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Abstract

This article presents a data-centric Al engineering framework for telecommunications
networks that positions data quality as the primary driver of performance in Key
Performance Indicator (KPI) prediction and anomaly detection. The proposed
framework "5D Model"-Define, Diagnose, Design, Derive, Deploy—addresses
persistent challenges in telecom datasets, including noise, sparsity, inconsistency,
and multi-vendor heterogeneity. Empirical benchmarking across 8 major carriers
demonstrates that data-centric interventions yield 2.6-4.0x greater performance
improvements than architecture enhancements across diverse network
environments.

Key Takeaways

e Data quality improvements deliver 2.6-4.0x better performance
improvements than model complexity enhancements across
telecommunications Al implementations

e The 5D Model provides a systematic framework for implementing data-
centric Al in telecom networks

e Multi-vendor environments require context-aware standardization to
harmonize telemetry across heterogeneous equipment

e Organizational transformation is as critical as technical implementation for
successful data-centric AI adoption

e Energy efficiency gains of 40-60% are achievable through data-centric
approaches that reduce computational waste

Keywords: Data-Centric Al, Telecommunications Networks, KPI Prediction,
Anomaly Detection, Self-Organizing Networks.

1. Introduction

Modern telecommunications infrastructure produces massive data streams from millions of connected
devices. These streams create digital landscapes filled with inconsistencies and misalignments.. Cell towers
may log performance without proper timestamps, radio access networks show measurement gaps during
handovers, and equipment from different vendors outputs incompatible data formats. The advent of 5G
technology has magnified these challenges [1].

"Data preparedness problems, not algorithmic limitations, cause the majority of Al
implementation delays in telecommunications."
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Telecommunications organizations have often prioritized model complexity over addressing foundational
data-quality issues. Organizations invest heavily in cutting-edge neural networks, hoping to extract
predictive insights from flawed datasets. Industry experts acknowledge that data preparedness problems
cause the majority of Al implementation delays [1]. These data quality issues lead to unpredictable model
behavior, performance disparity across network segments, and excessive false alarms that erode operator
confidence.
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Figure 1: The 5D Model Framework for Data-Centric Telecommunications Al
The 5D Model provides a systematic approach to data-centric Al implementation in telecommunications,
emphasizing data quality at each phase of the development lifecycle.

The telecommunications industry needs a practical framework for data-centric Al engineering
methodologies. Multi-vendor environments present tough standardization challenges requiring specialized
approaches [2]. Establishing data quality as a foundational principle allows organizations to substantially
reduce development cycles while maintaining consistent performance in production environments. This
paper introduces a comprehensive data-centric Al framework tailored to telecommunications networks and
empirically demonstrates its effectiveness across diverse real-world environments.

2. The "SD Model" Framework for Data-Centric Telecom Al

Industry estimates suggest that most telecom Al projects allocate approximately 80% of engineering time
to data preparation activities before meaningful modeling begins [5]. The 5D Model framework addresses
this reality through five interrelated components: Define, Diagnose, Design, Derive, and Deploy.

Define pushes engineers to establish clear objectives. During a 2021 Telefonica Madrid deployment, a
breakthrough came when engineers reframed their objective from "improve anomaly detection" to "detect
RSRP[13](Reference Signal Received Power) degradation below -105 dBm with 4-hour advance notice in
urban cells." This specificity instantly revealed data collection gaps [3].

Diagnose tackles garbage-in-garbage-out problems. Validating incoming data streams in Mumbai revealed
that 30% of cell sites had misconfigured time synchronization, rendering historical data worthless.
Diagnostic tools include geospatial coverage mapping, temporal consistency checks, and inter-metric
correlation analysis [4].

Design emphasizes contextual feature engineering. Cell towers exist in complex relationships—Tower
1138's performance directly affects sectors on towers 1147 and 1156 through interference patterns.
Geohashing encodes spatial proximity, FFTs capture temporal patterns, and graph models represent
topological relationships [4].
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Derive addresses label scarcity through active learning systems. During Deutsche Telekom's 5G rollout in
2023, they implemented "uncertainty-based targeting", and models flagged uncertain predictions for expert
review. Labeling time dropped from 26 minutes to 4 minutes per high-value example [3].

Deploy determines whether systems deliver value through feedback loops. Etisalat's simple "thumbs
up/down" interface lets field engineers rate predictions with a single tap, automatically incorporating
feedback into training data.

Table 1: Energy Efficiency Gains from Data-Centric Approaches. [2, 3]

Organization
AT&T
Deutsche Telekom

Implementation
Data validation pipelines

Energy Reduction
47% power consumption
63% training compute
41% inference requirements

Feature selection framework

Telefonica Context-aware data filtering

3. Implementation Strategies and Empirical Evidence

Data Versioning and Domain Knowledge Integration

Data versioning remains telecom's critical weakness. During AT&T's 2022 LTE-to-5G transition, engineers
discovered three different RAN performance dataset versions had been used for training [2], each with
different preprocessing steps, resulting in months of debugging [5]. Effective protocols must track raw
dataset origins, preprocessing transformations, feature engineering calculations, and training
methodologies.

Telecommunications requires physics and network architecture knowledge for interpreting data. NTT
DOCOMO's failed 2020 anomaly detection project built sophisticated models without incorporating radio
frequency propagation principles, creating systems that detected "anomalies" that were actually normal
atmospheric effects. Effective domain knowledge integration includes physics-aware preprocessing,
topological relationship encoding, and equipment-specific behavioral models [2, 6].

Cross-Vendor Data Standardization

Table 2 compares standardization approaches based on implementation across five European
carriers during 2022-2023:

Standardization Approach Implementation Complexity | Performance Improvement
Metadata-based mapping Medium 27% improved generalization
Semantic unification High 42% improved generalization
Context-aware normalization Medium 38% improved generalization

*Implementation Complexity: High = >6 months, specialized expertise; Medium = 2-6 months, standard
engineering team; Low = <2 months, minimal expertise.
Table 2: Cross-Vendor Data Standardization Benefits [4, 5]

Context-aware normalization offers an optimal balance for most organizations, delivering 38%
improvement with moderate complexity.

4. Performance Benchmarking and Case Studies

Multiple controlled evaluations demonstrate data-centric approaches' superiority over algorithm-focused
methodologies. Based on comprehensive analysis across major carriers between 2021-2023, performance
gaps are substantial and consistent.
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Figure 2: Performance Comparison - Data-Centric vs Model-Centric Approaches. [7, 8]

Telstra's Melbourne trial zone reported dramatic improvements during 2023. After implementing targeted
data quality improvements without changing detection algorithms, false positive rates dropped 64% while
true positive detection improved 23%. As documented in their post-implementation review, their NOC
manager explained, "We'd been chasing algorithmic unicorns for months when the real problem was

feeding garbage data into gold-plated models."

KT's operations center implemented multi-stage data validation pipelines with transformative results. False
alarms dropped 72% overnight, while the same validation filters applied during training improved
predictive accuracy by 38%. Their simplest model with robust data validation outperformed sophisticated

deep learning implementations without validation [7].

Table 3 compares approaches across three common telecom Al tasks, averaged across
implementations at 8 carriers (2022-2024):

Table 3: Performance Comparison: Data-Centric vs. Model-Centric Approaches. [5, 6]

Task Type

Data-Centric Improvement

Model Architecture Improvement

Anomaly Detection

72% reduction in false positives

18% reduction in false positives

KPI Prediction

38% error reduction

12% error reduction

Root Cause Analysis

54% faster resolution

21% faster resolution

Data reveals consistent patterns across all applications. Data-centric approaches deliver 2.6-4.0x better

performance improvements compared to traditional architecture enhancements.

5. Sustainability and Future Directions
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Modern network operation centers frequently operate with poor energy efficiency [12]. AT&T's analysis
revealed Al systems consumed 14% of total data center power. After implementing systematic data quality
improvements, power consumption dropped 50% while performance improved significantly. Deutsche
Telekom documented 63% reduction in training compute requirements through clean data practices [9].
Research frontiers include untangling causation from correlation in network telemetry, automating cross-
vendor data harmonization (O-RAN Alliance initiatives) [10], developing telecom-specific uncertainty
quantification, and building domain-specific explainable Al for network operations [11, 12].

Table 4: Organizational Transformation Models. [9, 10]

Organization Model Key Characteristic Primary Advantage
Unified Data Teams Combined DS/DE skills End-to-end accountability
Embedded Data Engineers Domain-specific expertise Operational relevance

Centralized Data Office Standardized governance Consistent quality control
B

Getting Started: 5D Implementation Checklist

DEFINE PHASE

[ Assess current data quality metrics and baseline performance

[ Identify top 3 data quality issues impacting Al performance

[[] Define specific, measurable objectives (avoid vague goals)
DIAGNOSE PHASE

[C] Establish data versioning protocols for all datasets

[:| Implement temporal consistency validation pipelines

[[] Create cross-vendor data compatibility assessment

DESIGN PHASE
[ Engineer domain-specific features (RF physics, network topology)

() Implement context-aware standardization for multi-wvendor telemetry

[C] Build cross-functional teams (network ops + data science)
DERIVE PHA SE

[) Implement active learning systems for efficient label generation

[] Set up uncertainty-based targeting for expert review

[:] Execute model training with validated, harmonized datasets
DEPLOY PHASE

[C] Create data guality scorecards for operational monitoring
[ Set up simple operator feedback mechanisms (thumbs up/dowmn)
[C] Establish continuous improvement and feedback loops

SUCCESS METRICS
[[] Track data cowerage scores and bias measurements

[ Monitor engineering time: data vs. model improvements
[] Measure operational trust scores from network teams

Priority:

Start with Define and Oiagnose phases. Organizafions fiyically sea
20-30% imovoverment within 2-3 months focusing on dafa gualify before
toucting algorithums.

Complete all 5 phases systematically for maximum RiO.

-
Getting Started: SD Implementation Checklist. [5, 6]

Conclusion: Implementation Action Plan
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Telecommunications organizations often chase algorithmic sophistication, yet evidence consistently shows
that data integrity, not model complexity, determines operational success. Teams that adopt the 5D Model
typically achieve 2.6—4.0x performance gains while simultaneously reducing computational waste and
deployment delays.

Expected Results:
Companies that prioritize data quality before algorithm tuning commonly see 20-30% performance
improvements within 2—3 months, even without introducing new model architectures.

Critical Success Factors:
e Begin with the Define and Diagnose phases, clarity and structure create more value than advanced
modeling.
e Treat data-centric Al as both a technical and organizational transformation.
e Measure outcomes using operationally relevant metrics, not just accuracy or loss.

Monday Morning Action:

Download and apply TM Forum’s data quality assessment framework [12] to a single cell-tower cluster.
Document the findings and review them with the network operations team. In most cases, this single
exercise uncovers more impactful optimization opportunities than months of algorithm experimentation.
The tools exist. The methodologies are established.

The competitive advantage now belongs to organizations that execute.
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