Digital Transformation in Pharmacy Practice: Applications and Challenges of Mobile Health

Awad Hassan Amer Alshugaih¹, Mahdi Taleb Alsulaiman², Mohammed Masaud Yahya Alghobari³, Fathallah Ali Jafar Almakrmi⁴, Mohammed Abdullah Ali Almahri⁵, Atran Abdullah Atran Alalhareth⁶, Ali Makfoor Shoil Algashanieen⁷, Abdullah Hussain Mohammed Alalhareth⁸, Al-Hassan Hamad Nasser Almahamed⁹, Mohammed Salem Hadi Al Abbas¹⁰

- 1. Technician Pharmacy Najran General Hospital Najran
- 2. Pharmacist King Khaled Hospital In Najran Najran
- 3. Pharmacy Technician Najran General Hospital Najran
- 4. Pharmacy Technicians Najran General Hospital Najran
- 5. Technician Pharmacy Najran General Hospital Najran
- 6. Pharmacy Technicians Najran General Hospital Najran
- 7. Technician Pharmacy Najran General Hospital Najran
- 8. Pharmacy Technicians Najran General Hospital Najran
- 9. Pharmacy Technician Najran General Hospital Najran
- 10. Pharmacy Technicians Najran General Hospital Najran

Abstract

Technological advances have enhanced pharmacy practice, particularly mobile health (mHealth). Mobile health relies on mobile devices and wireless technologies to improve healthcare services and enhance accessibility for patients. These tools enable pharmacists to deliver patient-centered care through applications such as online consultations, wearable health monitoring devices, and remote prescriptions. This review explores the benefits of mobile health, the challenges that hinder its adoption, and the evolving role of pharmacists in driving its integration. Key areas of focus include improving infrastructure, ensuring data privacy, and developing pharmacists' skills to enable effective adoption. The research also examines future trends, such as AI-driven diagnostics and electronic health record compatibility, emphasizing the potential of mobile health to revolutionize pharmacy practice.

Keywords: Pharmacy Practice, Healthcare Technology, mHealth, Patient-Centered Care. **Introduction**

Technological advancements have transformed the healthcare landscape, enhancing the ability of health systems to deliver comprehensive health services and improve healthcare [1]. Mobile health (mHealth) is an example of technological advancements in healthcare. mHealth relies on mobile devices and wireless communication technologies to deliver healthcare services [2,3].

According to the World Health Organization (WHO), mHealth is a subset of eHealth, which includes medical and public health practices supported by mobile technologies such as smartphones, remote patient monitoring devices, and personal digital assistants [4].

Recently, with the increasing prevalence of chronic and infectious diseases and the increased demand for healthcare services, the role of mHealth has emerged in its ability to bridge the gaps in healthcare delivery [5]. However, challenges remain such as economic constraints, information security, technology adoption, and the need to train and qualify healthcare workers [6].

In pharmacy practices, mHealth contributes to enhancing the ability of pharmacists to improve patient-centered care, improve medication management, and improve health outcomes through applications such as online consultations, wearable health monitoring devices, and remote prescriptions [7].

However, the broader impact of mHealth lies in its ability to ensure inclusive and equitable delivery of health services to communities and facilitate access to healthcare services. Therefore, pharmacists' uptake of mobile health technologies is essential to meet evolving patient needs and improve public health [7,8].

This review aims to explore the integration of mHealth into pharmacy practice, focusing on its benefits, applications and future prospects. As well as its role in improving pharmacist services, challenges and factors influencing its adoption.

Current Status of mHealth in Pharmacy Practice

mHealth encompasses a wide range of technologies designed to enhance healthcare delivery, offering pharmacists innovative solutions to improve patient care and enhance pharmacy practice.

Mobile Applications

Mobile applications are among the most widely used mHealth tools, providing pharmacists with quick access to essential information and services [9].

- **Diagnostic applications:** These applications help formulate differential diagnoses and provide medical advice. For example, diagnostic applications help collect and analyze patient data, which aids healthcare providers in decision-making [10].
- **Logistics and workflow management:** Applications such as Pro Delivery Manager enable pharmacies to track deliveries, ensure safe transportation of medications, and enhance logistics efficiency [11].
- **Patient interaction platforms:** These applications facilitate direct communication between pharmacists and patients, providing a secure means for medication consultations and counseling [12].

Device integration

mHealth tools often integrate with mobile devices to expand their functionality. Examples include:

- **Installed diagnostic devices:** Devices that turn smartphones into diagnostic tools, such as an otoscope or dermatoscope, allowing pharmacists to perform real-time health assessments [13].
- Wireless health monitoring devices: Devices such as portable blood pressure monitors and blood oxygen meters allow pharmacists to collect real-time patient data, supporting remote monitoring and proactive healthcare delivery [14].

Mobile Health Applications by Pharmacists

Pharmacists are increasingly integrating mobile health technologies into their daily practice, leveraging them to improve patient care and operational workflows:

- Access to medication databases: Mobile applications provide instant access to comprehensive medication reference resources, enabling pharmacists to efficiently verify dosages, contraindications, and drug interactions [15].
- **Patient profile management:** Mobile health tools allow pharmacists to maintain detailed, up-to-date records of patient information, including medication adherence and health status data [16].
- **Operational efficiency:** Tools such as delivery management apps and inventory systems streamline pharmacy operations, ensuring timely delivery of medications and efficient inventory management [17].

mHealth and Pharmacy Practice

Integrating mHealth into pharmacy practice offers significant potential to enhance patient care and operational efficiency. However, its successful adoption depends on addressing key considerations, leveraging its benefits, and overcoming persistent barriers.

Awad Hassan Amer Alshugaih¹, Mahdi Taleb Alsulaiman², Mohammed Masaud Yahya Alghobari³, Fathallah Ali Jafar Almakrmi⁴, Mohammed Abdullah Ali Almahri⁵, Atran Abdullah Atran Alalhareth⁶, Ali Makfoor Shoil Algashanieen⁷, Abdullah Hussain Mohammed Alalhareth⁸, Al-Hassan Hamad Nasser Almahamed⁹, Mohammed Salem Hadi Al Abbas¹⁰

Considerations for mHealth Adoption

- **Infrastructure:** Access to basic resources such as mobile phones, reliable internet, and electricity varies widely across the world, especially in rural areas. These disparities directly impact the implementation and accessibility of mHealth tools [18].
- **Data Privacy:** The secure transmission of sensitive patient information is a fundamental requirement for mHealth platforms. Without strong data protection measures, patient trust can be compromised, and the risk of data breaches increases. Compliance with global data protection regulations, such as the European Union's General Data Protection Regulation (GDPR) and incorporating advanced encryption methods are essential to protect patient privacy [19].
- **Technological Literacy:** A significant challenge in the adoption of mHealth tools is the limited familiarity with these technologies among certain population groups, particularly elderly patients and pharmacists in rural areas. Addressing this gap requires educational initiatives to promote digital literacy and the development of user-friendly applications that meet varying levels of technical proficiency [6].

Benefits of mHealth in Pharmacy Practice

- **Improving Access:** mHealth technologies have the potential to break down geographical and logistical barriers, enabling access to healthcare services in remote areas. For pharmacists, these tools facilitate direct communication with patients, ensuring continuity of care regardless of location [9].
- Improving Patient Engagement and Education: mHealth tools such as medication reminders, tracking apps, and educational content support patients in staying informed about their medication regimens and promoting engagement and adherence, leading to better health outcomes [20].
- Supporting Evidence-Based Personalized Care: Pharmacists benefit from real-time access to patient data and medication information through mHealth platforms, enabling them to deliver personalized, evidence-based care that improves medication accuracy and strengthens the pharmacist-patient relationship [16].

Barriers to mHealth Adoption

- **Interoperability Issues:** Lack of standardization across mHealth platforms often prevents seamless integration with existing healthcare systems. Without interoperability, data exchange becomes fragmented, reducing the effectiveness of mHealth tools [6].
- Coverage Gaps: Limited access to internet connectivity and technical support limits the adoption of mHealth technologies. Innovative approaches, such as offline functionality, are essential to fill these gaps and expand the reach of mHealth [21].
- **Economic Constraints:** The financial investment required for mHealth technologies can be prohibitive. To overcome these economic barriers, cost-effective solutions, subsidized initiatives, and public-private partnerships are essential to enable broader adoption [6,21].

Functions of mHealth Tools in Pharmacy

Mobile health (mHealth) tools have introduced a wide range of functionalities that empower both pharmacists and patients, reshaping traditional pharmacy practices. These tools can be broadly categorized into patient-centric applications, professional support tools, and pharmaceutical industry initiatives.

- Patient-centric applications

Medication management: Mobile health applications designed for medication management provide patients with essential tools to track their prescriptions and medication regimens. These applications allow users to schedule prescription refills, set medication reminders, and access their medication history [22].

Direct communication: Many mHealth applications include features such as live chat, which enables real-time communication between pharmacists and patients. This functionality provides patients with immediate access to professional advice, addressing queries related to medication use, potential side effects, and general health concerns [12].

- Professional support tools

Diagnostic support: Mobile-enabled devices integrated with mHealth applications allow pharmacists to perform diagnostic functions in healthcare. These devices provide real-time data, allowing pharmacists to make informed recommendations and effectively monitor patient progress [23].

Educational Resources: mHealth apps also serve as valuable educational resources for pharmacists. These tools provide access to updated clinical guidelines, case studies, and continuing education modules, helping pharmacists stay up-to-date on developments in medicine and healthcare practice [24].

- Pharmaceutical Industry Initiatives

The pharmaceutical industry has actively embraced mHealth by developing apps that help patients manage chronic conditions. These apps often include features such as disease tracking, symptom monitoring, and integration with wearable devices. By aligning these tools with broader health goals, pharmaceutical companies support patients in achieving long-term health goals while enhancing medication adherence and engagement [25].

The Role of Pharmacists in Integrating mHealth

Pharmacists play a pivotal role in the successful adoption and integration of mHealth technologies into healthcare systems. Their responsibilities extend beyond traditional pharmacy practice to include evaluating, educating, and promoting these tools while addressing the challenges associated with their deployment [26].

- **Evaluating mHealth Tools:** Pharmacists must evaluate the effectiveness, reliability, and safety of mHealth tools before integrating them into their practices. This includes understanding the clinical utility of these tools and ensuring that they align with evidence-based practices [27].
- **Educating Patients:** One of the most important roles of pharmacists in integrating mHealth is educating patients about the functionality and benefits of these applications. By guiding patients on how to effectively use mHealth tools, pharmacists can empower them to take an active role in managing their health [26,28].
- Advocating for Integration: Pharmacists must advocate for the inclusion of mHealth technologies into standard pharmacy practice. This includes collaborating with healthcare organizations and policymakers to develop protocols and standards for mHealth use, and ensuring their widespread acceptance and implementation [26].

Emerging Technologies and Skills

mHealth integration requires pharmacists to adapt to rapidly evolving technologies. Key areas of focus include:

- **Blockchain technology:** Blockchain provides a secure, tamper-resistant platform for managing digital health records and sharing data between healthcare providers. Pharmacists need to learn about this technology to enhance data security and interoperability across healthcare systems [29].
- **Digital health records:** Pharmacists must develop the skills to navigate and use digital health records effectively, ensuring seamless access to patient information and promoting better care coordination [30].

Future trends in mobile health

As technology continues to evolve, the mobile health landscape is poised for significant advances:

Awad Hassan Amer Alshugaih¹, Mahdi Taleb Alsulaiman², Mohammed Masaud Yahya Alghobari³, Fathallah Ali Jafar Almakrmi⁴, Mohammed Abdullah Ali Almahri⁵, Atran Abdullah Atran Alalhareth⁶, Ali Makfoor Shoil Algashanieen⁷, Abdullah Hussain Mohammed Alalhareth⁸, Al-Hassan Hamad Nasser Almahamed⁹, Mohammed Salem Hadi Al Abbas¹⁰

- Continuous updates and improvements: The dynamic nature of mobile health requires continuous updates to tools and applications, ensuring they are aligned with the latest clinical guidelines and technological advances [28,30].
- **AI-driven diagnostics:** AI is increasingly being integrated into mHealth applications, enabling predictive diagnosis and personalized treatment plans tailored to individual patient needs [29].
- **Integrated health platforms:** Innovations in platform interoperability are facilitating seamless integration of mHealth tools with electronic health records (EHRs), improving data exchange and care coordination [29,30].

Conclusion

Mobile health (mHealth) offers tremendous potential to enhance healthcare quality and operational efficiency in pharmacy practice. Its adoption is essential to keep pace with the rapid developments in the healthcare industry. However, realizing its full potential requires addressing challenges such as infrastructure gaps, data privacy concerns, and technology acceptance. Pharmacists play a pivotal role in this transformation by evaluating mHealth tools, educating patients, and advocating for standardized practices. Advances in artificial intelligence and integration with electronic health records are expected to further enhance the value of mHealth, positioning it as an indispensable component of modern healthcare systems.

References

- 1. Yadav, Sankalp. "Transformative frontiers: a comprehensive review of emerging technologies in modern healthcare." *Cureus* 16.3 (2024).
- 2. TahaYaseen, Ali, Abdul Rahim Ahmad, and Saraswathy Shamini Gunasekaran. "A Systematic Review of Mobile Health Adoption Factors for Iraqi Healthcare Institutions." *International journal of health sciences* 6.S1: 6693-6709.
- 3. Sharma, Sunil Kumar, et al. "Mobile healthcare (m-Health) based on artificial intelligence in healthcare 4.0." *Expert Systems* 41.6 (2024): e13025.
- 4. World Health Organization. "mHealth: new horizons for health through mobile technologies. 2011." *Geneva, Switzerland: World Health Organization* (2020).
- 5. Okolo, Chioma Anthonia, Oloruntoba Babawarun, and Tolulope Oyinlola Olorunsogo. "Mobile health (mhealth) innovations for public health feedback: a global perspective." *International Medical Science Research Journal* 4.3 (2024): 235-246.
- 6. Zakerabasali, Somayyeh, et al. "Mobile health technology and healthcare providers: systemic barriers to adoption." *Healthcare Informatics Research* 27.4 (2021): 267-278.
- 7. Aruru, Meghana, Hoai-An Truong, and Suzanne Clark. "Pharmacy Emergency Preparedness and Response (PEPR): a proposed framework for expanding pharmacy professionals' roles and contributions to emergency preparedness and response during the COVID-19 pandemic and beyond." *Research in Social and Administrative Pharmacy* 17.1 (2021): 1967-1977.
- 8. Crilly, Philip, and Reem Kayyali. "A systematic review of randomized controlled trials of telehealth and digital technology use by community pharmacists to improve public health." *Pharmacy* 8.3 (2020): 137.
- 9. Cobelli, Nicola, and Andrea Chiarini. "Improving customer satisfaction and loyalty through mHealth service digitalization: New challenges for Italian pharmacists." *The TQM Journal* 32.6 (2020): 1541-1560.
- 10. Pires, Ivan Miguel, et al. "A research on the classification and applicability of the mobile health applications." *Journal of personalized medicine* 10.1 (2020): 11.
- 11. Marianovych, Mariia. "Distribution management for pharmaceutical products." (2024).
- 12. Collado-Borrell, Roberto, et al. "Novel mobile application for direct communication between pharmacists and patients treated with oral antineoplastic agents." *American Journal of Health-System Pharmacy* 77.17 (2020): 1393-1402.
- 13. Rheuban, Karen S. "Foundations of Telehealth: Lessons from Telehealth Practice in the United States." *Telehealth-E-Book: Telehealth-E-Book* (2022): 52.

- 14. Sakphrom, Siraporn, et al. "Intelligent medical system with low-cost wearable monitoring devices to measure basic vital signals of admitted patients." *Micromachines* 12.8 (2021): 918.
- 15. Subbulakshmi, B., et al. "An Automated Drug Dispenser Mobile Application Using Internet of Things (IoT) in Smart Healthcare Systems." *Technologies for Sustainable Healthcare Development*. IGI Global, 2024. 115-132.
- 16. Al Kulayb, Saleh Hamad, et al. "Information Systems in Pharmacy: Enhancing Patient Safety and Outcomes." *Journal of International Crisis and Risk Communication Research* (2024): 60-79.
- 17. Teleron, Jerry I. "Efficient Management of Pharmacy Operations through Operations Research Techniques." (2023).
- 18. Addotey-Delove, Michael, Richard E. Scott, and Maurice Mars. "Review of patients' perspectives of m-health adoption factors in the developing world. Development of a proposed conceptual framework." *Informatics in Medicine Unlocked* 21 (2020): 100460.
- 19. Alhammad, Nasser, et al. "Patients' Perspectives on the Data Confidentiality, Privacy, and Security of mHealth Apps: Systematic Review." *Journal of Medical Internet Research* 26 (2024): e50715.
- 20. Chudyk, Anna M., et al. "Patient engagement in the design of a mobile health app that supports enhanced recovery protocols for cardiac surgery: development study." *JMIR Perioperative Medicine* 4.2 (2021): e26597.
- 21. Hengst, Tessi M., et al. "The facilitators and barriers of mHealth adoption and use among people with a low socio-economic position: A scoping review." *Digital Health* 9 (2023): 20552076231198702.
- 22. Haleem, Abid, et al. "Medical 4.0 technologies for healthcare: Features, capabilities, and applications." *Internet of Things and Cyber-Physical Systems* 2 (2022): 12-30.
- 23. Jones-Esan, Lawrence, Nalinda Somasiri, and Keda Lorne. "Enhancing Healthcare Delivery Through Digital Health Interventions: A Systematic Review on Telemedicine and Mobile Health Applications in Low and Middle-Income Countries (LMICs)." (2024).
- 24. Wong, Jason C., et al. "Identifying pertinent digital health topics to incorporate into self-care pharmacy education." Pharmacy 12.3 (2024): 96.
- 25. Mwangi, Lilian Wanja. "MHealth applications prescribed alongside pharmaceutical prescriptions to manage adults' chronic diseases: a scoping review." (2024).
- 26. Almeman A. The digital transformation in pharmacy: embracing online platforms and the cosmeceutical paradigm shift. J Health Popul Nutr. 2024;43(1):60. Published 2024 May 8. doi:10.1186/s41043-024-00550-2
- 27. Mumtaz, Hassan, et al. "Current challenges and potential solutions to the use of digital health technologies in evidence generation: a narrative review." *Frontiers in Digital Health* 5 (2023): 1203945.
- 28. Rehman, Wajiha, et al. "Knowledge and perception of mHealth medication adherence applications among pharmacists and pharmacy students in Jazan, Kingdom of Saudi Arabia." *Plos one* 19.8 (2024): e0308187.
- 29. Roosan, Don, et al. "Framework to enable pharmacist access to health care data using Blockchain technology and artificial intelligence." *Journal of the American Pharmacists Association* 62.4 (2022): 1124-1132.
- 30. Akhand, Sonal, Akash Yadav, and Dinesh Kumar Jain. "Unveiling the Digital Frontier: Technological Advances in Pharmacy Research." *Journal of Clinical Advances and Research Reviews* (2024).