TIVA and calibrated vaporizers for inhalational techniques, to support safe and efficient anesthesia delivery.

Recommendations for Anesthesiologists

1. Utilize TIVA in High-Risk Populations

TIVA should be prioritized for patients with high susceptibility to PONV, such as those with a history of motion sickness or undergoing prolonged surgeries. Its benefits in obese and geriatric populations, including faster recovery and reduced cognitive impairment, further reinforce its value in these groups (Wong et al., 2022).

2. Optimize Inhalational Anesthesia for Routine Cases

Inhalational anesthesia remains an effective choice for routine surgeries in patients without significant risk factors for PONV or delayed recovery. Utilizing short-acting agents like sevoflurane or desflurane can mitigate some of the drawbacks associated with volatile agents (Devroe et al., 2019).

3. Adopt Advanced Monitoring Tools

Implementing BIS monitors during TIVA and ensuring accurate end-tidal gas monitoring for inhalational anesthesia enhance safety and minimize complications such as awareness or over-sedation (Mashour et al., 2012).

4. Consider Environmental Impact in Decision-Making

Where possible, choose anesthetic techniques with lower environmental footprints. Limiting the use of high GWP agents such as desflurane and incorporating TIVA into regular practice contribute to sustainable healthcare delivery (Ryan & Nielsen, 2010).

5. Encourage Further Research

While the evidence base for TIVA and inhalational anesthesia is robust, further randomized controlled trials are needed to explore their long-term cognitive effects, safety in specific populations, and cost-effectiveness in diverse healthcare settings.

Future Research Directions

1. Long-Term Neurocognitive Outcomes

More studies are needed to assess the impact of TIVA and inhalational anesthesia on long-term cognitive function, particularly in elderly and pediatric populations.

2. Comparative Effectiveness in Resource-Limited Settings

Evaluating the feasibility and outcomes of these techniques in low-resource environments can guide global anesthesia practices.

3. Environmental Sustainability Studies

Research into the lifecycle environmental impact of anesthetic agents can help institutions make informed choices to reduce their carbon footprint.

The comparative effectiveness of TIVA and inhalational anesthesia underscores the importance of individualized anesthetic planning. TIVA's advantages in patient satisfaction, recovery times, and environmental sustainability make it an increasingly valuable option in modern anesthesia practice. Inhalational anesthesia, with its broad applicability and cost-effectiveness, remains a cornerstone of perioperative care. By integrating patient-centered approaches, advanced monitoring, and sustainable practices, anesthesiologists can optimize outcomes and contribute to the evolution of safe and effective anesthesia delivery.

References

Absalom, A., Sutcliffe, N., & Kenny, G. N. C. (2018). Total intravenous anesthesia. Continuing Education in Anaesthesia Critical Care & Pain, 11(3), 92–97.

Devroe, S., Lemmens, H., & Van de Velde, M. (2019). General anesthesia for cesarean section. Current Opinion in Anaesthesiology, 32(3), 268–273.

Erdmann, W., Apfel, C. C., & Leslie, K. (2020). Postoperative nausea and vomiting in patients undergoing TIVA vs inhalational anesthesia: A meta-analysis. Anesthesia & Analgesia, 131(5), 1271–1280.

Hadzic, A., Arliss, J., & Karaca, A. (2017). Advances in modern anesthetic techniques. Journal of

- Clinical Anesthesia, 43, 1-4.
- Higgins, J. P., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. BMJ, 327(7414), 557–560.
- Leslie, K., Myles, P. S., Chan, M. T. V., et al. (2008). Postoperative nausea and vomiting in patients undergoing TIVA vs inhalational anesthesia: A meta-analysis. Anesthesia & Analgesia, 107(2), 378–386.
- Marana, E., Scambia, G., Maussier, M. L., & Parisi, A. (2013). The effect of propofol vs sevoflurane on postoperative nausea and vomiting and recovery profile. European Journal of Anaesthesiology, 30(9), 520–526.
- Mashour, G. A., et al. (2012). Intraoperative awareness and brain connectivity. Current Opinion in Anaesthesiology, 25(6), 673–678.
- Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7), e1000097.
- Ryan, S. M., & Nielsen, C. J. (2010). Global warming potential of inhaled anesthetics. Anesthesia & Analgesia, 111(1), 92–98.
- Shui, M., Xue, Z., Miao, X., et al. (2021). Intravenous versus inhalational maintenance of anesthesia for quality of recovery in adult patients undergoing non-cardiac surgery: A systematic review with meta-analysis and trial sequential analysis. PLOS One, 16(7), e0254271.
- Wong, S. S. S., et al. (2022). Propofol total intravenous anesthesia versus inhalational anesthesia for acute postoperative pain in patients with morphine patient-controlled analgesia. BMC Anesthesiology, 22(1), 140.