How medical Laboratory Can Mitigate Health Hazards and Prevent Accidents: Ensuring Lab Safety Amidst Crisis

Nora Rosh Alenazi¹
Alanoud Tariq Alali²
Nora AliKhairullah³
Afnan Abdulaziz Bin Tali⁴
Noura Mandeel Alduiya⁵
Mohammad Albakhiti⁶
Fatmah Khamis Alraisi⁷
Haneen Hassan Alsolimani⁸

12345678. King soud medical city, Laboratory, Riyadh

Abstract

Medical laboratories are pivotal in ensuring health safety, especially during crises, by providing accurate diagnostic services and minimizing health hazards. This review explores how medical laboratories can mitigate risks and prevent accidents through risk identification, infection prevention, and safe laboratory practices. The COVID-19 pandemic underscored the critical role of laboratories in managing health crises and highlighted the need for robust safety measures and continuous improvement. By leveraging technology, enhancing training, and adhering to regulatory standards, laboratories can safeguard personnel, maintain operational integrity, and contribute effectively to public health resilience.

Aim of the Work

The primary aim of this review is to highlight the essential role of medical laboratories in mitigating health hazards and preventing accidents, particularly during health crises. It seeks to identify key safety challenges faced by medical laboratory and propose strategies to address these risks. Additionally, the review aims to provide insights into how laboratories can enhance their safety protocols, foster a culture of safety, and improve their crisis management capabilities through innovative practices, regulatory compliance, and continuous staff education.

Introduction

Laboratory safety in healthcare settings is of paramount importance as it ensures the protection of patients, staff, and the public from potential hazards. Laboratories play a critical role in the healthcare system by providing diagnostic services that inform medical decision-making. However, the handling of biological, chemical, and physical materials presents inherent risks that necessitate stringent safety protocols. Effective implementation of health and safety requirements not only mitigates these risks but also enhances the accuracy and reliability of laboratory results. The following sections delve into the key aspects of laboratory safety in healthcare settings.

Risk Identification and Management: Laboratories face various risks, including biological, chemical, and physical hazards. Identifying these risks is crucial for implementing effective safety measures(Kechkar, 2024). The use of methods like AMDEC helps in assessing the criticality of these risks and in developing strategies to mitigate them(Kechkar, 2024).

Infection Prevention and Control (IPC): IPC precautions are essential to prevent infections among laboratory staff. Despite good knowledge and attitudes towards IPC, there is often a gap in practice, highlighting the need for improved training and adherence to guidelines(Chen, 2023). Continuous education and training on IPC can enhance the safety practices of medical laboratory, reducing the risk of infection(Chen, 2023).

Safe Laboratory Practices: The COVID-19 pandemic underscored the importance of safe laboratory practices, especially when handling infectious samples. Ensuring that medical laboratory is aware of and adhere to safe practices is vital for maintaining safety standards(Nishal et al., 2023). Regular updates and harmonization of safety protocols are necessary to address emerging biohazard risks without compromising efficiency(Nishal et al., 2023).

Error Prevention and Quality Improvement: Laboratory errors, particularly in the pre-analytical phase, can significantly impact patient safety. Standardizing processes through quality improvement initiatives like LEAN can reduce these errors("Safety in the laboratory", 2022).Non-laboratory trained healthcare professionals also play a role in preventing laboratory errors, emphasizing the need for comprehensive training across the healthcare system(Lam & Church, 2024).

While laboratory safety is crucial for protecting healthcare workers and patients, it is also important to consider the broader context of healthcare safety. Laboratory errors often reflect systemic issues within the healthcare system, and addressing these requires a holistic approach that includes training, process standardization, and continuous quality improvement across all levels of healthcare delivery(Lam & Church, 2024).

key safety challenges faced by medical laboratory

Medical laboratory faces a variety of safety challenges that can significantly impact their well-being and the overall safety of the laboratory environment. These challenges stem from a combination of insufficient safety awareness, inadequate management systems, and specific occupational hazards. Addressing these issues requires a comprehensive approach that includes proper training, risk assessment, and adherence to safety protocols.

Insufficient Safety Awareness and Training: Many medical laboratories lack adequate training on specific hazards associated with their work, leading to unsafe practices such as working alone and not using personal protective equipment (PPE) (Kemsley, 2014). Regular safety education and targeted training are essential to enhance safety awareness and ensure that personnel are well-prepared to handle laboratory risks (Li, 2024).

Occupational Health and Safety (OHS) Challenges: Key OHS challenges include workplace risk/safety assessment, personnel protection, and hazard containment. These areas account for a significant portion of safety findings in laboratory settings (Swearengen, 2018). Implementing a robust OHS program is crucial for managing these risks and ensuring a safe working environment for medical laboratory (Swearengen, 2018).

Physical, Chemical, and Biological Risks: Medical laboratory is exposed to various risks, including physical (e.g., machine noise), chemical (e.g., disinfectants), and biological (e.g., exposure to infectious agents) hazards (Hatim et al., 2024). Proper handling and storage of hazardous materials, along with the use of protective equipment, can mitigate these risks (Hatim et al., 2024).

Biosafety and Infectious Disease Risks: Ensuring biosafety in clinical laboratories is challenging, especially when dealing with unknown infectious agents. Past outbreaks have highlighted gaps in biosafety practices, emphasizing the need for comprehensive risk management and training(Cornish et al., 2021). While these challenges are significant, they also present opportunities for improvement. By investing in safety training, enhancing risk assessment protocols, and fostering a culture of safety, laboratories can create safer environments for their personnel. Additionally, collaboration between institutions and adherence to updated safety guidelines can further mitigate these risks and improve overall laboratory safety.

❖ How do medical laboratory mitigate risks associated with safety challenges

Medical laboratory mitigates risks associated with key safety challenges through a combination of risk management strategies, safety protocols, and continuous education. These measures are essential to ensure the safety of personnel, maintain the integrity of laboratory operations, and prevent accidents or errors that could have significant consequences. The strategies employed are diverse and tailored to the specific needs and risks of different laboratory environments.

Risk Management Strategies: Quality Control and Standardized Protocols: Laboratories implement rigorous quality control measures and standardized protocols to minimize errors and ensure consistent practices across all stages of laboratory testing(Ali et al., 2024). Risk-Based Biosafety Approaches: A risk-based approach to biosafety is emphasized, focusing on pathogen transmission routes and specific laboratory procedures to prevent laboratory-acquired infections and pathogen escapes(Blacksell et al., 2023).

Safety Education and Training: Continuous Education: Ongoing training and education are critical to fostering a proactive safety culture. This includes regular updates on safety protocols and the integration of new technologies(Abedsoltan&Shiflett, 2024). Biosafety Training Programs: The development of accessible biosafety training programs is crucial for changing the mindset and behavior of laboratory workers, ensuring they are well-prepared to handle biological risks(Blacksell et al., 2023).

Regulatory Compliance and Reporting: Adherence to Regulations: Compliance with national and international safety regulations is vital. This includes the implementation of laws such as the Federal Law № 492-FZ in Russia, which regulates biosafety measures(Matosova et al., 2022). Incident Reporting Systems: Establishing transparent reporting systems for laboratory incidents helps in understanding and mitigating risks. These systems are essential for continuous improvement and learning from past incidents(Blacksell et al., 2023).

Safety Management in University Labs: University laboratories focus on strengthening safety education, implementing access systems, and conducting regular inspections to manage safety effectively(He et al., 2022). While these strategies are effective, challenges such as resistance to change, lack of trained personnel, and varying levels of regulatory compliance can hinder their implementation. Addressing these challenges requires investment in human resources, political will, and the development of a global safety culture that prioritizes continuous improvement and adaptation to emerging risks.

The role of medical laboratories in mitigating health hazards during crises.

Medical laboratories play a crucial role in mitigating health hazards during crises by providing essential diagnostic services, supporting epidemiological surveillance, and facilitating timely responses to public health emergencies. These laboratories are integral in identifying and diagnosing health threats, which is vital for effective crisis management. Their contributions are multifaceted, encompassing various aspects of public health and emergency response.

Diagnostic and Surveillance Capabilities: Public health laboratories (PHLs) are tasked with identifying and diagnosing health threats, which is essential for warning communities about potential health emergencies (Charlton et al., 2021). During weather disasters, such as the Great Bangkok Flood, laboratories provided critical diagnostic services, including point-of-care (POC) testing, to manage infectious disease outbreaks like leptospirosis and cholera (Kost et al., 2012). In the COVID-19 pandemic, laboratory medicine was pivotal in diagnosing SARS-CoV-2 infections through RT-PCR and serological testing, which enhanced diagnostic sensitivity and supported patient management (Lippi &Plebani, 2020) (Lippi &Plebani, 2020).

Resilience and Preparedness: Laboratories demonstrate resilience by maintaining operations despite resource constraints, as seen during the COVID-19 pandemic, where they managed increased testing volumes and provided essential diagnostic results (Lippi &Plebani, 2020). The development of mobile laboratories and reinforcement of regional laboratory networks are strategies to enhance laboratory resilience and preparedness for future crises (Lippi &Plebani, 2020).

Infrastructure and Human Resources: The sustainability of containment laboratories is crucial for effective crisis response, requiring investment in infrastructure and continuous training of personnel (Hernández et al., 2021). Challenges such as supply chain disruptions during disasters highlight the need for robust infrastructure and resource management to ensure laboratory functionality (Kost et al., 2012).

While medical laboratories are indispensable in crisis management, they face challenges such as resource limitations and the need for rapid adaptation to emerging threats. Addressing these challenges through strategic investments and planning can enhance their capacity to mitigate health hazards effectively. Managing laboratory operations during health crises requires a multifaceted approach that addresses rapid diagnostic testing, resource allocation, and adaptability to evolving challenges. The COVID-19 pandemic has highlighted the need for strategic planning and innovative solutions to maintain laboratory functionality and support public health efforts.

Strategies for managing laboratory operations during health crises

Key strategies include enhancing testing capabilities, leveraging technology, and fostering collaboration among stakeholders.

Rapid Test Development and Deployment: Rapid and accurate diagnostic testing is crucial for timely interventions during health crises. Laboratories must prioritize the development and deployment of tests to meet increased demand, as seen during the COVID-19 pandemic(Alotaibi et al., 2024). Efficient sample collection and transportation systems are essential to maintain specimen integrity and ensure reliable results(Alotaibi et al., 2024).

Leveraging Technology and Automation: AI-driven laboratory workflows can optimize operations under constraints such as social distancing. These systems can simulate various scenarios to assess resource allocation and operational efficiency, providing a cost-effective decision-making framework(Marescotti, 2022). The integration of IoT and connectivity in laboratory automation platforms can enhance operational capabilities and streamline processes(Marescotti, 2022).

Collaboration and Volunteer Mobilization: Mobilizing research scientists and volunteers can significantly bolster laboratory capacity during crises. This approach was effectively implemented at Vanderbilt University Medical Center, where volunteers supported diagnostic efforts despite regulatory challenges (Weiss et al., 2022). Collaboration among clinical laboratories, public health agencies, and research institutions is vital for strengthening pandemic preparedness and response strategies (Alotaibi et al., 2024).

Leadership and Communication: Effective leadership and communication are critical for navigating crises. Laboratories must prioritize people, maintain collaboration, and adapt management principles to the situational context(Jackson et al., 2021). Decision-making processes should be informed by a comprehensive understanding of the operational domain, as demonstrated by the Fieldable Laboratory mission cycle(Vybornova& Gala, 2018).

While these strategies are effective, it is important to recognize that not all management principles apply equally in every crisis. Leaders must distinguish between situational and universal principles to ensure a tailored response that addresses the unique challenges of each health crisis(Jackson et al., 2021).

The mental health and well-being of medical laboratory staff during crises, such as the COVID-19 pandemic, is a critical concern due to the high levels of stress and burnout experienced by these professionals. Medical laboratory professionals, predominantly women, face significant challenges including staff shortages, high workloads, and a lack of recognition within the healthcare system.

❖ The Role of medical laboratory in Addressing the mental health of staff

These factors contribute to mental health issues such as burnout and stress, necessitating targeted interventions to support their well-being. The following sections explore the key aspects of addressing these challenges.

Burnout and Stress Factors: A study in Ontario, Canada, found a 72.3% prevalence of burnout among medical laboratory technologists during the pandemic, with younger staff being more susceptible(Nowrouzi-Kia et al., 2024). High workloads, time pressure, and responsibility for diagnostic accuracy are significant stressors for medical laboratory (Zhu & Chen, 2024). The pandemic exacerbated existing staff shortages and highlighted the invisibility of laboratory staff within the healthcare system(Gohar&Nowrouzi-Kia, 2022).

Coping Mechanisms and Support Strategies: Effective coping strategies include building strong professional relationships, engaging in physical activities, and practicing mindfulness(Zhu & Chen, 2024). The Canadian Society for Medical Laboratory Science (CSMLS) developed a Mental Health Toolkit, providing resources such as self-assessment tools and coping strategies to manage stress(Mete et al., 2024). Resilience and passion among laboratory staff were noted as positive attributes that help mitigate stress(Gohar&Nowrouzi-Kia, 2022).

Institutional and Policy Implications: There is a need for healthcare institutions to recognize the critical role of laboratory staff and provide adequate support to address their mental health needs(Gohar&Nowrouzi-Kia, 2022). Policies should focus on improving work environments, reducing workloads, and ensuring organizational justice to enhance the well-being of laboratory professionals(Nowrouzi-Kia et al., 2022). While these studies highlight the challenges faced by medical laboratory staff, they also underscore the importance of institutional support and effective coping strategies. Addressing these issues requires a comprehensive approach that includes policy changes, resource allocation, and fostering a supportive work culture to ensure the mental health and well-being of laboratory professionals during crises.

Effective crisis response in medical laboratories is crucial for managing health emergencies. Various countries have demonstrated successful strategies in this regard, often through collaboration, innovation, and capacity building. This answer explores case studies from different regions, highlighting key elements of effective crisis response in medical laboratories.

Case Studies

Saudi Arabia: Collective Competence in Epidemiological Teams: Saudi Arabia emphasizes the role of collective competence within epidemiological teams to enhance laboratory data collection and analysis during crises. High levels of team collaboration and knowledge sharing significantly improve laboratory efficiency, accounting for 25.9% of the variance in efficacy (Alghamdi et al., 2024). Investment in team competencies is crucial for improving emergency response capabilities.

Europe: EFLM Task Force and Mobile Laboratories: The European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) established a Task Force to improve laboratory preparedness for emergencies, focusing on infectious diseases and other crises(Lippi et al., 2023). The European Mobile Laboratory (EMLab) has been pivotal in responding to outbreaks like Ebola and COVID-19, deploying mobile labs and experts to various countries, enhancing diagnostic capabilities, and building local capacities(Nelson &Duraffour, 2024).

Ukraine: Crisis Management in Healthcare: Ukraine's experience with armed conflict highlights the need for effective crisis management in medical institutions, focusing on leadership, resource allocation, and financial protection(Shchyrina et al., 2022). Recommendations include decentralizing healthcare management functions to regional authorities to improve service delivery and crisis response.

West Africa and the United States: Ebola Response: The 2014-2016 Ebola outbreak in West Africa underscored the importance of organized laboratory systems capable of adapting to new diagnostic strategies. The crisis led to improved mechanisms for developing diagnostic assays and deploying health workers, enhancing national laboratory systems' sustainability and capacity building (Sealy et al., 2016).

While these case studies illustrate effective crisis response strategies, challenges remain, such as ensuring sustainable funding and maintaining preparedness for emerging pathogens. Continuous evolution and strategic partnerships are essential for building resilient global health systems capable of responding to future crises.

Conclusion

Ensuring laboratory safety is a multifaceted challenge that requires a proactive approach to risk management, continuous training, and adherence to stringent safety protocols. Medical laboratories play a crucial role in public health by preventing accidents and mitigating health hazards, particularly during crises. Lessons learned from past health emergencies, such as the COVID-19 pandemic, underscore the importance of technological advancements, collaborative efforts, and strategic investments in infrastructure and human resources. By adopting a holistic approach to safety and preparedness, medical laboratories can enhance their resilience, protect their workforce, and contribute significantly to the broader healthcare system's crisis response efforts.

References

- Abedsoltan, H., & Shiflett, M. B. (2024). *Mitigation of Potential Risks in Chemical Laboratories: A Focused Review*. https://doi.org/10.1021/acs.chas.3c00097
- Alghamdi, N., Alshedukhi, M., Abudahsh, B., Alshedoukhi, W. H., Alghamdi, M. S., Alotaibi, H. S., Alamer, F. M. M., Al-Qahtani, F. A., &Shamri, F. M. A. (2024). Enhancing Emergency Response: The Role of Collective Competence in Epidemiological Teams for Effective Laboratory Data Collection and Analysis. Evolutionary Studies in Imaginative Culture. https://doi.org/10.70082/esiculture.vi.1120
- Ali, A., Hamza, A., & Saleh, H. (2024). Risk management strategies in medical laboratory practice. *International Journal of Medical Laboratory Research*. https://doi.org/10.35503/ijmlr.2024.9203
- Alotaibi, M. M., Alsoor, S. S., Alnajrani, A. S., Mobarki, A. A., Albalawi, A. A., Alsuwaidi, B. F., Alsedmi, A. Y., & Asiri, M. (2024). Clinical laboratory strategies for managing pandemic outbreaks. *International Journal of Community Medicine and Public Health*. https://doi.org/10.18203/2394-6040.ijcmph20240645
- Blacksell, S. D., Summermatter, K., Masuku, Z. M., Kojima, K., Ross, E., Harper, D. R., & Hamilton, K. (2023). Investment in biosafety and biosecurity: the need for a risk-based approach and systematic reporting of laboratory accidents to mitigate laboratory-acquired infections and pathogen escapes. *The Lancet Microbe*. https://doi.org/10.1016/s2666-5247(23)00288-4
- Charlton, C. L., Hull, N., Sloma, C. R., Bonifas, M., Johnson, M., Strain, A. K., Wolford, T., Staley, S., Perkins, C., Razzaque, R., Courtney, C., & Bind, E. (2021). How To Prepare for the Unexpected: a Public Health Laboratory Response. *Clinical Microbiology Reviews*. https://doi.org/10.1128/CMR.00183-20
- Chen, F. (2023). Knowledge, attitude and practice of infection prevention and control precautions among laboratory staff: a mixed-methods systematic review. *Antimicrobial Resistance and Infection Control*. https://doi.org/10.1186/s13756-023-01257-5
- Cornish, N. E., Anderson, N. L., Arambula, D. G., Arduino, M. J., Bryan, A., Burton, N. C., Chen, B., Dickson, B., Giri, J. G., Griffith, N. K., Pentella, M., Salerno, R. M., Sandhu, P. K., Snyder, J. W., Tormey, C. A., Wagar, E. A., Weirich, E., Campbell, S., & Campbell, S. (2021). Clinical Laboratory Biosafety Gaps: Lessons Learned from Past Outbreaks Reveal a Path to a Safer Future. Clinical Microbiology Reviews. https://doi.org/10.1128/CMR.00126-18
- Gohar, B., &Nowrouzi-Kia, B. (2022). The Forgotten (Invisible) Healthcare Heroes: Experiences of Canadian Medical Laboratory Employees Working During the Pandemic. Frontiers in Psychiatry. https://doi.org/10.3389/fpsyt.2022.854507
- Hatim, B., Kholti, R. E., Soltani, S., &Kholti, A. E. (2024). P-399 exposure to occupational risks in medical analysis laboratories. *Occupational Medicine*. https://doi.org/10.1093/occmed/kqae023.1067
- He, Y., He, Z., Zhang, F., & Fang, Q. (2022). Safety Management Strategy of University Laboratory. *Open Journal of Business and Management*. https://doi.org/10.4236/ojbm.2022.103062
- Hernández, R. I., Arias, Y. E., Larrea, F. J., Ramírez, J. R., & Navarro, J. C. (2021). Laboratorios de Contención: Importancia en la Investigación Biomédica, Enfermedades Emergentes, y la Gestión en Salud Pública. https://doi.org/10.33210/CA.V10I2.361
- Jackson, B. R., Jackson, B. R., Genzen, J. R., &Genzen, J. R. (2021). The Lab Must Go On. *American Journal of Clinical Pathology*. https://doi.org/10.1093/AJCP/AQAA187
- Kechkar, H. (2024). P-025 health and safety in medical analysis laboratory. *Occupational Medicine*. https://doi.org/10.1093/occmed/kqae023.0466
- Kemsley, J. (2014). Survey Exposes Safety Gaps. Chemical & Engineering News. https://doi.org/10.1021/CEN-09103-SCITECH2
- Kost, G. J., Katip, P., &Vinitwatanakhun, C. (2012). Diagnostic testing strategies for health care delivery during the great Bangkok flood and other weather disasters. *Point of Care: The Journal of Near-Patient Testing & Technology*. https://doi.org/10.1097/POC.0B013E318265F255
- Lam, J. C., & Church, D. L. (2024). Preventing Laboratory Error and Improving Patient Safety the Role of Non-laboratory Trained Healthcare Professionals. *Clinical Infection in Practice*. https://doi.org/10.1016/j.clinpr.2024.100345
- Li, Y. (2024). Advancing Safety in University Chemistry and Materials Labs. *Scientific and Social Research*. https://doi.org/10.26689/ssr.v6i1.5982
- Lippi, G., &Plebani, M. (2020a). Laboratory medicine resilience during coronavirus disease 2019 (Covid-19) pandemic. *Jornal Brasileiro De Patologia E Medicina Laboratorial*. https://doi.org/10.5935/1676-2444.20200035

- Lippi, G., &Plebani, M. (2020b). The critical role of laboratory medicine during coronavirus disease 2019 (COVID-19) and other viral outbreaks. *Clinical Chemistry and Laboratory Medicine*. https://doi.org/10.1515/CCLM-2020-0240
- Lippi, G., Cadamuro, J., Danese, E., Favaloro, E. J., Favresse, J., Henry, B. M., Jovičić, S., Ozben, T., Plebani, M., & Thachil, J. (2023). Results of the first survey of the EFLM Task Force Preparation of Labs for Emergencies (TF-PLE). Clinical Chemistry and Laboratory Medicine. https://doi.org/10.1515/cclm-2023-0622
- Marescotti, D. (2022). AI-driven laboratory workflows enable operation in the age of social distancing. https://doi.org/10.1016/j.slast.2021.12.001
- Matosova, E. V., Andryukov, B. G., Bynina, M. P., Drobot, E. I., &Lyapun, I. N. (2022). Biosafety of personnel of microbiological laboratories in the context of the Federal Law of the Russian Federation № 492-FZ of December 30, 2020 «On the biological safety of the Russian Federation». *KlinicheskaiaLaboratornaiaDiagnostika*. https://doi.org/10.51620/0869-2084-2022-67-7-414-422
- Mete, R. E., Djukic, B., & Nielsen, C. (2024). Responding to the needs of medical laboratory professionals: The CSMLS Mental Health Toolkit. *Journal of Community Safety & Well-Being*. https://doi.org/10.35502/jcswb.403
- Nelson, E. V., &Duraffour, S. (2024). The European Mobile Laboratory: key insights from a decade of outbreak response. *European Journal of Public Health*. https://doi.org/10.1093/eurpub/ckae144.372
- Nishal, A., Shah, P., Balvalli, R., Jayani, P., &Padsala, S. (2023). Awareness of good and safe laboratory practice among laboratory personnel during covid 19 pandemic. GLOBAL JOURNAL FOR RESEARCH ANALYSIS. https://doi.org/10.36106/gjra/4305472
- Nowrouzi-Kia, B., Dong, J., Gohar, B., & Hoad, M. (2022). Examining the Mental Health, Wellbeing, Work Participation and Engagement of Medical Laboratory Professionals in Ontario, Canada: An Exploratory Study. Frontiers in Public Health. https://doi.org/10.3389/fpubh.2022.876883
- Nowrouzi-Kia, B., King, E. C., Edwards, B., Nizzer, S., Yazdani, A., Gohar, B., Bani-Fatemi, A., Howe, A., Chattu, V. K., Nowrouzi-Kia, B., Gohar, B., Howe, A., Chattu, V. K., & Bani-Fatemi, A. (2024). P-584 understanding burnout among canadian medical laboratory professionals working during the second wave of the covid-19 pandemic in ontario, canada: using a gendered-based analysis. Occupational Medicine. https://doi.org/10.1093/occmed/kqae023.1400
- Safety in the laboratory. (2022). https://doi.org/10.1093/med/9780192846877.003.0036
- Sealy, T. K., Erickson, B. R., Taboy, C. H., Ströher, U., Towner, J. S., Andrews, S. E., Rose, L. E., Weirich, E., Lowe, L., Klena, J. D., Spiropoulou, C. F., Rayfield, M. A., & Bird, B. H. (2016). Laboratory Response to Ebola West Africa and United States. MMWR Supplements. https://doi.org/10.15585/MMWR.SU6503A7
- Shchyrina, K. V., Koshova, S. P., & Parkhomenko-Kutsevil, O. (2022). Foreign experience of anti-crisis management of medical institutions. *ScienceRise*. https://doi.org/10.15587/2519-4798.2022.256383
- Swearengen, J. R. (2018). Common Challenges in Safety: A Review and Analysis of AAALAC Findings. *Ilar Journal*. https://doi.org/10.1093/ILAR/ILY011
- Vybornova, O., & Gala, J.-L. (2018). Operations Management and Decision Making in Deployment of an On-Site Biological Analytical Capacity. https://doi.org/10.5772/INTECHOPEN.74357
- Weiss, A., Laut, C. L., Antoine-Reid, T., Skaar, E. P., & Schmitz, J. E. (2022). Mobilizing an Institutional Research Enterprise to Support Pandemic Diagnostic Care. Archives of Pathology & Laboratory Medicine. https://doi.org/10.5858/arpa.2022-0155-sa
- Zhu, K., & Chen, Z. (2024). A Qualitative Exploration on Psychological Stressors and Coping Mechanisms in Medical Laboratory Personnel. *Pacific International Journal*. https://doi.org/10.55014/pij.v7i5.691