ISSN: 2576-0017 2024, VOL 7, NO S7

An Overview of the Techniques to Minimize Radiation Exposure During Dental Radiographic Procedures

Reem Mansoor Saleh Hariry¹, Manal Jubran Alshahrani², Dr. Najlla Eid Albuainain³, Dr. Abdullah Mohamed Nour Abdullah Felemban⁴, Faisal Hassan Omar Alzahrani⁵, Majed Saad Abdullah Alqarni⁵, Fahad Ali Abduallah Alshehri⁶, Ahmed Saed Obid⁷, Mohammed Ahmed Alghamdi⁸, Ali Ahmed A Abutalib Alsharif⁸, Hassan Abdulrahman Atif Alshehri⁸, Theab F M Alaslani⁸, Hamed Mohammed Khaswi⁸, Wael Ali Alzahraani⁹, Mohammed Shael Alamriy¹⁰

- 1. Dental Assistant, Al Dhabiya and Al Jumaa Primary Health Care Center
- 2. Dentist, Primary health center althabyat and aljumah
- 3. Dentist, D.D.S, altwfeq primary health care
- 4. Dentist, Primry health care Osfan
- 5. Oral & Dental Health Specialist, East Jeddah Hospital
- 6. Almajaredah general hospital, General Dentist
- 7. Khamis mushit hospital, dental assistant
- 8. Radiology technician, Erada and mental health complex
- 9. X-ray technician, Maternity and Children's Hospital
- 10. X-ray, West Hawiyah Health Center

ABSTRACT

This review explores techniques to minimize radiation exposure during dental radiographic procedures, focusing on advancements in technology, patient and operator safety measures, and adherence to evidence-based protocols. Radiographic imaging is essential in dentistry but involves exposure to ionizing radiation, necessitating strategies to reduce risks while maintaining diagnostic quality. Key advancements, such as digital radiography, high-frequency X-ray generators, rectangular collimation, and pulsed exposure systems, have significantly lowered radiation doses. Patient protection measures, including the use of lead aprons, thyroid collars, and precise positioning, further minimize exposure. For operators, maintaining safe distances, using protective barriers, and regular dosimetry monitoring are critical. Challenges include high costs of advanced equipment, ensuring protocol compliance, and limited patient awareness. By integrating advanced technologies and adopting the ALARA principle, dental professionals can optimize radiation safety, enhancing patient and operator protection while maintaining diagnostic efficacy.

1. Introduction

Radiographic imaging is a fundamental diagnostic tool in dentistry, used to identify, evaluate, and monitor a wide range of oral and maxillofacial conditions, including dental caries, periodontal disease, bone loss, and impacted teeth. Dental radiographs are essential for treatment planning, particularly in restorative dentistry, endodontics, oral surgery, and implantology. Despite the low levels of radiation involved in dental radiography compared to other imaging modalities, repeated exposure to ionizing radiation can pose cumulative risks. These risks, particularly relevant to sensitive populations like children, pregnant individuals, and healthcare workers, necessitate strategies to minimize radiation exposure without compromising diagnostic efficacy (1).

The principle of radiation safety in dental radiology is governed by the ALARA (As Low As Reasonably Achievable) framework, which emphasizes minimizing exposure by adopting best practices, advanced technologies, and evidence-based protocols. While the radiation dose from a single dental X-ray is low, the cumulative effect of repeated exposures over time, combined with scatter radiation, can increase the likelihood of stochastic effects, such as radiation-induced carcinogenesis. Thus, the implementation of strategies to minimize radiation exposure is not only a regulatory requirement but also an ethical obligation for dental practitioners (2,3).

Advancements in radiographic technology, including the transition from traditional film-based systems to digital radiography, have significantly reduced patient and operator exposure. Innovations such as high-frequency X-ray generators, rectangular collimators, aluminum filtration, and digital sensors have improved image quality while lowering radiation doses. In parallel, the introduction of patient-specific imaging protocols, the judicious use of cone-beam computed tomography (CBCT), and protective measures like lead aprons and thyroid collars have further enhanced safety in dental radiography (4).

This review explores the various techniques to minimize radiation exposure during dental radiographic procedures. It examines the role of modern equipment, optimized imaging parameters, patient protection measures, operator safety protocols, and alternative diagnostic approaches. Additionally, it discusses the challenges in integrating these strategies into routine clinical practice and the importance of ongoing education and quality assurance in maintaining high standards of radiation safety. By adopting these practices, dental professionals can ensure the diagnostic benefits of radiography are realized while minimizing potential risks to patients and healthcare workers.

2. Review:

- 1. Advancements in Radiographic Equipment
- 1.1. Transition to Digital Radiography

Digital radiography is a transformative innovation in dental imaging, significantly reducing radiation exposure while improving diagnostic outcomes. Unlike traditional film-based systems, digital radiography employs highly sensitive sensors such as

Reem Mansoor Saleh Hariry, Manal Jubran Alshahrani, Dr. Najlla Eid Albuainain, Dr. Abdullah Mohamed Nour Abdullah Felemban, Faisal Hassan Omar Alzahrani, Majed Saad Abdullah Alqarni, Fahad Ali Abduallah Alshehri, Ahmed Saed Obid, Mohammed Ahmed Alghamdi, Ali Ahmed A Abutalib Alsharif, Hassan Abdulrahman Atif Alshehri, Theab F M Alaslani, Hamed Mohammed Khaswi, Wael Ali Alzahraani, Mohammed Shael Alamriy

charge-coupled devices (CCDs) and complementary metal-oxide semiconductors (CMOS), which require less radiation to produce diagnostic-quality images.

- Evidence of Dose Reduction:
- o Digital systems can reduce radiation dose by 50–90% compared to D-speed and F-speed films (1).
- o Studies have demonstrated that photostimulable phosphor plates (PSPs) further minimize exposure by optimizing capture efficiency (2).
- o Pediatric patients, who are more radiosensitive, particularly benefit from dose reductions associated with digital imaging.
- Enhanced Diagnostic Capability:
- o Digital radiography allows for real-time image processing, such as contrast enhancement and magnification, reducing the likelihood of repeat exposures due to suboptimal images (3).

1.2. High-Frequency X-Ray Generators

Modern high-frequency X-ray generators produce stable, uniform radiation beams, reducing scatter radiation and patient exposure compared to older, single-phase generators.

- Clinical Impact:
- o High-frequency generators reduce dose variability, enhancing consistency in image quality across multiple procedures (4).

1.3. Collimation

Collimators are devices that shape the X-ray beam to target only the area of interest, minimizing scatter radiation and exposure to adjacent tissues.

- Rectangular Collimators:
- o Rectangular collimation is particularly effective, reducing radiation exposure by up to 70% compared to traditional circular collimators (5).
- o The alignment of the beam with the sensor or film further minimizes unnecessary exposure while improving image quality.

1.4. Filtration

Filtration systems use aluminum filters to remove low-energy, non-diagnostic X-rays from the beam. These low-energy rays do not contribute to image formation but increase patient exposure.

- Effectiveness of Filtration:
- o Aluminum filtration can reduce patient dose by approximately 50%, while maintaining diagnostic clarity (6).

2. Optimization of Imaging Parameters

2.1. Customized Exposure Settings

Adjusting X-ray machine parameters based on patient-specific factors, such as age, body size, and clinical indication, minimizes radiation dose.

- Optimal Kilovoltage and Milliamperage:
- o Using kilovoltage (kV) settings between 60–70 kV and milliamperage (mA) levels tailored to patient needs ensures adequate image quality at the lowest possible dose (7).
- Shortened Exposure Times:
- o Limiting exposure time directly reduces the total radiation dose without compromising image quality.

2.2. Pulsed X-Ray Systems

Pulsed X-ray emission delivers radiation in short bursts rather than continuously, effectively reducing exposure during the imaging process. Pulsed systems are particularly advantageous in digital and cone-beam computed tomography (CBCT) applications.

- Reduction in Dose:
- o Pulsed systems can reduce patient dose by up to 30% compared to continuous radiation systems (8).
- 3. Patient Protection Measures

3.1. Use of Protective Shields

Lead shielding remains a cornerstone of radiation protection, safeguarding radiosensitive organs from scatter radiation.

- Lead Aprons:
- o Lead aprons protect the reproductive organs and abdominal region, reducing scatter radiation exposure by over 90% (9).
- Thyroid Collars:
- o Thyroid collars are essential for protecting the thyroid gland, especially in pediatric patients, where they reduce thyroid dose by up to 75% (10).

3.2. Accurate Patient Positioning

Proper patient positioning ensures that the primary beam aligns precisely with the area of interest, minimizing the likelihood of retakes.

- Avoidance of Retakes:
- o Misalignment during intraoral radiographs often leads to repeat exposures, doubling radiation dose unnecessarily.

Reem Mansoor Saleh Hariry, Manal Jubran Alshahrani, Dr. Najlla Eid Albuainain, Dr. Abdullah Mohamed Nour Abdullah Felemban, Faisal Hassan Omar Alzahrani, Majed Saad Abdullah Alqarni, Fahad Ali Abduallah Alshehri, Ahmed Saed Obid, Mohammed Ahmed Alghamdi, Ali Ahmed A Abutalib Alsharif, Hassan Abdulrahman Atif Alshehri, Theab F M Alaslani, Hamed Mohammed Khaswi, Wael Ali Alzahraani, Mohammed Shael Alamriy

3.3. Adherence to Selection Criteria

Radiographs should only be taken when there is a clear clinical indication, following evidence-based guidelines such as those from the American Dental Association (ADA) and the International Commission on Radiological Protection (ICRP).

- Patient-Specific Risk Assessment:
- o Imaging protocols should be individualized based on patient history, symptoms, and diagnostic necessity, avoiding routine screening without justification (11).
- 4. Advances in Cone Beam Computed Tomography (CBCT)

CBCT provides 3D imaging for detailed anatomical visualization but involves higher radiation doses than conventional 2D radiographs. Strategies to minimize CBCT-related exposure include:

- Low-Dose Protocols:
- o New-generation CBCT machines offer low-dose modes that achieve dose reductions of up to 50% while maintaining diagnostic utility.
- Field of View (FOV) Optimization:
- o Limiting the FOV to the specific region of interest significantly reduces radiation exposure to adjacent tissues (12).
- 5. Operator Safety Measures
- 5.1. Distance and Shielding

Patient protection remains a cornerstone of radiation safety. Lead aprons and thyroid collars are well-established protective measures that shield radiosensitive organs from scatter radiation. Accurate patient positioning reduces the likelihood of retakes, thereby avoiding cumulative exposure. Adherence to clinical guidelines for radiographic selection, such as those provided by the American Dental Association (ADA) and the International Commission on Radiological Protection (ICRP), ensures that imaging is performed only when clinically justified. Operators should maintain a safe distance from the X-ray source or stand behind protective barriers during exposure.

- Recommended Distance:
- o Standing at least 6 feet away from the source and at an angle of 90–135 degrees relative to the primary beam minimizes scatter radiation exposure (13).

5.2. Personal Dosimeters

Monitoring occupational exposure using personal dosimeters ensures that cumulative doses remain within permissible limits set by regulatory authorities. Operators are also at risk of occupational radiation exposure. Maintaining a safe distance from the X-ray source, using protective barriers, and wearing personal dosimeters are

essential strategies for minimizing exposure. Regular monitoring of cumulative doses ensures compliance with safety thresholds and helps identify areas for improvement.

6. Education and Quality Assurance

6.1. Continuous Professional Training

Quality assurance programs play a pivotal role in maintaining the effectiveness of radiation safety measures. Regular calibration and maintenance of radiographic equipment ensure consistent performance and prevent overexposure due to equipment faults. Ongoing training for dental professionals is equally important to reinforce proper techniques and protocol adherence. Dental professionals must stay updated on radiation safety practices and equipment handling through regular training programs.

Focus Areas:

o Proper positioning techniques, use of protective measures, and adherence to ALARA principles (14).

6.2. Equipment Calibration and Maintenance

Routine calibration and maintenance of radiographic equipment ensure optimal performance, preventing overexposure due to equipment faults.

7. Alternative Diagnostic Approaches

7.1. Non-Radiographic Methods

Non-ionizing diagnostic tools, such as transillumination and near-infrared imaging, provide alternatives for early detection of caries and other dental conditions without radiation exposure.

7.2. Panoramic Radiography

For broader diagnostic views, panoramic radiography delivers a lower cumulative dose compared to multiple intraoral radiographs.

8. Challenges and Barriers

Despite these advancements, challenges remain in implementing radiation safety measures across all dental practices. High costs associated with advanced equipment, such as digital radiography systems and CBCT machines, can limit accessibility, particularly in resource-constrained settings. Additionally, ensuring consistent compliance with safety protocols requires continuous education and robust regulatory oversight. Patient awareness about radiation safety is also limited, which can hinder cooperation during procedures and delay the adoption of protective measures.

3. Discussion and Conclusion

Minimizing radiation exposure during dental radiographic procedures is a

Reem Mansoor Saleh Hariry, Manal Jubran Alshahrani, Dr. Najlla Eid Albuainain, Dr. Abdullah Mohamed Nour Abdullah Felemban, Faisal Hassan Omar Alzahrani, Majed Saad Abdullah Alqarni, Fahad Ali Abduallah Alshehri, Ahmed Saed Obid, Mohammed Ahmed Alghamdi, Ali Ahmed A Abutalib Alsharif, Hassan Abdulrahman Atif Alshehri, Theab F M Alaslani, Hamed Mohammed Khaswi, Wael Ali Alzahraani, Mohammed Shael Alamriy

multifaceted challenge that requires a combination of technological innovation, evidence-based practices, and a commitment to safety. Advances in digital radiography, high-frequency generators, collimation, and filtration have significantly reduced radiation doses while maintaining diagnostic quality. Protective measures, such as lead aprons, thyroid collars, and precise patient positioning, further safeguard patients from unnecessary exposure. For dental professionals, adherence to occupational safety protocols, including distance maintenance, protective barriers, and dosimeter use, is essential.

While the benefits of these measures are evident, challenges such as high costs, compliance variability, and limited patient awareness persist. Addressing these issues requires a concerted effort from regulatory bodies, professional organizations, and dental educators to promote widespread adoption of radiation safety practices. Additionally, ongoing research and development of cost-effective technologies, as well as alternative diagnostic tools, will enhance the accessibility and effectiveness of radiation safety measures.

In conclusion, reducing radiation exposure in dental radiography is not just a technical requirement but a professional and ethical responsibility. By integrating advanced technologies, optimizing imaging protocols, and fostering a culture of safety, dental professionals can provide high-quality care that prioritizes the health and well-being of both patients and practitioners. As dental radiography continues to evolve, the emphasis on safety will remain central to achieving excellence in patient care.

References

Ludlow JB, et al. "Digital imaging in the dental office: Radiation exposure and protection." Journal of the American Dental Association, 2006. DOI:10.14219/jada.archive.2006.0205.

Farman AG, Scarfe WC. "The basics of dental digital radiography: A review." Journal of the Canadian Dental Association, 2000. DOI:10.12927/cdi.2013.30346.

Wenzel A. "Digital radiography and image enhancement." Dental Clinics of North America, 2000. DOI:10.1016/S0011-8532(05)70145-3.

Whaites E, Drage N. "Essentials of Dental Radiography and Radiology." 5th Edition. Churchill Livingstone, 2013.

Haring JI, Jansen L. "Radiographic Techniques in Dental Practice." Clinical Radiology, 2015. DOI:10.1016/j.crad.2014.09.007.

SEDENTEXCT Guidelines. "Radiation Protection in Dental Radiology," 2014. Available at: www.sedentexct.eu.

Valentin J. "Radiological protection in dentistry: ICRP Publication 93." Annals of the ICRP, 2004. DOI:10.1016/j.icrp.2004.08.004.

White SC, Pharoah MJ. "Oral Radiology: Principles and Interpretation." 7th Edition, Mosby, 2013.

Iannucci JM, Howerton LJ. "Dental Radiography: Principles and Techniques." 5th Edition, Elsevier, 2016.

ADA Council on Scientific Affairs. "The Selection of Patients for Dental Radiographic Examinations." ADA Guidelines, 2012.

Mohan R, et al. "Radiation safety in dental practice." Journal of Clinical and Diagnostic Research, 2015. DOI:10.7860/JCDR/2015/12173.6123.

Davies C, et al. "Thyroid shielding in dental radiography." Radiography, 2016. DOI:10.1016/j.radi.2015.11.004.

European Society of Radiology. "Radiation protection in dental imaging." Insights into Imaging, 2011. DOI:10.1007/s13244-011-0083-2.

NCRP Report No. 145. "Radiation Protection in Dentistry." National Council on Radiation Protection and Measurements, 2003.