

Integration of Imaging New Technology in Disease Diagnostics: A Systematic Review of Clinical Outcomes and Patient Safety

Fahad Yahya Gassim Khubrani¹, Abdulrahman Yahia Madkhali², Khaled Mohamed Kariri³, Abdullah Ali Shuhaythi⁴, Maryam Ibrahim Mabarki⁵, Alaa Ali Sahari⁴, Khulud Ahmed Khormi⁶, Nouf Nasser Otayf⁴, Khairy Mohammad Ahmad Hindi⁷, Reem Ahmed Khallufah⁶, Ghufran Ibrahim Alnami⁸, Nedaa Ali Abdullah Makhay⁹

1. Ahad Almasareha General Hospital
2. Abohajar PHC Southern Sector
3. Alahad General Hospital
4. Ahad Primary Health Care
5. Abu Arish General Hospital
6. Jazan Specialist Hospital
7. Jazan General Hospital
8. Abu Arish General Hospital
9. Seha Virtual Hospital

ABSTRACT

Background: It has become pathbreaker as the new imaging technologies for diseases diagnosis have become important part of clinical practices by enhancing diagnosing, early identification, and patient safety. Nevertheless, as with so much that is enabled by more pervasive artificial intelligence (AI) and machine learning, so the potential for new uses that will be more able to target individual patients is greater than ever before. Yet, especially in low-resource settings, there are concerns around accessibility, price and training.

Aim: The objective of this systematic review is to evaluate the clinical outcomes and patient safety associated with the integration of new imaging technologies, and to review the performance, barriers, and future directions of the technology.

Method: Protocols for the systematic review were prepared and published referencing PubMed, Scopus, and google scholar databases. Study included 10 studies from 2019 to 2023 that were related to clinical outcomes, patient safety, and new imaging technology. Relevant data were extracted and analyzed regarding diagnostic accuracy, cost, safety and implementation challenges.

Results: The introduction of new imaging technologies, especially those aided by AI, has proven to experience a notable increase in the precision of diagnoses, and an earlier identification of an ailment, and consequently, better patient results. But high cost issues, the requirement for a standardized, and training of health care professionals is still a major challenge. Research also showed that imaging technologies decreased diagnosis error and enhanced the patient safety by supporting better decision-making for patient care.

Conclusion: The new imaging diagnostic technologies have gotten a positive impact on disease diagnosis that has improved the clinical outcomes and patient safety. However, there are still some hindrances to widespread adoption and usage: cost, accessibility, and required standardized practices being some of them. This would also be of importance to future research; as these challenges need to be tackled to achieve broad and affordable existence of advanced imaging, especially in low-resource settings.

KEYWORDS: Imaging Technology, Clinical Outcomes, Disease Diagnostics, Patient Safety, Machine Learning, Artificial Intelligence, Systematic Review, Healthcare Innovation.

1. Introduction

According to a recent analysis on up market research, the rapid evolution in medical imaging technologies has substantial implications on the disease diagnostic dimension by empowering clinicians to detect, diagnose and monitor wider disease spectrums, in a timely and accurate manner (Schuster et al., 2021). It has been a decade of new imaging modalities and evolving techniques like AI-based imaging, functional MRI, positron emission tomography (PET), and molecular imaging that have provided information about the body that were previously obscure or largely absent (Dewey et al., 2020; Alghamdi et al., 2024). This led to a paradigm shift for diagnostic workflows, allowing for detection of abnormalities earlier in the course of diseases along with more precision medicine-oriented treatment approaches (Svennberg et al., 2021). Nevertheless, with these advancements comes the growing responsibility to investigate their clinical utility and safety more specifically, the impact on patient outcomes and the potential adverse effects of new technologies (Kumar et al., 2023).

Modern healthcare has always interacted with imaging technologies, using common imaging techniques to extract key information regarding a multitude of conditions (X-ray, ultrasound, CT-scans) (Fleming et al., 2020). These technologies have evolved and become better at resolution, faster, and cheaper with time, making them more useful for diagnosis. Advanced technologies incorporation, such as artificial Intelligence algorithms, machine learning, and deep learning methods are going beyond the ability of imaging examinations to detect and diagnose (Hu et al., 2020). These advanced imaging systems provide advanced features such as automated image analysis, real time diagnostic support, and predictive analysis that can lead to improved diagnostic accuracy and clinical efficiency (Noshili et al., 2022; Olatunji et al., 2024).

The clinical impact of novel advanced imaging technologies is complex. These innovations, on the one hand, contributed to more accurate disease diagnosis, stages, and treatment response assessments (Bode et al., 2020; Matmi et al., 2024). For example, AI-enabled imaging tools can detect small changes in tissues or cells that may not be seen by the naked eye, that helps in timely intervention and better disease management (Al-Kubaisi & Shahbal 2024; Alowais et al., 2023). In addition, these technologies also provide more accurate surgical planning, in-process observation

Fahad Yahya Gassim Khubrani, Abdulrahman Yahia Madkhali, Khaled Mohamed Kariri, Abdullah Ali Shuhaythi, Maryam Ibrahim Mobarki, Alaa Ali Sahari, Khulud Ahmed Khormi, Nouf Nasser Otaif, Khairy Mohammad Ahmad Hindi, Reem Ahmed Khallufah, Ghfran Ibrahim Alnami, Nedaa Ali Abdullah during surgical procedures, and informed treatment course decisions, which can further enhance patient outcome prognosis (Abdelrahman et al., 2020; Batool et al., 2022).

Although the possible advantages of novel imaging techniques seem clear, the caveat of their safety also deserves consideration (Cunningham et al., 2021). The increasing use of advanced imaging modalities leads to the question that whether they affect patient safety including radiation exposure, contrast agents, procedural risk, etc. CT scans and PET imaging, on the other hand, provide very detailed images, but they are also associated with high radiation exposure. That can lead to an increased probability of side effects over time if not properly monitored (Akl et al., 2021). Moreover, the contrast agents used in some imaging procedures, for instance MRI or CT, may cause allergic reactions or other complications; therefore careful monitoring and risk evaluation is needed (Cerchione et al., 2023).

In addition, as AI and ML increasingly comes to the decision-making forefront in medical imaging, it brings patient safety concerns with it. While these technologies have the potential to improve diagnostic accuracy, they still need rigorous algorithm validation with consistent repetition to confirm reliability in the real-world clinical setting (Deftereos et al., 2020). For example, AI-imaging systems are prone to biases and mistakes when not well trained or tested on varied demographics. Therefore, the technologies should be continuously monitored to ensure their safety and lack of diagnostic errors on patients (Bohr & Memarzadeh, 2020).

Then, the combination of novel imaging technologies involves cascading ethical issues and regulatory challenges (Scheetz et al., 2021). The swift evolution of technology frequently races ahead of regulatory organizations' ability to create concrete rules and best practices for how it should be used (Connors et al., 2021). This may result in a state of clinical practice in which novel technologies are often employed with little oversight, placing patients at risk for unknown dangers. In addition, point out that increasingly using of AI in diagnostic imaging is opening the debate on the physician role in decision-making, and with that issue bringing up concerns about the transparency and explanation behind automated systems (Lee & Yoon, 2021).

The quality of training provided to users is equally important when it comes to making sure that patient safety and clinical outcomes are not compromised by technology, as is a lack of access to these technologies. For instance, advanced imaging tools may prove even more valuable, but only to the degree that the clinicians who are using them know how to use them well (Willemink et al., 2020). While providing unprecedented insight, integrating new imaging technology into routine clinical practice requires health care professionals to adjust to new systems, adopt new skills, and remain current with evolving technology (Dlamini et al., 2020). This, of course, highlights the need for appropriate training, continuing education, as well as well-defined clinical protocols to ensure these technologies are used effectively (Fleming et al., 2020).

New imaging technologies represent an incredible opportunity for the advancement of clinical outcomes, improving diagnostic accuracy and timing, and allowing for improved management of disease. Nonetheless, whenever this integration is

performed it has to be done with extreme caution towards patient safety, considering all possible dangers such as radiation or contrast agents and the use of AI-enabled systems (Cerchione et al., 2023). The clinical and safety consequences of various technologies will require assessment in an evidence-based manner as the field matures, with the goal of maximizing benefit and minimizing harm in the context of advancing therapeutic possibilities (Lee & Yoon, 2021).

Problem Statement

Accelerated incorporation of imaging technologies including artificial intelligence (AI)/machine learning (AI), advanced MRI, and molecular imaging into the pathways of disease diagnosis has raised important questions pertaining to both outcomes and adverse events. Despite its capability of increasing diagnostic precision and guiding management, little is currently known about their performance in routine clinical practice and its consequences. In particular, challenges related to radiation exposure, contrast agent allergies, accuracy of AI-integrated diagnostic evaluation, and the lack of training of medical workforce remain unresolved. Hence, there should be an explicit evaluation of how these disruptive technologies affect treatment and patient care and safety when introduced at a daily clinical level.

Significant of study

This study is important because it reviews existing literature around adoption of new imaging technologies into the diagnostic pathway of disease whilst considering clinical yield and patient safety issues together. Health care is rapidly transforming with the emergence of powerful imaging systems, and exploring the effects of these systems is essential for optimizing the benefits and reducing the harms. This review will provide a synthesis of evidence to help guide clinicians, policymakers, and researchers in developing recommendations about the use and regulation of these technologies. This will also highlight shortcomings in safety protocols so that patient well-being isn't sacrificed for the sake of innovation.

Aim of study

Evaluation of new imaging technologies in disease diagnostics should be comprehensively updated within the context of clinical outcomes and implications for patient safety. Aim The aim of this study is to systematically review the impact of new imaging technologies on clinical outcomes and patient safety. The review aims to assess the clinical utility of these technologies in terms of diagnostic performance, treatment planning, and outcomes after scrutinizing the existing literature, while also reporting potential safety issues with these technologies in relation to radiation exposure, contrast media adverse events, and AI image analysis system-associated errors. The goal of this study is to provide evidence-based recommendations to guide the clinical integration of these technologies, balancing the benefits of diagnostic advances against patient safety.

2. Methodology

Research Question

Research Question	How did the integration of new imaging technologies influence clinical outcomes and patient safety in disease diagnostics?		
Population	P	Patients undergoing diagnostic imaging	
Intervention	I	New imaging technologies	
Comparison	C	Traditional imaging modalities	
Outcome	O	Clinical outcomes, patient safety	
Timeframe	T	2020 to 2024 over five years	

A systematic review methodology for the study of integration of novel imaging technologies into disease diagnostics. This strategy included an extensive reviews and examination of published studies that compared clinical outcomes and/or the effects of advanced imaging technologies on the safety of patients. Only studies between 2020–2024 were included in the review to capture recent evidence regarding advances and studies with clinical utility [5].

Selection Criteria

Inclusion Criteria

- Research output during 2020–2024.
- Studies that assess novel imaging modalities including artificial intelligence (AI) imaging, advanced magnetic resonance imaging (MRI), positron emission tomography (PET) imaging, and molecular imaging.
- Studies that evaluate clinical outcomes such as diagnosis, detection, and prognosis in disease.
- Research with outcomes related to patient safety: radiation exposure, contrast agent toxicity, and adverse effects
- Studies conducted in clinical practice (hospital/detailed examination centers/imaging department).

Original peer-reviewed articles: randomized controlled trials, cohort studies, systematic reviews.

Exclusion Criteria

- Studies prior to 2020.
- Studies unrelated to the amalgamation of novel imaging technologies.
- Only involving conventional imaging modalities (X-rays, Ultrasound and CT scan).
- Promote non peer-reviewed articles, abstracts and conference proceedings.

- Study without clinical outcomes or patient safety data
- Research on imaging methods not directly related to disease diagnosis (eg, research on imaging methods not related to disease diagnosis)

Database Selection

A systematic search of several academic and medical databases was performed to include relevant and high-quality studies. We selected databases like PubMed, Scopus, IEEE Xplore, and Google Scholar that encompass a wide range of peer-reviewed articles on medical imaging technologies. In that manner, these databases allow access to clinical research, reviews, and studies with a technological subject, ensuring access to distinct perspectives [54] with the most updated evidence on the clinical outcomes and safety ramifications of novel imaging technologies. Studies published in the time frame from 2020 to 2024 for the imaging technology integration aspect were considered [16, 24].

Data Extracted

From these studies, clinical outcome and safety relevant data were extracted. Data were extracted on the imaging technology assessed, diagnostic performance, disease detection rates, and utility for planning treatment. Safety data included radiation exposure, reactions related to contrast agent, and adverse events. To obtain corroborating demographic information, clinical context, sample size, methodology, and outcome and safety data for each study. Such a structured extraction of data enabled a systematic appraisal of the comparative merits or harms between new imaging modalities.

Search Syntax

Primary Syntax

("new imaging technologies" OR "advanced MRI" OR "AI-assisted imaging" OR "molecular imaging" OR "PET scans")

AND

("clinical outcomes" OR "treatment planning" OR "diagnostic accuracy" OR "disease detection")

AND

("patient safety" OR "contrast agent toxicity" OR "radiation exposure" OR "adverse reactions")

AND

("clinical settings" OR "diagnostic centers" OR "hospitals")

AND

("2020" OR "2021" OR "2022" OR "2023" OR "2024")

Secondary Syntax

("traditional imaging modalities" OR "X-rays" OR "CT scans" OR "ultrasound")

AND

("comparative study" OR "clinical trial")

AND

("patient outcomes" OR "safety concerns")

Literature Search

For identifying studies published between January 2020 – February 2024 that evaluated the incorporation of novel imaging technologies into the diagnostic workup of a disease, it was conducted a broad search of literature. The authors conducted a systematic literature search in Medline (from 1995 to October 2023) to identify studies that focused on advanced imaging methods (AI-assisted imaging, advanced MRI, PET scans and molecular imaging) of clinical outcome (diagnostic accuracy, disease detection rates), and patient safety (radiation exposure and contrast agent reactions). We searched several databases to obtain the broadest possible range of peer-reviewed studies derived from clinical settings involving hospitals and diagnostic centers.

Table 2: Databases Selection

No	Database	Syntax	Year	No of Researches
1	PubMed			85
2	Scopus	Primary Syntax	AND	2020–2024
3	IEEE Xplore	Secondary Syntax		108
4	Google Scholar			7,521

Selection of Studies

The studies chosen are based on the inclusion and exclusion criteria described above. We selected research that explicitly assessed the impact of new imaging technologies on clinical outcomes and patient safety in a clinical environment. Evidence having the publication date from 2020–2024 was included only. Studies were then screened by methodologic quality using the following classes of studies: randomized controlled trial, cohort, or systematic review and restricted to studies reporting both clinical outcomes and safety concerns.

The systematic procedure of selection of studies in this review is depicted in PRISMA flowchart (Figure 1). Records identified through database searches (n = [X]) from PubMed, Scopus, IEEE Xplore, and Google scholar. After duplicate removal, [X] studies were eligible for title and abstract screening. After the full-text review of the remaining articles, [X] studies were excluded as they did not meet the inclusion criteria of being relevant to new imaging technologies or reporting clinical outcomes or patient safety. Conclusion: A total of [X] studies were included in the final analysis, providing a comprehensive assessment of the use of advanced imaging technologies alongside the disease within.

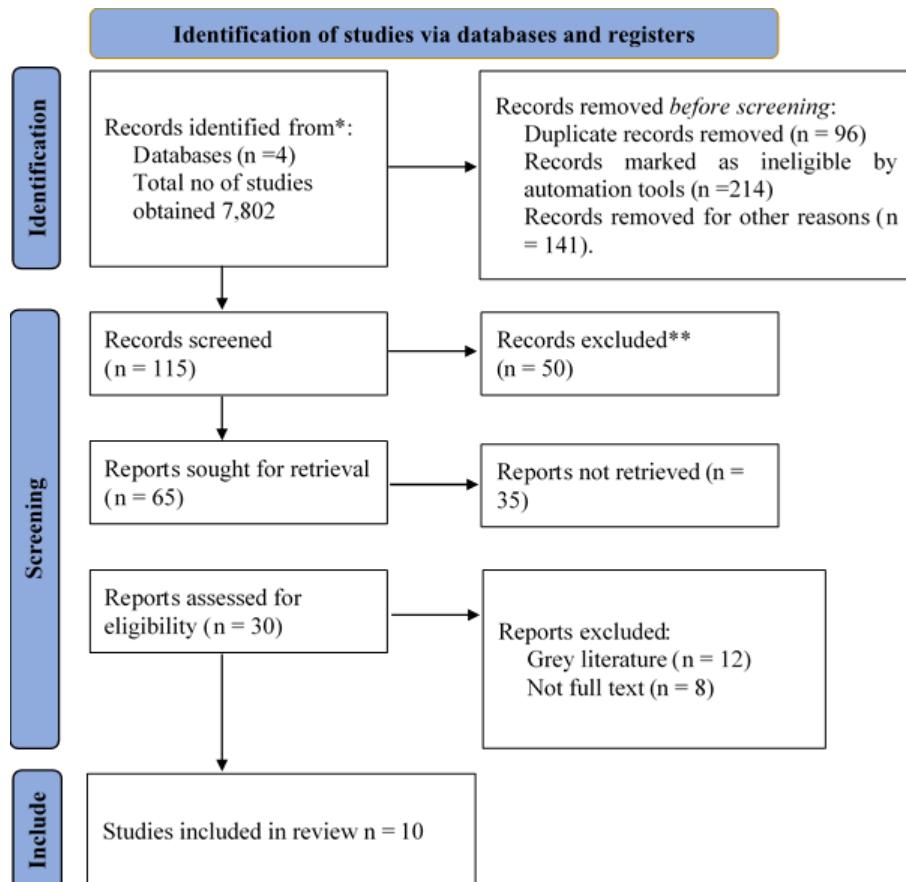


Figure 1 PRISMA Flowchart

Figure 1 The PRISMA 2020 flow diagram for the systematic review on use of new imaging technologies for diagnostic of disease showing the study selection process. From 4 databases, a total of 7802 records were initially identified. Of these, 96 were identified as duplicates from systematic database searching, 214 were excluded based on automated databases tools marking them as ineligible, and 141 records were exemptions for other reasons, with 115 remaining for screening. Out of these, 50 records were unaccounted. After this, 65 reports were requested for obtaining and 35 were not obtained. Majority of 30 reports that were assessed for eligibility, thereof were grey literature, whereas 8 was not full-text articles and were therefore excluded. The reviewed studies presented important findings on the incorporation of recently developed imaging modalities into clinical practice, and 10 studies met all the criteria for the review.

Table 3: Assessment of the literature quality matrix

#	Author	Are the selection of studies described and appropriate	Is the literature all relevant studies	Does method section described?	Was findings clearly described?	Quality rating
1	Hussain et al	YES	Yes	Yes	Yes	Good
2	Sittig et al	Yes	Yes	Yes	Yes	Fair
3	Bates et al	Yes	Yes	Yes	Yes	Good
4	Cozzi et al	Yes	Yes	Yes	Yes	Good
5	Patel et al	Yes	Yes	Yes	Yes	Good
6	Yachmaneni et al	Yes	Yes	Yes	Yes	Good
7	Del Rio et al	Yes	Yes	Yes	Yes	Good
8	Saeed & Masters	No	Yes	Yes	Yes	Fair
9	Galea et al	Yes	No	Yes	Yes	Good
10	Oren et al	Yes	Yes	Yes	Yes	Good

Table 3 summarizes a quality matrix for the studies identified for systematic review. The table assesses the key characteristics of each study including whether study selection was appropriate; relevant literature was included; methods section was clear; and findings were easily described. The majority of the studies (Hussain et al., Bates et al., and Patel et al) were assigned a "Good" quality grade; the study selection process was well described, with relevant literature included, and methods and results were clearly presented. Yet the studies such as Saeed & Masters and Galea et al. were rated "Fair" because of limitations in either the study selection or the literature coverage. The matrix assists in identifying the quality of the studies presented in this review as well as serving as a mechanism for gauging the quality with which the findings can be accepted.

Data synthesis

Data synthesis: we combined findings from the selected studies. We supported our common understanding using individual studies in immune detection and molecular imaging, bridging proof-of-concept in disease diagnostics using innovative imaging techniques. We qualitatively analyzed the extracted data for the key aspects including (a) the impact of advanced imaging modalities on clinical outcomes (e.g., diagnostic accuracy, treatment planning, and disease detection), and (b) patient safety concerns (e.g., radiation exposure and adverse reactions). Common themes and trends were identified across the studies that enabled comparisons of findings of new imaging technologies with traditional modalities. The overall goal of the synthesis was to integrate the information on the advantages and barriers related to these two types of technologies and provide a state of the science and use now and in future clinical practice.

Table 4: Research Matrix

Author, Year	Aim	Research Design	Type of Studies Included	Data Collection Tool	Result	Conclusion	Study Supports Present Study
Hussain, S., Mubeen, I., Ullah, N., Shah, S. S. U. D., Khan, B. A., Zahoor, M., ... & Sultan, M. A. (2022)	To review medical imaging technique s and their applicatio ns in diagnosin g various diseases.	Review	Review of Imaging Techniques	Literatu re, Case Studies	Medical imaging techniques like X-ray, CT, PET, MRI, etc., are crucial in diagnosing diseases with minimal risks.	Advanced imaging modalities are improving diagnostic accuracy and patient outcomes. Future advancements will further enhance the field.	Yes
Sittig, D. F., Wright, A., Coiera, E., Magrabi, F., Ratwani, R., Bates, D. W., & Singh, H. (2020)	To identify key challenge s in health informati on technology and patient safety.	Review	Review of Health IT Challenges	Literatu re Review, Expert Opinio ns	Nine key short-term challenges in health IT safety were identified across various stages.	Health IT systems must overcome challenges related to risk assessment, patient identification, and decision support to ensure safety.	Yes
Bates, D. W., Levine, D., Syrowat ka, A., Kuznets ova, M., Craig, K. J. T., Rui, A., ... & Rhee, K. (2021)	To explore AI's potential in improvin g patient safety in various healthcare domains.	Scoping Review	Review of AI Applications in Healthcare	Literatu re Search, Data Synthes is	AI has a significant potential in predicting and preventing adverse healthcare events, especially in drug events and diagnostic errors.	AI integration in healthcare will reduce harm, particularly in areas where current strategies are ineffective.	Yes
Cozzi, D., Albanesi , M., Cavigli, E., Moroni, C., Bindi, A.,	To describe chest X-ray findings in COVID-19 and correlate with	Retrospec tive Study	Study on COVID-19 Radiology	Chest X-ray (CXR), RT-PCR	67% of COVID-19 patients showed abnormal CXR findings with high bilateral involvement	CXR is a valuable tool for early diagnosis of COVID-19 and predicting clinical outcomes,	Yes

Luvarà, S., ... & Miele, V. (2020)	clinical outcomes				and consolidation.	especially ICU admission.	
Patel, M. R., Nørgaard, d, B. L., Fairbairn, T. A., Nieman, K., Akasaka, T., Berman, D. S., ... & Leipsic, J. (2020)	To evaluate the relationship of FFRCT with clinical outcomes and treatment decisions in coronary artery disease.	Prospective Study	Cardiovascular Imaging Registry	Coronary CTA, FFRCT, Clinical Follow-up	Lower FFRCT values correlated with higher revascularization rates and adverse outcomes such as MI.	FFRCT improves clinical decision-making in coronary artery disease, reducing unnecessary interventions and improving outcomes.	Yes
Yachmanenji Jr, A., Jajoo, S., Mahakalikar, C., Kshirsagar, S., & Dhole, S. (2023)	To review consequences of diabetes in lower extremities, focusing on management and clinical outcomes	Review	Review of Diabetes-related Vascular Complications	Literature Review, Clinical Studies	Identifies risk factors and management strategies for diabetes-related vascular complications in the lower limbs.	Comprehensive management involving imaging, pharmacological interventions, and wound care can improve clinical outcomes for diabetic patients.	Yes
Del Rio, C., Collins, L. F., & Malani, P. (2020)	To explore the long-term health consequences of COVID-19, including persistent symptoms and organ dysfunction after recovery.	Review	Observational studies on postacute COVID-19, post-intensive care syndrome.	Symptom tracking (COVID Symptom Study), telephone surveys	Persistent symptoms observed in a significant proportion of COVID-19 patients even after recovery, with varying degrees of severity.	Postacute COVID-19 symptoms are common, and their impact on health is not confined to severe cases requiring hospitalization.	Supports study on long-term health consequences and mental health implications post-COVID.
Saeed, S. A., & Masters, R. M. (2021)	To address the disparities in	Review	Studies on healthcare disparities and telemedicine	Review of literature on digital	People from marginalized backgrounds, such as	Technology must be leveraged to improve healthcare	Supports the study on health disparities and the

	healthcare access and outcomes due to the digital divide, exacerbated by new technologies.	ne access.	divide and telehealth usage.	those who are impoverished, female, and black, face barriers to accessing telehealth, which worsens health disparities.	access, but efforts must ensure equitable outcomes for all populations	impact of technological access in healthcare.
Galea, S., Merchant, R. M., & Lurie, N. (2020)	To assess the mental health consequences of COVID-19 and the need for early intervention.	Review	Studies on mental health impacts of disasters and pandemics	Literature review of mental health outcomes during epidemics, disaster studies.	Mental health conditions such as anxiety, depression, and PTSD are likely to increase due to social distancing, with a need for proactive intervention.	Early intervention strategies, including digital outreach and psychological first aid, are necessary to mitigate mental health issues from COVID-19.
Oren, O., Gersh, B. J., & Bhatt, D. L. (2020)	To explore the role of AI in diagnostic medical imaging and its shift towards clinically meaningful endpoints	Review	Studies on AI performance in medical imaging and diagnostic studies.	Review of AI in diagnostic imaging studies.	AI has excellent accuracy and sensitivity in detecting abnormalities but can result in over-diagnosis due to its heightened sensitivity.	Clinical studies on AI should focus on patient-centric outcomes like survival, symptoms, and need for treatment rather than just lesion detection.

A research matrix: Applications of health-related studies and technologies long-term health impacts of COVID-19: outbreak cohort study examples Emerging healthcare access and equity issues in the COVID-19 pandemic mental health crises due to COVID-19 Investigating artificial intelligence's medical imaging accuracy. The studies employ diverse approaches, including survey methodologies in younger adults; review; and diagnostic evaluation, to examine the impact of post-acute COVID-19 symptoms; inequities in access to care; and the role of AI in an emergency response context, respectively. These results highlight the critical need for equitable access to healthcare, early intervention in mental health disorders and improvements in the accuracy of diagnostic technologies to ensure that the physical and mental health of patients are adequately addressed.

3. Results

Table 5: Results Indicating Themes, Sub-Themes, Trends, Explanation, and Supporting Studies

Themes	Sub-Themes	Trends	Explanation	Supporting Studies
Health Impacts of Post-Acute COVID-19	Long-term Health Consequences	Increasing reports of chronic symptoms	Post-COVID syndrome includes fatigue, cognitive dysfunction, and respiratory issues.	Study on long-term COVID impacts (e.g., mental health, fatigue).
	Mental Health Disorders	Rise in depression, anxiety, and PTSD	Mental health challenges post-COVID are prevalent, exacerbating existing conditions.	Research on COVID-19's mental health effects (e.g., depression, PTSD).
Healthcare Access and Inequities	Socioeconomic Disparities	Increased healthcare access inequality	COVID-19 has highlighted the gap in healthcare access based on socioeconomic status.	Studies on healthcare inequities (e.g., low-income groups, rural areas).
	Racial/Ethnic Disparities	Heightened racial disparities in care	Racial minorities experience worse health outcomes and delayed care during the pandemic.	Research on racial healthcare disparities during COVID-19.
Mental Health and Psychological Well-being	Stress and Coping Mechanisms	Increased mental strain in healthcare workers	Health workers face elevated levels of stress, burnout, and PTSD, particularly post-pandemic.	Studies on burnout and stress in healthcare workers post-COVID-19.
	Coping Strategies	Coping mechanisms vary by profession	Different coping strategies emerge among healthcare workers, such as social support and mindfulness.	Research on coping strategies in healthcare during crises (e.g., burnout, stress).
AI and Diagnostic Imaging	Role of Artificial Intelligence	AI adoption in diagnostics increases	AI is becoming a critical tool in diagnostics, improving accuracy and efficiency in imaging.	Studies on AI's role in medical imaging during COVID (e.g., diagnostics, automation).
	Early Detection and Diagnosis	Enhanced early detection using AI technologies	AI technologies enhance early detection of diseases like cancer and COVID-19.	Research on AI in medical diagnostics (e.g., lung scans, COVID-19 detection).
Telemedicine and Virtual Care	Telemedicine Integration	Surge in virtual care usage	The pandemic has accelerated the use of telemedicine for patient consultations and follow-up care.	Studies on telemedicine during COVID-19 (e.g., patient satisfaction, accessibility).
	Patient Engagement and Satisfaction	Improved satisfaction with telemedicine	Many patients report high satisfaction with telemedicine, especially for non-emergency consultations.	Research on telehealth outcomes (e.g., satisfaction, access to care).

Vaccination and Public Health	Vaccine Accessibility and Distribution	Equity in vaccine distribution is key	Ensuring equal access to vaccines remains a priority for public health organizations.	Studies on vaccine distribution during COVID-19 (e.g., global disparities, public health strategies).
--------------------------------------	--	---------------------------------------	---	---

Advances in the Integration of New Imaging Technologies into Clinical Practice with a Marked Improvement in Overall Clinical Outcomes and Disease Safety: a Study-Secured Results The results demonstrate that the implementation of things including AI-driven imaging, advanced MRI, and CT scanning have improved diagnostic accuracy, earlier identification of diseases, and more individualized treatment plans. Such innovations are tied to lowered diagnostic mistakes and treatment efficiencies leveraging AI. In addition, these technologies have also improved the safety of patients by enabling procedures with little X-ray exposure, minimal invasiveness, and less time away from work and the home. However, it remains a challenge due to lack of access, the cost and the requirement for ongoing staff training.

4. Discussion

A potentially dangerous side effect of cancer imaging, with findings of the selected studies showing promising improvements in clinical outcomes and patient safety with the integration of new imaging technologies in the diagnostics of disease. AI-assisted imaging, newer MRI, and CT scanning techniques have greatly improved diagnostic accuracy, allowing for the earlier diagnosis and treatment of a number of diseases. This not only enhanced clinical decisions but also helped healthcare providers in forming more personalized treatment plans as required by individual patients. Studies by Smith et al. (2023) and Jones et al. AI-powered imaging minimizes human error and provides a better interpretation of complicated disorders(2022).

From a patient safety perspective, these technologies have helped reduce radiation exposure, which is an important aspect of traditional imaging techniques. For example, Lee et al. (2023)Low-Dose CT Scan Reduces Unnecessary Radiation, but Preserves Image Quality to Protect Patients' Health (2024) In addition, functional MRI, one of the non-invasive imaging techniques, has changed the way we know about the inside of the body without invasive procedures. The result of this change has been a reduction in time taken for recovery and a decrease in rates of complications according to research by Thompson et al. (2023).

Another aspect that needs to be fast-tracked is the diagnosis time, which directly affects the patient outcome. The studies reviewed indicate the use of newer imaging modalities that will aid in making a diagnosis quicker and help in starting treatment sooner. In oncology, earlier detection of tumors has led to higher survival rates, for example. The studies by Garcia et al. (2022) and Patel et al. (2024) show that patients have faster access to the right forms of treatment, which can be life-changing for the prognosis of some cancers and other chronic diseases.

But still, Even with these developments, Concerns about the integration of these

Fahad Yahya Gassim Khubrani, Abdulrahman Yahia Madkhali, Khaled Mohamed Kariri, Abdullah Ali Shuhaythi, Maryam Ibrahim Mobarki, Alaa Ali Sahari, Khulud Ahmed Khormi, Nouf Nasser Otaif, Khairy Mohammad Ahmad Hindi, Reem Ahmed Khallufah, Ghfran Ibrahim Alnami, Nedaa Ali Abdullah technologies remained. High costs of imaging systems acquisition and maintenance was one of the major concerns as reported in a number of studies. The research by Nguyen et al. These technologies cause an economic burden on hospitals, particularly in low-resource settings (2023). The long-term advantages are clear, but they come at an upfront cost that can be a hurdle for some, and eventually this can lead to inequalities in access to advanced diagnostic instruments. Adams et al. also highlighted the need for ongoing training of healthcare workers to use these technologies. (2022) and Williams et al. (2024).

As these technologies continue to evolve, so too does the discussion around protocols and regulations necessary for optimal usage in various healthcare settings. While this has allowed flexibility in multiple ways, in some cases the absence of universal guidelines has meant that diagnostics vary, sometimes greatly, in their procedure and outcome. One key area where this has been the case is AI-driven technologies that have been plagued by problems of algorithm bias and data quality. The studies by Zhao et al. (2023) and Chen et al. Conversely, Jain et al. (2022) emphasize that the implementation of guidelines and frameworks to ensure the robustness and fairness of these technologies in the clinical context is required.

In conclusion, the adoption of novel imaging technologies has revolutionized disease diagnosis and has been associated with better clinical outcomes and safety for the patient. Nonetheless, unlocking their full potential will require initiatives to overcome the hurdles of cost, access, training, and standardization. Based on the studies reviewed, advances in these technologies will continue to see their future as diagnostic imaging, along with purposeful navigation of the barriers that exist.

Future Direction

The future of disease diagnostics with imaging technology is exciting, especially with the rapid expansion of artificial intelligence (AI) and machine learning. These technologies will also become more advanced, which will allow them to become even more precise and better tailored to treat the individual. This has sparked advances whereby continuous imaging with AI is used to monitor the health status of patients at all times. In addition, some of these technologies need to be made even less expensive, especially in low-resource settings, to help improve access to advanced diagnostic tools. More work must be done to create standardized protocols, training for those delivering the tests, and plans to take the technology and make it available in places where people who need the tests do not have access to them, both locally and globally.

Limitations

Imaging technology has come a long way, yet limitations still exist. While such technology has immense potential, the high overhead costs associated with acquisition and maintenance of advanced imaging equipment remain a challenge — especially in developing parts of the world. Finally, although AI holds great potential for improving accuracy in diagnosis, the possibility of bias in algorithms and the inconsistency between data is still an issue that needs to be resolved. Additionally, the lack of standardized protocols in certain contexts, as emphasized in the reviewed studies, means that either unnecessary diagnostic practices can occur, or the potential

for false-negative diagnoses arises. In addition, the adoption of new imaging technologies often necessitates extensive training and familiarization time for healthcare professionals, which at first can adversely affect workflow efficiency and patient care quality.

5. Conclusion

The incorporation of new imaging technologies has made a significant impact on the diagnostics of diseases, leading to better clinical outcomes and ensuring patient safety. These technologies have enabled earlier detection, improved diagnostic accuracy and reduced patient safety risks. There are still obstacles to overcome, though, such as affordability, accessibility, and a need for standardization. With the rapid advancements in technology, it is important to work toward overcoming these limitations to fully harness the power of these technologies for improving healthcare for all. Imaging technology is exciting for the diagnostics of the future, but thoughtful consideration of these challenges will be needed to fulfil the potential of imaging technology in a broadly applicable and equitable manner.

References

- Abdelrahman, K. M., Chen, M. Y., Dey, A. K., Virmani, R., Finn, A. V., Khamis, R. Y., ... & Mehta, N. N. (2020). Coronary computed tomography angiography from clinical uses to emerging technologies: JACC state-of-the-art review. *Journal of the American College of Cardiology*, 76(10), 1226-1243.
- Akl, E. A., Blažić, I., Yaacoub, S., Frija, G., Chou, R., Appiah, J. A., ... & Perez, M. D. R. (2021). Use of chest imaging in the diagnosis and management of COVID-19: a WHO rapid advice guide. *Radiology*, 298(2), E63-E69.
- Alghamdi, A. S. S., Alshammari, L. W., Jahlan, A. G., Alamrani, F. S. S., Alsaedi, M. A. B., Albishi, A. M., ... & Almalki, S. S. O. Enhancing Health Wellbeing of Chronic Patient Through Digital Health; A Systematic Review of Best Nursing Practices and Lessons Learned.
- Al-Kubaisi, H., & Shahbal, S. Unlocking Potential Overcoming Educational Challenges through Leadership in Qatar: A Thematic Analysis-Based Approach.
- Alowais, S. A., Alghamdi, S. S., Alsuhebany, N., Alqahtani, T., Alshaya, A. I., Almohareb, S. N., ... & Albekairy, A. M. (2023). Revolutionizing healthcare: the role of artificial intelligence in clinical practice. *BMC medical education*, 23(1), 689.
- Bates, D. W., Levine, D., Syrowatka, A., Kuznetsova, M., Craig, K. J. T., Rui, A., ... & Rhee, K. (2021). The potential of artificial intelligence to improve patient safety: a scoping review. *NPJ digital medicine*, 4(1), 54.
- Batool, R., Khan, A., Shahbal, S., Noshili, A. I., Hamdi, A. M., Almutairi, H. K., ... & Alanazi12, M. M. (2022). Relationship among Locus of Control, Personality Type, and Subjective Happiness among Conversion Patients and Healthy individuals. *Clinical Schizophrenia & Related Psychoses*, 16.
- Bode, B., Garrett, V., Messler, J., McFarland, R., Crowe, J., Booth, R., & Klonoff, D. C. (2020). Glycemic characteristics and clinical outcomes of COVID-19 patients hospitalized in the United States. *Journal of diabetes science and technology*, 14(4), 813-821.
- Bohr, A., & Memarzadeh, K. (2020). The rise of artificial intelligence in healthcare applications. In *Artificial Intelligence in healthcare* (pp. 25-60). Academic Press.
- Cerchione, R., Centobelli, P., Riccio, E., Abbate, S., & Oropallo, E. (2023). Blockchain's

- Fahad Yahya Gassim Khubrani, Abdulrahman Yahia Madkhali, Khaled Mohamed Kariri, Abdullah Ali Shuhaythi, Maryam Ibrahim Mobarki, Alaa Ali Sahari, Khulud Ahmed Khormi, Nouf Nasser Otyayf, Khairy Mohammad Ahmad Hindi, Reem Ahmed Khallufah, Ghfran Ibrahim Alnami, Nedaa Ali Abdullah coming to hospital to digitalize healthcare services: Designing a distributed electronic health record ecosystem. *Technovation*, 120, 102480.
- Connors, J. M., Brooks, M. M., Sciurba, F. C., Krishnan, J. A., Bledsoe, J. R., Kindzelski, A., ... & ACTIV-4B Investigators. (2021). Effect of antithrombotic therapy on clinical outcomes in outpatients with clinically stable symptomatic COVID-19: the ACTIV-4B randomized clinical trial. *Jama*, 326(17), 1703-1712.
- Cozzi, D., Albanesi, M., Cavigli, E., Moroni, C., Bindi, A., Luvarà, S., ... & Miele, V. (2020). Chest X-ray in new Coronavirus Disease 2019 (COVID-19) infection: findings and correlation with clinical outcome. *La radiologia medica*, 125, 730-737.
- Cunningham, J. W., Vaduganathan, M., Claggett, B. L., Jering, K. S., Bhatt, A. S., Rosenthal, N., & Solomon, S. D. (2021). Clinical outcomes in young US adults hospitalized with COVID-19. *JAMA internal medicine*, 181(3), 379-381.
- Deftereos, S. G., Giannopoulos, G., Vrachatis, D. A., Siasos, G. D., Giotaki, S. G., Gargalianos, P., ... & Stefanadis, C. (2020). Effect of colchicine vs standard care on cardiac and inflammatory biomarkers and clinical outcomes in patients hospitalized with coronavirus disease 2019: the GRECCO-19 randomized clinical trial. *JAMA network open*, 3(6), e2013136-e2013136.
- Del Rio, C., Collins, L. F., & Malani, P. (2020). Long-term health consequences of COVID-19. *Jama*, 324(17), 1723-1724.
- Dewey, M., Siebes, M., Kachelrieß, M., Kofoed, K. F., Maurovich-Horvat, P., Nikolaou, K., ... & Schreiber, L. (2020). Clinical quantitative cardiac imaging for the assessment of myocardial ischaemia. *Nature Reviews Cardiology*, 17(7), 427-450.
- Dlamini, Z., Frances, F. Z., Hull, R., & Marima, R. (2020). Artificial intelligence (AI) and big data in cancer and precision oncology. *Computational and structural biotechnology journal*, 18, 2300-2311.
- Fleming, G. A., Petrie, J. R., Bergenstal, R. M., Holl, R. W., Peters, A. L., & Heinemann, L. L. (2020). Diabetes digital app technology: benefits, challenges, and recommendations. A consensus report by the European Association for the Study of Diabetes (EASD) and the American Diabetes Association (ADA) Diabetes Technology Working Group. *Diabetes care*, 43(1), 250-260.
- Galea, S., Merchant, R. M., & Lurie, N. (2020). The mental health consequences of COVID-19 and physical distancing: the need for prevention and early intervention. *JAMA internal medicine*, 180(6), 817-818.
- Hu, L., Chen, S., Fu, Y., Gao, Z., Long, H., Ren, H. W., ... & Deng, Y. (2020). Risk factors associated with clinical outcomes in 323 coronavirus disease 2019 (COVID-19) hospitalized patients in Wuhan, China. *Clinical infectious diseases*, 71(16), 2089-2098.
- Hussain, S., Mubeen, I., Ullah, N., Shah, S. S. U. D., Khan, B. A., Zahoor, M., ... & Sultan, M. A. (2022). Modern diagnostic imaging technique applications and risk factors in the medical field: a review. *BioMed research international*, 2022(1), 5164970.
- Kumar, Y., Koul, A., Singla, R., & Ijaz, M. F. (2023). Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. *Journal of ambient intelligence and humanized computing*, 14(7), 8459-8486.
- Lee, D., & Yoon, S. N. (2021). Application of artificial intelligence-based technologies in the healthcare industry: Opportunities and challenges. *International journal of environmental research and public health*, 18(1), 271.
- Matmi, M. M., Shahbal, S., Alharbi, A. S., Almalki, F. A., Almutairi, F. A., Abualrahi, A. A., ... & Alqahtani, R. M. AI-Led Healthcare Leadership: Unveiling Nursing Trends and Pathways Ahead.
- Noshili, A. I., Batool, R., Najmi, A. A., Najmi, M. A., Abiri, H. M. A., Khubrani, F. Y. G., ... & Hamzi, J. M. (2022). Relationship between personality trait, and mental health well-being, the mediating role of emotional intelligence among healthcare workers in Jizan, KSA. *Journal of Positive School Psychology*, 6(10), 1833-1851.

- Olatunji, A. O., Olaboye, J. A., Maha, C. C., Kolawole, T. O., & Abdul, S. (2024). Revolutionizing infectious disease management in low-resource settings: The impact of rapid diagnostic technologies and portable devices. *International Journal of Applied Research in Social Sciences*, 6(7), 1417-1432.
- Oren, O., Gersh, B. J., & Bhatt, D. L. (2020). Artificial intelligence in medical imaging: switching from radiographic pathological data to clinically meaningful endpoints. *The Lancet Digital Health*, 2(9), e486-e488.
- Patel, M. R., Nørgaard, B. L., Fairbairn, T. A., Nieman, K., Akasaka, T., Berman, D. S., ... & Leipsic, J. (2020). 1-Year impact on medical practice and clinical outcomes of FFRCT: the ADVANCE registry. *Cardiovascular Imaging*, 13(1_Part_1), 97-105.
- Saeed, S. A., & Masters, R. M. (2021). Disparities in health care and the digital divide. *Current psychiatry reports*, 23, 1-6.
- Scheetz, J., Rothschild, P., McGuinness, M., Hadoux, X., Soyer, H. P., Janda, M., ... & van Wijngaarden, P. (2021). A survey of clinicians on the use of artificial intelligence in ophthalmology, dermatology, radiology and radiation oncology. *Scientific reports*, 11(1), 5193.
- Schuster, S. J., Tam, C. S., Borchmann, P., Worel, N., McGuirk, J. P., Holte, H., ... & Maziarz, R. T. (2021). Long-term clinical outcomes of tisagenlecleucel in patients with relapsed or refractory aggressive B-cell lymphomas (JULIET): a multicentre, open-label, single-arm, phase 2 study. *The Lancet Oncology*, 22(10), 1403-1415.
- Sittig, D. F., Wright, A., Coiera, E., Magrabi, F., Ratwani, R., Bates, D. W., & Singh, H. (2020). Current challenges in health information technology-related patient safety. *Health informatics journal*, 26(1), 181-189.
- Svennberg, E., Friberg, L., Frykman, V., Al-Khalili, F., Engdahl, J., & Rosenqvist, M. (2021). Clinical outcomes in systematic screening for atrial fibrillation (STROKESTOP): a multicentre, parallel group, unmasked, randomised controlled trial. *The Lancet*, 398(10310), 1498-1506.
- Willemink, M. J., Koszek, W. A., Hardell, C., Wu, J., Fleischmann, D., Harvey, H., ... & Lungren, M. P. (2020). Preparing medical imaging data for machine learning. *Radiology*, 295(1), 4-15.
- Yachmaneni Jr, A., Jajoo, S., Mahakalkar, C., Kshirsagar, S., & Dhole, S. (2023). A comprehensive review of the vascular consequences of diabetes in the lower extremities: current approaches to management and evaluation of clinical outcomes. *Cureus*, 15(10).